clk_stm32h7.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /*
  2. * Copyright (C) STMicroelectronics SA 2017
  3. * Author(s): Patrice CHOTARD, <patrice.chotard@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <regmap.h>
  11. #include <syscon.h>
  12. #include <asm/io.h>
  13. #include <dm/root.h>
  14. #include <dt-bindings/clock/stm32h7-clks.h>
  15. DECLARE_GLOBAL_DATA_PTR;
  16. /* RCC CR specific definitions */
  17. #define RCC_CR_HSION BIT(0)
  18. #define RCC_CR_HSIRDY BIT(2)
  19. #define RCC_CR_HSEON BIT(16)
  20. #define RCC_CR_HSERDY BIT(17)
  21. #define RCC_CR_HSEBYP BIT(18)
  22. #define RCC_CR_PLL1ON BIT(24)
  23. #define RCC_CR_PLL1RDY BIT(25)
  24. #define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
  25. #define RCC_CR_HSIDIV_SHIFT 3
  26. #define RCC_CFGR_SW_MASK GENMASK(2, 0)
  27. #define RCC_CFGR_SW_HSI 0
  28. #define RCC_CFGR_SW_CSI 1
  29. #define RCC_CFGR_SW_HSE 2
  30. #define RCC_CFGR_SW_PLL1 3
  31. #define RCC_PLLCKSELR_PLLSRC_HSI 0
  32. #define RCC_PLLCKSELR_PLLSRC_CSI 1
  33. #define RCC_PLLCKSELR_PLLSRC_HSE 2
  34. #define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
  35. #define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
  36. #define RCC_PLLCKSELR_DIVM1_SHIFT 4
  37. #define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
  38. #define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
  39. #define RCC_PLL1DIVR_DIVP1_SHIFT 9
  40. #define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
  41. #define RCC_PLL1DIVR_DIVQ1_SHIFT 16
  42. #define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
  43. #define RCC_PLL1DIVR_DIVR1_SHIFT 24
  44. #define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
  45. #define RCC_PLL1FRACR_FRACN1_SHIFT 3
  46. #define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
  47. #define RCC_PLLCFGR_PLL1RGE_SHIFT 2
  48. #define PLL1RGE_1_2_MHZ 0
  49. #define PLL1RGE_2_4_MHZ 1
  50. #define PLL1RGE_4_8_MHZ 2
  51. #define PLL1RGE_8_16_MHZ 3
  52. #define RCC_PLLCFGR_DIVP1EN BIT(16)
  53. #define RCC_PLLCFGR_DIVQ1EN BIT(17)
  54. #define RCC_PLLCFGR_DIVR1EN BIT(18)
  55. #define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
  56. #define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
  57. #define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
  58. #define RCC_D1CFGR_HPRE_DIV2 8
  59. #define RCC_D1CFGR_D1PPRE_SHIFT 4
  60. #define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
  61. #define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
  62. #define RCC_D1CFGR_D1CPRE_SHIFT 8
  63. #define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
  64. #define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
  65. #define RCC_D2CFGR_D2PPRE1_SHIFT 4
  66. #define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
  67. #define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
  68. #define RCC_D2CFGR_D2PPRE2_SHIFT 8
  69. #define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
  70. #define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
  71. #define RCC_D3CFGR_D3PPRE_SHIFT 4
  72. #define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
  73. #define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
  74. #define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
  75. #define FMCSRC_HCLKD1 0
  76. #define FMCSRC_PLL1_Q_CK 1
  77. #define FMCSRC_PLL2_R_CK 2
  78. #define FMCSRC_PER_CK 3
  79. #define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
  80. #define RCC_D1CCIPR_QSPISRC_SHIFT 4
  81. #define QSPISRC_HCLKD1 0
  82. #define QSPISRC_PLL1_Q_CK 1
  83. #define QSPISRC_PLL2_R_CK 2
  84. #define QSPISRC_PER_CK 3
  85. #define PWR_CR3 0x0c
  86. #define PWR_CR3_SDEN BIT(2)
  87. #define PWR_D3CR 0x18
  88. #define PWR_D3CR_VOS_MASK GENMASK(15, 14)
  89. #define PWR_D3CR_VOS_SHIFT 14
  90. #define VOS_SCALE_3 1
  91. #define VOS_SCALE_2 2
  92. #define VOS_SCALE_1 3
  93. #define PWR_D3CR_VOSREADY BIT(13)
  94. struct stm32_rcc_regs {
  95. u32 cr; /* 0x00 Source Control Register */
  96. u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
  97. u32 crrcr; /* 0x08 Clock Recovery RC Register */
  98. u32 reserved1; /* 0x0c reserved */
  99. u32 cfgr; /* 0x10 Clock Configuration Register */
  100. u32 reserved2; /* 0x14 reserved */
  101. u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
  102. u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
  103. u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
  104. u32 reserved3; /* 0x24 reserved */
  105. u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
  106. u32 pllcfgr; /* 0x2c PLLs Configuration Register */
  107. u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
  108. u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
  109. u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
  110. u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
  111. u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
  112. u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
  113. u32 reserved4; /* 0x48 reserved */
  114. u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
  115. u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
  116. u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
  117. u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
  118. u32 reserved5; /* 0x5c reserved */
  119. u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
  120. u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
  121. u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
  122. u32 reserved6; /* 0x6c reserved */
  123. u32 bdcr; /* 0x70 Backup Domain Control Register */
  124. u32 csr; /* 0x74 Clock Control and Status Register */
  125. u32 reserved7; /* 0x78 reserved */
  126. u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
  127. u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
  128. u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
  129. u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
  130. u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
  131. u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
  132. u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
  133. u32 apb2rstr; /* 0x98 APB2 Clock Register */
  134. u32 apb4rstr; /* 0x9c APB4 Clock Register */
  135. u32 gcr; /* 0xa0 Global Control Register */
  136. u32 reserved8; /* 0xa4 reserved */
  137. u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
  138. u32 reserved9[9];/* 0xac to 0xcc reserved */
  139. u32 rsr; /* 0xd0 Reset Status Register */
  140. u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
  141. u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
  142. u32 ahb2enr; /* 0xdc AHB2 Clock Register */
  143. u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
  144. u32 apb3enr; /* 0xe4 APB3 Clock Register */
  145. u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
  146. u32 apb1henr; /* 0xec APB1 high Clock Register */
  147. u32 apb2enr; /* 0xf0 APB2 Clock Register */
  148. u32 apb4enr; /* 0xf4 APB4 Clock Register */
  149. };
  150. #define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
  151. #define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
  152. #define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
  153. #define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
  154. #define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
  155. #define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
  156. #define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
  157. #define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
  158. #define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
  159. struct clk_cfg {
  160. u32 gate_offset;
  161. u8 gate_bit_idx;
  162. const char *name;
  163. };
  164. #define CLK(_gate_offset, _bit_idx, _name) \
  165. { \
  166. .gate_offset = _gate_offset,\
  167. .gate_bit_idx = _bit_idx,\
  168. .name = _name,\
  169. }
  170. /*
  171. * the way all these entries are sorted in this array could seem
  172. * unlogical, but we are dependant of kernel DT_bindings,
  173. * where clocks are separate in 2 banks, peripheral clocks and
  174. * kernel clocks.
  175. */
  176. static const struct clk_cfg clk_map[] = {
  177. CLK(RCC_AHB3ENR, 31, "d1sram1"), /* peripheral clocks */
  178. CLK(RCC_AHB3ENR, 30, "itcm"),
  179. CLK(RCC_AHB3ENR, 29, "dtcm2"),
  180. CLK(RCC_AHB3ENR, 28, "dtcm1"),
  181. CLK(RCC_AHB3ENR, 8, "flitf"),
  182. CLK(RCC_AHB3ENR, 5, "jpgdec"),
  183. CLK(RCC_AHB3ENR, 4, "dma2d"),
  184. CLK(RCC_AHB3ENR, 0, "mdma"),
  185. CLK(RCC_AHB1ENR, 28, "usb2ulpi"),
  186. CLK(RCC_AHB1ENR, 17, "eth1rx"),
  187. CLK(RCC_AHB1ENR, 16, "eth1tx"),
  188. CLK(RCC_AHB1ENR, 15, "eth1mac"),
  189. CLK(RCC_AHB1ENR, 14, "art"),
  190. CLK(RCC_AHB1ENR, 26, "usb1ulpi"),
  191. CLK(RCC_AHB1ENR, 1, "dma2"),
  192. CLK(RCC_AHB1ENR, 0, "dma1"),
  193. CLK(RCC_AHB2ENR, 31, "d2sram3"),
  194. CLK(RCC_AHB2ENR, 30, "d2sram2"),
  195. CLK(RCC_AHB2ENR, 29, "d2sram1"),
  196. CLK(RCC_AHB2ENR, 5, "hash"),
  197. CLK(RCC_AHB2ENR, 4, "crypt"),
  198. CLK(RCC_AHB2ENR, 0, "camitf"),
  199. CLK(RCC_AHB4ENR, 28, "bkpram"),
  200. CLK(RCC_AHB4ENR, 25, "hsem"),
  201. CLK(RCC_AHB4ENR, 21, "bdma"),
  202. CLK(RCC_AHB4ENR, 19, "crc"),
  203. CLK(RCC_AHB4ENR, 10, "gpiok"),
  204. CLK(RCC_AHB4ENR, 9, "gpioj"),
  205. CLK(RCC_AHB4ENR, 8, "gpioi"),
  206. CLK(RCC_AHB4ENR, 7, "gpioh"),
  207. CLK(RCC_AHB4ENR, 6, "gpiog"),
  208. CLK(RCC_AHB4ENR, 5, "gpiof"),
  209. CLK(RCC_AHB4ENR, 4, "gpioe"),
  210. CLK(RCC_AHB4ENR, 3, "gpiod"),
  211. CLK(RCC_AHB4ENR, 2, "gpioc"),
  212. CLK(RCC_AHB4ENR, 1, "gpiob"),
  213. CLK(RCC_AHB4ENR, 0, "gpioa"),
  214. CLK(RCC_APB3ENR, 6, "wwdg1"),
  215. CLK(RCC_APB1LENR, 29, "dac12"),
  216. CLK(RCC_APB1LENR, 11, "wwdg2"),
  217. CLK(RCC_APB1LENR, 8, "tim14"),
  218. CLK(RCC_APB1LENR, 7, "tim13"),
  219. CLK(RCC_APB1LENR, 6, "tim12"),
  220. CLK(RCC_APB1LENR, 5, "tim7"),
  221. CLK(RCC_APB1LENR, 4, "tim6"),
  222. CLK(RCC_APB1LENR, 3, "tim5"),
  223. CLK(RCC_APB1LENR, 2, "tim4"),
  224. CLK(RCC_APB1LENR, 1, "tim3"),
  225. CLK(RCC_APB1LENR, 0, "tim2"),
  226. CLK(RCC_APB1HENR, 5, "mdios"),
  227. CLK(RCC_APB1HENR, 4, "opamp"),
  228. CLK(RCC_APB1HENR, 1, "crs"),
  229. CLK(RCC_APB2ENR, 18, "tim17"),
  230. CLK(RCC_APB2ENR, 17, "tim16"),
  231. CLK(RCC_APB2ENR, 16, "tim15"),
  232. CLK(RCC_APB2ENR, 1, "tim8"),
  233. CLK(RCC_APB2ENR, 0, "tim1"),
  234. CLK(RCC_APB4ENR, 26, "tmpsens"),
  235. CLK(RCC_APB4ENR, 16, "rtcapb"),
  236. CLK(RCC_APB4ENR, 15, "vref"),
  237. CLK(RCC_APB4ENR, 14, "comp12"),
  238. CLK(RCC_APB4ENR, 1, "syscfg"),
  239. CLK(RCC_AHB3ENR, 16, "sdmmc1"), /* kernel clocks */
  240. CLK(RCC_AHB3ENR, 14, "quadspi"),
  241. CLK(RCC_AHB3ENR, 12, "fmc"),
  242. CLK(RCC_AHB1ENR, 27, "usb2otg"),
  243. CLK(RCC_AHB1ENR, 25, "usb1otg"),
  244. CLK(RCC_AHB1ENR, 5, "adc12"),
  245. CLK(RCC_AHB2ENR, 9, "sdmmc2"),
  246. CLK(RCC_AHB2ENR, 6, "rng"),
  247. CLK(RCC_AHB4ENR, 24, "adc3"),
  248. CLK(RCC_APB3ENR, 4, "dsi"),
  249. CLK(RCC_APB3ENR, 3, "ltdc"),
  250. CLK(RCC_APB1LENR, 31, "usart8"),
  251. CLK(RCC_APB1LENR, 30, "usart7"),
  252. CLK(RCC_APB1LENR, 27, "hdmicec"),
  253. CLK(RCC_APB1LENR, 23, "i2c3"),
  254. CLK(RCC_APB1LENR, 22, "i2c2"),
  255. CLK(RCC_APB1LENR, 21, "i2c1"),
  256. CLK(RCC_APB1LENR, 20, "uart5"),
  257. CLK(RCC_APB1LENR, 19, "uart4"),
  258. CLK(RCC_APB1LENR, 18, "usart3"),
  259. CLK(RCC_APB1LENR, 17, "usart2"),
  260. CLK(RCC_APB1LENR, 16, "spdifrx"),
  261. CLK(RCC_APB1LENR, 15, "spi3"),
  262. CLK(RCC_APB1LENR, 14, "spi2"),
  263. CLK(RCC_APB1LENR, 9, "lptim1"),
  264. CLK(RCC_APB1HENR, 8, "fdcan"),
  265. CLK(RCC_APB1HENR, 2, "swp"),
  266. CLK(RCC_APB2ENR, 29, "hrtim"),
  267. CLK(RCC_APB2ENR, 28, "dfsdm1"),
  268. CLK(RCC_APB2ENR, 24, "sai3"),
  269. CLK(RCC_APB2ENR, 23, "sai2"),
  270. CLK(RCC_APB2ENR, 22, "sai1"),
  271. CLK(RCC_APB2ENR, 20, "spi5"),
  272. CLK(RCC_APB2ENR, 13, "spi4"),
  273. CLK(RCC_APB2ENR, 12, "spi1"),
  274. CLK(RCC_APB2ENR, 5, "usart6"),
  275. CLK(RCC_APB2ENR, 4, "usart1"),
  276. CLK(RCC_APB4ENR, 21, "sai4a"),
  277. CLK(RCC_APB4ENR, 21, "sai4b"),
  278. CLK(RCC_APB4ENR, 12, "lptim5"),
  279. CLK(RCC_APB4ENR, 11, "lptim4"),
  280. CLK(RCC_APB4ENR, 10, "lptim3"),
  281. CLK(RCC_APB4ENR, 9, "lptim2"),
  282. CLK(RCC_APB4ENR, 7, "i2c4"),
  283. CLK(RCC_APB4ENR, 5, "spi6"),
  284. CLK(RCC_APB4ENR, 3, "lpuart1"),
  285. };
  286. struct stm32_clk {
  287. struct stm32_rcc_regs *rcc_base;
  288. struct regmap *pwr_regmap;
  289. };
  290. struct pll_psc {
  291. u8 divm;
  292. u16 divn;
  293. u8 divp;
  294. u8 divq;
  295. u8 divr;
  296. };
  297. /*
  298. * OSC_HSE = 25 MHz
  299. * VCO = 500MHz
  300. * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
  301. */
  302. struct pll_psc sys_pll_psc = {
  303. .divm = 4,
  304. .divn = 80,
  305. .divp = 2,
  306. .divq = 2,
  307. .divr = 2,
  308. };
  309. int configure_clocks(struct udevice *dev)
  310. {
  311. struct stm32_clk *priv = dev_get_priv(dev);
  312. struct stm32_rcc_regs *regs = priv->rcc_base;
  313. uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
  314. uint32_t pllckselr = 0;
  315. uint32_t pll1divr = 0;
  316. uint32_t pllcfgr = 0;
  317. /* Switch on HSI */
  318. setbits_le32(&regs->cr, RCC_CR_HSION);
  319. while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
  320. ;
  321. /* Reset CFGR, now HSI is the default system clock */
  322. writel(0, &regs->cfgr);
  323. /* Set all kernel domain clock registers to reset value*/
  324. writel(0x0, &regs->d1ccipr);
  325. writel(0x0, &regs->d2ccip1r);
  326. writel(0x0, &regs->d2ccip2r);
  327. /* Set voltage scaling at scale 1 */
  328. clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
  329. VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
  330. /* disable step down converter */
  331. clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SDEN);
  332. while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
  333. ;
  334. /* disable HSE to configure it */
  335. clrbits_le32(&regs->cr, RCC_CR_HSEON);
  336. while ((readl(&regs->cr) & RCC_CR_HSERDY))
  337. ;
  338. /* clear HSE bypass and set it ON */
  339. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  340. /* Switch on HSE */
  341. setbits_le32(&regs->cr, RCC_CR_HSEON);
  342. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  343. ;
  344. /* pll setup, disable it */
  345. clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
  346. while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
  347. ;
  348. /* Select HSE as PLL clock source */
  349. pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
  350. pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
  351. writel(pllckselr, &regs->pllckselr);
  352. pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
  353. pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
  354. pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
  355. pll1divr |= (sys_pll_psc.divn - 1);
  356. writel(pll1divr, &regs->pll1divr);
  357. pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
  358. pllcfgr |= RCC_PLLCFGR_DIVP1EN;
  359. pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
  360. pllcfgr |= RCC_PLLCFGR_DIVR1EN;
  361. writel(pllcfgr, &regs->pllcfgr);
  362. /* pll setup, enable it */
  363. setbits_le32(&regs->cr, RCC_CR_PLL1ON);
  364. /* set HPRE (/2) DI clk --> 125MHz */
  365. clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
  366. RCC_D1CFGR_HPRE_DIV2);
  367. /* select PLL1 as system clock source (sys_ck)*/
  368. clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
  369. while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
  370. ;
  371. /* sdram: use pll1_q as fmc_k clk */
  372. clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
  373. FMCSRC_PLL1_Q_CK);
  374. return 0;
  375. }
  376. static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
  377. {
  378. u32 divider;
  379. /* get HSI divider value */
  380. divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
  381. divider = divider >> RCC_CR_HSIDIV_SHIFT;
  382. return divider;
  383. };
  384. enum pllsrc {
  385. HSE,
  386. LSE,
  387. HSI,
  388. CSI,
  389. I2S,
  390. TIMER,
  391. PLLSRC_NB,
  392. };
  393. static const char * const pllsrc_name[PLLSRC_NB] = {
  394. [HSE] = "clk-hse",
  395. [LSE] = "clk-lse",
  396. [HSI] = "clk-hsi",
  397. [CSI] = "clk-csi",
  398. [I2S] = "clk-i2s",
  399. [TIMER] = "timer-clk"
  400. };
  401. static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
  402. {
  403. struct clk clk;
  404. struct udevice *fixed_clock_dev = NULL;
  405. u32 divider;
  406. int ret;
  407. const char *name = pllsrc_name[pllsrc];
  408. debug("%s name %s\n", __func__, name);
  409. clk.id = 0;
  410. ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
  411. if (ret) {
  412. pr_err("Can't find clk %s (%d)", name, ret);
  413. return 0;
  414. }
  415. ret = clk_request(fixed_clock_dev, &clk);
  416. if (ret) {
  417. pr_err("Can't request %s clk (%d)", name, ret);
  418. return 0;
  419. }
  420. divider = 0;
  421. if (pllsrc == HSI)
  422. divider = stm32_get_HSI_divider(regs);
  423. debug("%s divider %d rate %ld\n", __func__,
  424. divider, clk_get_rate(&clk));
  425. return clk_get_rate(&clk) >> divider;
  426. };
  427. enum pll1_output {
  428. PLL1_P_CK,
  429. PLL1_Q_CK,
  430. PLL1_R_CK,
  431. };
  432. static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
  433. enum pll1_output output)
  434. {
  435. ulong pllsrc = 0;
  436. u32 divm1, divn1, divp1, divq1, divr1, fracn1;
  437. ulong vco, rate;
  438. /* get the PLLSRC */
  439. switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
  440. case RCC_PLLCKSELR_PLLSRC_HSI:
  441. pllsrc = stm32_get_rate(regs, HSI);
  442. break;
  443. case RCC_PLLCKSELR_PLLSRC_CSI:
  444. pllsrc = stm32_get_rate(regs, CSI);
  445. break;
  446. case RCC_PLLCKSELR_PLLSRC_HSE:
  447. pllsrc = stm32_get_rate(regs, HSE);
  448. break;
  449. case RCC_PLLCKSELR_PLLSRC_NO_CLK:
  450. /* shouldn't happen */
  451. pr_err("wrong value for RCC_PLLCKSELR register\n");
  452. pllsrc = 0;
  453. break;
  454. }
  455. /* pllsrc = 0 ? no need to go ahead */
  456. if (!pllsrc)
  457. return pllsrc;
  458. /* get divm1, divp1, divn1 and divr1 */
  459. divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
  460. divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
  461. divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
  462. divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
  463. divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
  464. divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
  465. divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
  466. divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
  467. divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
  468. fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
  469. fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
  470. vco = (pllsrc / divm1) * divn1;
  471. rate = (pllsrc * fracn1) / (divm1 * 8192);
  472. debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
  473. __func__, divm1, divn1, divp1, divq1, divr1);
  474. debug("%s fracn1 = %d vco = %ld rate = %ld\n",
  475. __func__, fracn1, vco, rate);
  476. switch (output) {
  477. case PLL1_P_CK:
  478. return (vco + rate) / divp1;
  479. break;
  480. case PLL1_Q_CK:
  481. return (vco + rate) / divq1;
  482. break;
  483. case PLL1_R_CK:
  484. return (vco + rate) / divr1;
  485. break;
  486. }
  487. return -EINVAL;
  488. }
  489. static ulong stm32_clk_get_rate(struct clk *clk)
  490. {
  491. struct stm32_clk *priv = dev_get_priv(clk->dev);
  492. struct stm32_rcc_regs *regs = priv->rcc_base;
  493. ulong sysclk = 0;
  494. u32 gate_offset;
  495. u32 d1cfgr;
  496. /* prescaler table lookups for clock computation */
  497. u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
  498. u8 source, idx;
  499. /*
  500. * get system clock (sys_ck) source
  501. * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
  502. */
  503. source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
  504. switch (source) {
  505. case RCC_CFGR_SW_PLL1:
  506. sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
  507. break;
  508. case RCC_CFGR_SW_HSE:
  509. sysclk = stm32_get_rate(regs, HSE);
  510. break;
  511. case RCC_CFGR_SW_CSI:
  512. sysclk = stm32_get_rate(regs, CSI);
  513. break;
  514. case RCC_CFGR_SW_HSI:
  515. sysclk = stm32_get_rate(regs, HSI);
  516. break;
  517. }
  518. /* sysclk = 0 ? no need to go ahead */
  519. if (!sysclk)
  520. return sysclk;
  521. debug("%s system clock: source = %d freq = %ld\n",
  522. __func__, source, sysclk);
  523. d1cfgr = readl(&regs->d1cfgr);
  524. if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
  525. /* get D1 domain Core prescaler */
  526. idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
  527. RCC_D1CFGR_D1CPRE_SHIFT;
  528. sysclk = sysclk / prescaler_table[idx];
  529. }
  530. if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
  531. /* get D1 domain AHB prescaler */
  532. idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
  533. sysclk = sysclk / prescaler_table[idx];
  534. }
  535. gate_offset = clk_map[clk->id].gate_offset;
  536. debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
  537. __func__, clk->id, gate_offset, sysclk);
  538. switch (gate_offset) {
  539. case RCC_AHB3ENR:
  540. case RCC_AHB1ENR:
  541. case RCC_AHB2ENR:
  542. case RCC_AHB4ENR:
  543. return sysclk;
  544. break;
  545. case RCC_APB3ENR:
  546. if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
  547. /* get D1 domain APB3 prescaler */
  548. idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
  549. RCC_D1CFGR_D1PPRE_SHIFT;
  550. sysclk = sysclk / prescaler_table[idx];
  551. }
  552. debug("%s system clock: freq after APB3 prescaler = %ld\n",
  553. __func__, sysclk);
  554. return sysclk;
  555. break;
  556. case RCC_APB4ENR:
  557. if (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
  558. /* get D3 domain APB4 prescaler */
  559. idx = (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
  560. RCC_D3CFGR_D3PPRE_SHIFT;
  561. sysclk = sysclk / prescaler_table[idx];
  562. }
  563. debug("%s system clock: freq after APB4 prescaler = %ld\n",
  564. __func__, sysclk);
  565. return sysclk;
  566. break;
  567. case RCC_APB1LENR:
  568. case RCC_APB1HENR:
  569. if (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED) {
  570. /* get D2 domain APB1 prescaler */
  571. idx = (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER) >>
  572. RCC_D2CFGR_D2PPRE1_SHIFT;
  573. sysclk = sysclk / prescaler_table[idx];
  574. }
  575. debug("%s system clock: freq after APB1 prescaler = %ld\n",
  576. __func__, sysclk);
  577. return sysclk;
  578. break;
  579. case RCC_APB2ENR:
  580. if (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED) {
  581. /* get D2 domain APB1 prescaler */
  582. idx = (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER) >>
  583. RCC_D2CFGR_D2PPRE2_SHIFT;
  584. sysclk = sysclk / prescaler_table[idx];
  585. }
  586. debug("%s system clock: freq after APB2 prescaler = %ld\n",
  587. __func__, sysclk);
  588. return sysclk;
  589. break;
  590. default:
  591. pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
  592. return -EINVAL;
  593. break;
  594. }
  595. }
  596. static int stm32_clk_enable(struct clk *clk)
  597. {
  598. struct stm32_clk *priv = dev_get_priv(clk->dev);
  599. struct stm32_rcc_regs *regs = priv->rcc_base;
  600. u32 gate_offset;
  601. u32 gate_bit_index;
  602. unsigned long clk_id = clk->id;
  603. gate_offset = clk_map[clk_id].gate_offset;
  604. gate_bit_index = clk_map[clk_id].gate_bit_idx;
  605. debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
  606. __func__, clk->id, gate_offset, gate_bit_index,
  607. clk_map[clk_id].name);
  608. setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
  609. return 0;
  610. }
  611. static int stm32_clk_probe(struct udevice *dev)
  612. {
  613. struct stm32_clk *priv = dev_get_priv(dev);
  614. struct udevice *syscon;
  615. fdt_addr_t addr;
  616. int err;
  617. addr = dev_read_addr(dev);
  618. if (addr == FDT_ADDR_T_NONE)
  619. return -EINVAL;
  620. priv->rcc_base = (struct stm32_rcc_regs *)addr;
  621. /* get corresponding syscon phandle */
  622. err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
  623. "st,syscfg", &syscon);
  624. if (err) {
  625. pr_err("unable to find syscon device\n");
  626. return err;
  627. }
  628. priv->pwr_regmap = syscon_get_regmap(syscon);
  629. if (!priv->pwr_regmap) {
  630. pr_err("unable to find regmap\n");
  631. return -ENODEV;
  632. }
  633. configure_clocks(dev);
  634. return 0;
  635. }
  636. static int stm32_clk_of_xlate(struct clk *clk,
  637. struct ofnode_phandle_args *args)
  638. {
  639. if (args->args_count != 1) {
  640. debug("Invaild args_count: %d\n", args->args_count);
  641. return -EINVAL;
  642. }
  643. if (args->args_count) {
  644. clk->id = args->args[0];
  645. /*
  646. * this computation convert DT clock index which is used to
  647. * point into 2 separate clock arrays (peripheral and kernel
  648. * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
  649. * into index to point into only one array where peripheral
  650. * and kernel clocks are consecutive
  651. */
  652. if (clk->id >= KERN_BANK) {
  653. clk->id -= KERN_BANK;
  654. clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
  655. } else {
  656. clk->id -= PERIF_BANK;
  657. }
  658. } else {
  659. clk->id = 0;
  660. }
  661. debug("%s clk->id %ld\n", __func__, clk->id);
  662. return 0;
  663. }
  664. static struct clk_ops stm32_clk_ops = {
  665. .of_xlate = stm32_clk_of_xlate,
  666. .enable = stm32_clk_enable,
  667. .get_rate = stm32_clk_get_rate,
  668. };
  669. U_BOOT_DRIVER(stm32h7_clk) = {
  670. .name = "stm32h7_rcc_clock",
  671. .id = UCLASS_CLK,
  672. .ops = &stm32_clk_ops,
  673. .probe = stm32_clk_probe,
  674. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  675. .flags = DM_FLAG_PRE_RELOC,
  676. };