mvneta.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * U-Boot version:
  5. * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
  6. *
  7. * Based on the Linux version which is:
  8. * Copyright (C) 2012 Marvell
  9. *
  10. * Rami Rosen <rosenr@marvell.com>
  11. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  12. *
  13. * SPDX-License-Identifier: GPL-2.0
  14. */
  15. #include <common.h>
  16. #include <dm.h>
  17. #include <net.h>
  18. #include <netdev.h>
  19. #include <config.h>
  20. #include <malloc.h>
  21. #include <asm/io.h>
  22. #include <linux/errno.h>
  23. #include <phy.h>
  24. #include <miiphy.h>
  25. #include <watchdog.h>
  26. #include <asm/arch/cpu.h>
  27. #include <asm/arch/soc.h>
  28. #include <linux/compat.h>
  29. #include <linux/mbus.h>
  30. DECLARE_GLOBAL_DATA_PTR;
  31. #if !defined(CONFIG_PHYLIB)
  32. # error Marvell mvneta requires PHYLIB
  33. #endif
  34. /* Some linux -> U-Boot compatibility stuff */
  35. #define netdev_err(dev, fmt, args...) \
  36. printf(fmt, ##args)
  37. #define netdev_warn(dev, fmt, args...) \
  38. printf(fmt, ##args)
  39. #define netdev_info(dev, fmt, args...) \
  40. printf(fmt, ##args)
  41. #define CONFIG_NR_CPUS 1
  42. #define ETH_HLEN 14 /* Total octets in header */
  43. /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
  44. #define WRAP (2 + ETH_HLEN + 4 + 32)
  45. #define MTU 1500
  46. #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
  47. #define MVNETA_SMI_TIMEOUT 10000
  48. /* Registers */
  49. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  50. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  51. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  52. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  53. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  54. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  55. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  56. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  57. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  58. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  59. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  60. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  61. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  62. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  63. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  64. #define MVNETA_PORT_RX_RESET 0x1cc0
  65. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  66. #define MVNETA_PHY_ADDR 0x2000
  67. #define MVNETA_PHY_ADDR_MASK 0x1f
  68. #define MVNETA_SMI 0x2004
  69. #define MVNETA_PHY_REG_MASK 0x1f
  70. /* SMI register fields */
  71. #define MVNETA_SMI_DATA_OFFS 0 /* Data */
  72. #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
  73. #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
  74. #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
  75. #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
  76. #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
  77. #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
  78. #define MVNETA_SMI_BUSY (1 << 28) /* Busy */
  79. #define MVNETA_MBUS_RETRY 0x2010
  80. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  81. #define MVNETA_UNIT_CONTROL 0x20B0
  82. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  83. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  84. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  85. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  86. #define MVNETA_WIN_SIZE_MASK (0xffff0000)
  87. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  88. #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
  89. #define MVNETA_PORT_ACCESS_PROTECT 0x2294
  90. #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
  91. #define MVNETA_PORT_CONFIG 0x2400
  92. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  93. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  94. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  95. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  96. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  97. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  98. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  99. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  100. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  101. MVNETA_DEF_RXQ_ARP(q) | \
  102. MVNETA_DEF_RXQ_TCP(q) | \
  103. MVNETA_DEF_RXQ_UDP(q) | \
  104. MVNETA_DEF_RXQ_BPDU(q) | \
  105. MVNETA_TX_UNSET_ERR_SUM | \
  106. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  107. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  108. #define MVNETA_MAC_ADDR_LOW 0x2414
  109. #define MVNETA_MAC_ADDR_HIGH 0x2418
  110. #define MVNETA_SDMA_CONFIG 0x241c
  111. #define MVNETA_SDMA_BRST_SIZE_16 4
  112. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  113. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  114. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  115. #define MVNETA_DESC_SWAP BIT(6)
  116. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  117. #define MVNETA_PORT_STATUS 0x2444
  118. #define MVNETA_TX_IN_PRGRS BIT(1)
  119. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  120. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  121. #define MVNETA_SERDES_CFG 0x24A0
  122. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  123. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  124. #define MVNETA_TYPE_PRIO 0x24bc
  125. #define MVNETA_FORCE_UNI BIT(21)
  126. #define MVNETA_TXQ_CMD_1 0x24e4
  127. #define MVNETA_TXQ_CMD 0x2448
  128. #define MVNETA_TXQ_DISABLE_SHIFT 8
  129. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  130. #define MVNETA_ACC_MODE 0x2500
  131. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  132. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  133. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  134. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  135. /* Exception Interrupt Port/Queue Cause register */
  136. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  137. #define MVNETA_INTR_NEW_MASK 0x25a4
  138. /* bits 0..7 = TXQ SENT, one bit per queue.
  139. * bits 8..15 = RXQ OCCUP, one bit per queue.
  140. * bits 16..23 = RXQ FREE, one bit per queue.
  141. * bit 29 = OLD_REG_SUM, see old reg ?
  142. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  143. * bit 31 = MISC_SUM, one bit for 4 ports
  144. */
  145. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  146. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  147. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  148. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  149. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  150. #define MVNETA_INTR_OLD_MASK 0x25ac
  151. /* Data Path Port/Queue Cause Register */
  152. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  153. #define MVNETA_INTR_MISC_MASK 0x25b4
  154. #define MVNETA_INTR_ENABLE 0x25b8
  155. #define MVNETA_RXQ_CMD 0x2680
  156. #define MVNETA_RXQ_DISABLE_SHIFT 8
  157. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  158. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  159. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  160. #define MVNETA_GMAC_CTRL_0 0x2c00
  161. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  162. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  163. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  164. #define MVNETA_GMAC_CTRL_2 0x2c08
  165. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  166. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  167. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  168. #define MVNETA_GMAC_STATUS 0x2c10
  169. #define MVNETA_GMAC_LINK_UP BIT(0)
  170. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  171. #define MVNETA_GMAC_SPEED_100 BIT(2)
  172. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  173. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  174. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  175. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  176. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  177. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  178. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  179. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  180. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  181. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  182. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  183. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  184. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  185. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  186. #define MVNETA_MIB_LATE_COLLISION 0x7c
  187. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  188. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  189. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  190. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  191. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  192. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  193. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  194. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  195. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  196. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  197. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  198. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  199. #define MVNETA_PORT_TX_RESET 0x3cf0
  200. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  201. #define MVNETA_TX_MTU 0x3e0c
  202. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  203. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  204. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  205. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  206. /* Descriptor ring Macros */
  207. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  208. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  209. /* Various constants */
  210. /* Coalescing */
  211. #define MVNETA_TXDONE_COAL_PKTS 16
  212. #define MVNETA_RX_COAL_PKTS 32
  213. #define MVNETA_RX_COAL_USEC 100
  214. /* The two bytes Marvell header. Either contains a special value used
  215. * by Marvell switches when a specific hardware mode is enabled (not
  216. * supported by this driver) or is filled automatically by zeroes on
  217. * the RX side. Those two bytes being at the front of the Ethernet
  218. * header, they allow to have the IP header aligned on a 4 bytes
  219. * boundary automatically: the hardware skips those two bytes on its
  220. * own.
  221. */
  222. #define MVNETA_MH_SIZE 2
  223. #define MVNETA_VLAN_TAG_LEN 4
  224. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  225. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  226. #define MVNETA_ACC_MODE_EXT 1
  227. /* Timeout constants */
  228. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  229. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  230. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  231. #define MVNETA_TX_MTU_MAX 0x3ffff
  232. /* Max number of Rx descriptors */
  233. #define MVNETA_MAX_RXD 16
  234. /* Max number of Tx descriptors */
  235. #define MVNETA_MAX_TXD 16
  236. /* descriptor aligned size */
  237. #define MVNETA_DESC_ALIGNED_SIZE 32
  238. struct mvneta_port {
  239. void __iomem *base;
  240. struct mvneta_rx_queue *rxqs;
  241. struct mvneta_tx_queue *txqs;
  242. u8 mcast_count[256];
  243. u16 tx_ring_size;
  244. u16 rx_ring_size;
  245. phy_interface_t phy_interface;
  246. unsigned int link;
  247. unsigned int duplex;
  248. unsigned int speed;
  249. int init;
  250. int phyaddr;
  251. struct phy_device *phydev;
  252. struct mii_dev *bus;
  253. };
  254. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  255. * layout of the transmit and reception DMA descriptors, and their
  256. * layout is therefore defined by the hardware design
  257. */
  258. #define MVNETA_TX_L3_OFF_SHIFT 0
  259. #define MVNETA_TX_IP_HLEN_SHIFT 8
  260. #define MVNETA_TX_L4_UDP BIT(16)
  261. #define MVNETA_TX_L3_IP6 BIT(17)
  262. #define MVNETA_TXD_IP_CSUM BIT(18)
  263. #define MVNETA_TXD_Z_PAD BIT(19)
  264. #define MVNETA_TXD_L_DESC BIT(20)
  265. #define MVNETA_TXD_F_DESC BIT(21)
  266. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  267. MVNETA_TXD_L_DESC | \
  268. MVNETA_TXD_F_DESC)
  269. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  270. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  271. #define MVNETA_RXD_ERR_CRC 0x0
  272. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  273. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  274. #define MVNETA_RXD_ERR_LEN BIT(18)
  275. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  276. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  277. #define MVNETA_RXD_L3_IP4 BIT(25)
  278. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  279. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  280. struct mvneta_tx_desc {
  281. u32 command; /* Options used by HW for packet transmitting.*/
  282. u16 reserverd1; /* csum_l4 (for future use) */
  283. u16 data_size; /* Data size of transmitted packet in bytes */
  284. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  285. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  286. u32 reserved3[4]; /* Reserved - (for future use) */
  287. };
  288. struct mvneta_rx_desc {
  289. u32 status; /* Info about received packet */
  290. u16 reserved1; /* pnc_info - (for future use, PnC) */
  291. u16 data_size; /* Size of received packet in bytes */
  292. u32 buf_phys_addr; /* Physical address of the buffer */
  293. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  294. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  295. u16 reserved3; /* prefetch_cmd, for future use */
  296. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  297. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  298. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  299. };
  300. struct mvneta_tx_queue {
  301. /* Number of this TX queue, in the range 0-7 */
  302. u8 id;
  303. /* Number of TX DMA descriptors in the descriptor ring */
  304. int size;
  305. /* Index of last TX DMA descriptor that was inserted */
  306. int txq_put_index;
  307. /* Index of the TX DMA descriptor to be cleaned up */
  308. int txq_get_index;
  309. /* Virtual address of the TX DMA descriptors array */
  310. struct mvneta_tx_desc *descs;
  311. /* DMA address of the TX DMA descriptors array */
  312. dma_addr_t descs_phys;
  313. /* Index of the last TX DMA descriptor */
  314. int last_desc;
  315. /* Index of the next TX DMA descriptor to process */
  316. int next_desc_to_proc;
  317. };
  318. struct mvneta_rx_queue {
  319. /* rx queue number, in the range 0-7 */
  320. u8 id;
  321. /* num of rx descriptors in the rx descriptor ring */
  322. int size;
  323. /* Virtual address of the RX DMA descriptors array */
  324. struct mvneta_rx_desc *descs;
  325. /* DMA address of the RX DMA descriptors array */
  326. dma_addr_t descs_phys;
  327. /* Index of the last RX DMA descriptor */
  328. int last_desc;
  329. /* Index of the next RX DMA descriptor to process */
  330. int next_desc_to_proc;
  331. };
  332. /* U-Boot doesn't use the queues, so set the number to 1 */
  333. static int rxq_number = 1;
  334. static int txq_number = 1;
  335. static int rxq_def;
  336. struct buffer_location {
  337. struct mvneta_tx_desc *tx_descs;
  338. struct mvneta_rx_desc *rx_descs;
  339. u32 rx_buffers;
  340. };
  341. /*
  342. * All 4 interfaces use the same global buffer, since only one interface
  343. * can be enabled at once
  344. */
  345. static struct buffer_location buffer_loc;
  346. /*
  347. * Page table entries are set to 1MB, or multiples of 1MB
  348. * (not < 1MB). driver uses less bd's so use 1MB bdspace.
  349. */
  350. #define BD_SPACE (1 << 20)
  351. /*
  352. * Dummy implementation that can be overwritten by a board
  353. * specific function
  354. */
  355. __weak int board_network_enable(struct mii_dev *bus)
  356. {
  357. return 0;
  358. }
  359. /* Utility/helper methods */
  360. /* Write helper method */
  361. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  362. {
  363. writel(data, pp->base + offset);
  364. }
  365. /* Read helper method */
  366. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  367. {
  368. return readl(pp->base + offset);
  369. }
  370. /* Clear all MIB counters */
  371. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  372. {
  373. int i;
  374. /* Perform dummy reads from MIB counters */
  375. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  376. mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  377. }
  378. /* Rx descriptors helper methods */
  379. /* Checks whether the RX descriptor having this status is both the first
  380. * and the last descriptor for the RX packet. Each RX packet is currently
  381. * received through a single RX descriptor, so not having each RX
  382. * descriptor with its first and last bits set is an error
  383. */
  384. static int mvneta_rxq_desc_is_first_last(u32 status)
  385. {
  386. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  387. MVNETA_RXD_FIRST_LAST_DESC;
  388. }
  389. /* Add number of descriptors ready to receive new packets */
  390. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  391. struct mvneta_rx_queue *rxq,
  392. int ndescs)
  393. {
  394. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  395. * be added at once
  396. */
  397. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  398. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  399. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  400. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  401. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  402. }
  403. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  404. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  405. }
  406. /* Get number of RX descriptors occupied by received packets */
  407. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  408. struct mvneta_rx_queue *rxq)
  409. {
  410. u32 val;
  411. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  412. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  413. }
  414. /* Update num of rx desc called upon return from rx path or
  415. * from mvneta_rxq_drop_pkts().
  416. */
  417. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  418. struct mvneta_rx_queue *rxq,
  419. int rx_done, int rx_filled)
  420. {
  421. u32 val;
  422. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  423. val = rx_done |
  424. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  425. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  426. return;
  427. }
  428. /* Only 255 descriptors can be added at once */
  429. while ((rx_done > 0) || (rx_filled > 0)) {
  430. if (rx_done <= 0xff) {
  431. val = rx_done;
  432. rx_done = 0;
  433. } else {
  434. val = 0xff;
  435. rx_done -= 0xff;
  436. }
  437. if (rx_filled <= 0xff) {
  438. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  439. rx_filled = 0;
  440. } else {
  441. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  442. rx_filled -= 0xff;
  443. }
  444. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  445. }
  446. }
  447. /* Get pointer to next RX descriptor to be processed by SW */
  448. static struct mvneta_rx_desc *
  449. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  450. {
  451. int rx_desc = rxq->next_desc_to_proc;
  452. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  453. return rxq->descs + rx_desc;
  454. }
  455. /* Tx descriptors helper methods */
  456. /* Update HW with number of TX descriptors to be sent */
  457. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  458. struct mvneta_tx_queue *txq,
  459. int pend_desc)
  460. {
  461. u32 val;
  462. /* Only 255 descriptors can be added at once ; Assume caller
  463. * process TX desriptors in quanta less than 256
  464. */
  465. val = pend_desc;
  466. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  467. }
  468. /* Get pointer to next TX descriptor to be processed (send) by HW */
  469. static struct mvneta_tx_desc *
  470. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  471. {
  472. int tx_desc = txq->next_desc_to_proc;
  473. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  474. return txq->descs + tx_desc;
  475. }
  476. /* Set rxq buf size */
  477. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  478. struct mvneta_rx_queue *rxq,
  479. int buf_size)
  480. {
  481. u32 val;
  482. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  483. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  484. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  485. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  486. }
  487. /* Start the Ethernet port RX and TX activity */
  488. static void mvneta_port_up(struct mvneta_port *pp)
  489. {
  490. int queue;
  491. u32 q_map;
  492. /* Enable all initialized TXs. */
  493. mvneta_mib_counters_clear(pp);
  494. q_map = 0;
  495. for (queue = 0; queue < txq_number; queue++) {
  496. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  497. if (txq->descs != NULL)
  498. q_map |= (1 << queue);
  499. }
  500. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  501. /* Enable all initialized RXQs. */
  502. q_map = 0;
  503. for (queue = 0; queue < rxq_number; queue++) {
  504. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  505. if (rxq->descs != NULL)
  506. q_map |= (1 << queue);
  507. }
  508. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  509. }
  510. /* Stop the Ethernet port activity */
  511. static void mvneta_port_down(struct mvneta_port *pp)
  512. {
  513. u32 val;
  514. int count;
  515. /* Stop Rx port activity. Check port Rx activity. */
  516. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  517. /* Issue stop command for active channels only */
  518. if (val != 0)
  519. mvreg_write(pp, MVNETA_RXQ_CMD,
  520. val << MVNETA_RXQ_DISABLE_SHIFT);
  521. /* Wait for all Rx activity to terminate. */
  522. count = 0;
  523. do {
  524. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  525. netdev_warn(pp->dev,
  526. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  527. val);
  528. break;
  529. }
  530. mdelay(1);
  531. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  532. } while (val & 0xff);
  533. /* Stop Tx port activity. Check port Tx activity. Issue stop
  534. * command for active channels only
  535. */
  536. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  537. if (val != 0)
  538. mvreg_write(pp, MVNETA_TXQ_CMD,
  539. (val << MVNETA_TXQ_DISABLE_SHIFT));
  540. /* Wait for all Tx activity to terminate. */
  541. count = 0;
  542. do {
  543. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  544. netdev_warn(pp->dev,
  545. "TIMEOUT for TX stopped status=0x%08x\n",
  546. val);
  547. break;
  548. }
  549. mdelay(1);
  550. /* Check TX Command reg that all Txqs are stopped */
  551. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  552. } while (val & 0xff);
  553. /* Double check to verify that TX FIFO is empty */
  554. count = 0;
  555. do {
  556. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  557. netdev_warn(pp->dev,
  558. "TX FIFO empty timeout status=0x08%x\n",
  559. val);
  560. break;
  561. }
  562. mdelay(1);
  563. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  564. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  565. (val & MVNETA_TX_IN_PRGRS));
  566. udelay(200);
  567. }
  568. /* Enable the port by setting the port enable bit of the MAC control register */
  569. static void mvneta_port_enable(struct mvneta_port *pp)
  570. {
  571. u32 val;
  572. /* Enable port */
  573. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  574. val |= MVNETA_GMAC0_PORT_ENABLE;
  575. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  576. }
  577. /* Disable the port and wait for about 200 usec before retuning */
  578. static void mvneta_port_disable(struct mvneta_port *pp)
  579. {
  580. u32 val;
  581. /* Reset the Enable bit in the Serial Control Register */
  582. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  583. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  584. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  585. udelay(200);
  586. }
  587. /* Multicast tables methods */
  588. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  589. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  590. {
  591. int offset;
  592. u32 val;
  593. if (queue == -1) {
  594. val = 0;
  595. } else {
  596. val = 0x1 | (queue << 1);
  597. val |= (val << 24) | (val << 16) | (val << 8);
  598. }
  599. for (offset = 0; offset <= 0xc; offset += 4)
  600. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  601. }
  602. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  603. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  604. {
  605. int offset;
  606. u32 val;
  607. if (queue == -1) {
  608. val = 0;
  609. } else {
  610. val = 0x1 | (queue << 1);
  611. val |= (val << 24) | (val << 16) | (val << 8);
  612. }
  613. for (offset = 0; offset <= 0xfc; offset += 4)
  614. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  615. }
  616. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  617. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  618. {
  619. int offset;
  620. u32 val;
  621. if (queue == -1) {
  622. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  623. val = 0;
  624. } else {
  625. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  626. val = 0x1 | (queue << 1);
  627. val |= (val << 24) | (val << 16) | (val << 8);
  628. }
  629. for (offset = 0; offset <= 0xfc; offset += 4)
  630. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  631. }
  632. /* This method sets defaults to the NETA port:
  633. * Clears interrupt Cause and Mask registers.
  634. * Clears all MAC tables.
  635. * Sets defaults to all registers.
  636. * Resets RX and TX descriptor rings.
  637. * Resets PHY.
  638. * This method can be called after mvneta_port_down() to return the port
  639. * settings to defaults.
  640. */
  641. static void mvneta_defaults_set(struct mvneta_port *pp)
  642. {
  643. int cpu;
  644. int queue;
  645. u32 val;
  646. /* Clear all Cause registers */
  647. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  648. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  649. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  650. /* Mask all interrupts */
  651. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  652. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  653. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  654. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  655. /* Enable MBUS Retry bit16 */
  656. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  657. /* Set CPU queue access map - all CPUs have access to all RX
  658. * queues and to all TX queues
  659. */
  660. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  661. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  662. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  663. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  664. /* Reset RX and TX DMAs */
  665. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  666. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  667. /* Disable Legacy WRR, Disable EJP, Release from reset */
  668. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  669. for (queue = 0; queue < txq_number; queue++) {
  670. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  671. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  672. }
  673. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  674. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  675. /* Set Port Acceleration Mode */
  676. val = MVNETA_ACC_MODE_EXT;
  677. mvreg_write(pp, MVNETA_ACC_MODE, val);
  678. /* Update val of portCfg register accordingly with all RxQueue types */
  679. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  680. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  681. val = 0;
  682. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  683. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  684. /* Build PORT_SDMA_CONFIG_REG */
  685. val = 0;
  686. /* Default burst size */
  687. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  688. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  689. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  690. /* Assign port SDMA configuration */
  691. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  692. /* Enable PHY polling in hardware for U-Boot */
  693. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  694. val |= MVNETA_PHY_POLLING_ENABLE;
  695. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  696. mvneta_set_ucast_table(pp, -1);
  697. mvneta_set_special_mcast_table(pp, -1);
  698. mvneta_set_other_mcast_table(pp, -1);
  699. }
  700. /* Set unicast address */
  701. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  702. int queue)
  703. {
  704. unsigned int unicast_reg;
  705. unsigned int tbl_offset;
  706. unsigned int reg_offset;
  707. /* Locate the Unicast table entry */
  708. last_nibble = (0xf & last_nibble);
  709. /* offset from unicast tbl base */
  710. tbl_offset = (last_nibble / 4) * 4;
  711. /* offset within the above reg */
  712. reg_offset = last_nibble % 4;
  713. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  714. if (queue == -1) {
  715. /* Clear accepts frame bit at specified unicast DA tbl entry */
  716. unicast_reg &= ~(0xff << (8 * reg_offset));
  717. } else {
  718. unicast_reg &= ~(0xff << (8 * reg_offset));
  719. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  720. }
  721. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  722. }
  723. /* Set mac address */
  724. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  725. int queue)
  726. {
  727. unsigned int mac_h;
  728. unsigned int mac_l;
  729. if (queue != -1) {
  730. mac_l = (addr[4] << 8) | (addr[5]);
  731. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  732. (addr[2] << 8) | (addr[3] << 0);
  733. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  734. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  735. }
  736. /* Accept frames of this address */
  737. mvneta_set_ucast_addr(pp, addr[5], queue);
  738. }
  739. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  740. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  741. u32 phys_addr, u32 cookie)
  742. {
  743. rx_desc->buf_cookie = cookie;
  744. rx_desc->buf_phys_addr = phys_addr;
  745. }
  746. /* Decrement sent descriptors counter */
  747. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  748. struct mvneta_tx_queue *txq,
  749. int sent_desc)
  750. {
  751. u32 val;
  752. /* Only 255 TX descriptors can be updated at once */
  753. while (sent_desc > 0xff) {
  754. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  755. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  756. sent_desc = sent_desc - 0xff;
  757. }
  758. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  759. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  760. }
  761. /* Get number of TX descriptors already sent by HW */
  762. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  763. struct mvneta_tx_queue *txq)
  764. {
  765. u32 val;
  766. int sent_desc;
  767. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  768. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  769. MVNETA_TXQ_SENT_DESC_SHIFT;
  770. return sent_desc;
  771. }
  772. /* Display more error info */
  773. static void mvneta_rx_error(struct mvneta_port *pp,
  774. struct mvneta_rx_desc *rx_desc)
  775. {
  776. u32 status = rx_desc->status;
  777. if (!mvneta_rxq_desc_is_first_last(status)) {
  778. netdev_err(pp->dev,
  779. "bad rx status %08x (buffer oversize), size=%d\n",
  780. status, rx_desc->data_size);
  781. return;
  782. }
  783. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  784. case MVNETA_RXD_ERR_CRC:
  785. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  786. status, rx_desc->data_size);
  787. break;
  788. case MVNETA_RXD_ERR_OVERRUN:
  789. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  790. status, rx_desc->data_size);
  791. break;
  792. case MVNETA_RXD_ERR_LEN:
  793. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  794. status, rx_desc->data_size);
  795. break;
  796. case MVNETA_RXD_ERR_RESOURCE:
  797. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  798. status, rx_desc->data_size);
  799. break;
  800. }
  801. }
  802. static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
  803. int rxq)
  804. {
  805. return &pp->rxqs[rxq];
  806. }
  807. /* Drop packets received by the RXQ and free buffers */
  808. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  809. struct mvneta_rx_queue *rxq)
  810. {
  811. int rx_done;
  812. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  813. if (rx_done)
  814. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  815. }
  816. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  817. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  818. int num)
  819. {
  820. int i;
  821. for (i = 0; i < num; i++) {
  822. u32 addr;
  823. /* U-Boot special: Fill in the rx buffer addresses */
  824. addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
  825. mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
  826. }
  827. /* Add this number of RX descriptors as non occupied (ready to
  828. * get packets)
  829. */
  830. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  831. return 0;
  832. }
  833. /* Rx/Tx queue initialization/cleanup methods */
  834. /* Create a specified RX queue */
  835. static int mvneta_rxq_init(struct mvneta_port *pp,
  836. struct mvneta_rx_queue *rxq)
  837. {
  838. rxq->size = pp->rx_ring_size;
  839. /* Allocate memory for RX descriptors */
  840. rxq->descs_phys = (dma_addr_t)rxq->descs;
  841. if (rxq->descs == NULL)
  842. return -ENOMEM;
  843. rxq->last_desc = rxq->size - 1;
  844. /* Set Rx descriptors queue starting address */
  845. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  846. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  847. /* Fill RXQ with buffers from RX pool */
  848. mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
  849. mvneta_rxq_fill(pp, rxq, rxq->size);
  850. return 0;
  851. }
  852. /* Cleanup Rx queue */
  853. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  854. struct mvneta_rx_queue *rxq)
  855. {
  856. mvneta_rxq_drop_pkts(pp, rxq);
  857. rxq->descs = NULL;
  858. rxq->last_desc = 0;
  859. rxq->next_desc_to_proc = 0;
  860. rxq->descs_phys = 0;
  861. }
  862. /* Create and initialize a tx queue */
  863. static int mvneta_txq_init(struct mvneta_port *pp,
  864. struct mvneta_tx_queue *txq)
  865. {
  866. txq->size = pp->tx_ring_size;
  867. /* Allocate memory for TX descriptors */
  868. txq->descs_phys = (dma_addr_t)txq->descs;
  869. if (txq->descs == NULL)
  870. return -ENOMEM;
  871. txq->last_desc = txq->size - 1;
  872. /* Set maximum bandwidth for enabled TXQs */
  873. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  874. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  875. /* Set Tx descriptors queue starting address */
  876. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  877. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  878. return 0;
  879. }
  880. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  881. static void mvneta_txq_deinit(struct mvneta_port *pp,
  882. struct mvneta_tx_queue *txq)
  883. {
  884. txq->descs = NULL;
  885. txq->last_desc = 0;
  886. txq->next_desc_to_proc = 0;
  887. txq->descs_phys = 0;
  888. /* Set minimum bandwidth for disabled TXQs */
  889. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  890. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  891. /* Set Tx descriptors queue starting address and size */
  892. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  893. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  894. }
  895. /* Cleanup all Tx queues */
  896. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  897. {
  898. int queue;
  899. for (queue = 0; queue < txq_number; queue++)
  900. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  901. }
  902. /* Cleanup all Rx queues */
  903. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  904. {
  905. int queue;
  906. for (queue = 0; queue < rxq_number; queue++)
  907. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  908. }
  909. /* Init all Rx queues */
  910. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  911. {
  912. int queue;
  913. for (queue = 0; queue < rxq_number; queue++) {
  914. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  915. if (err) {
  916. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  917. __func__, queue);
  918. mvneta_cleanup_rxqs(pp);
  919. return err;
  920. }
  921. }
  922. return 0;
  923. }
  924. /* Init all tx queues */
  925. static int mvneta_setup_txqs(struct mvneta_port *pp)
  926. {
  927. int queue;
  928. for (queue = 0; queue < txq_number; queue++) {
  929. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  930. if (err) {
  931. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  932. __func__, queue);
  933. mvneta_cleanup_txqs(pp);
  934. return err;
  935. }
  936. }
  937. return 0;
  938. }
  939. static void mvneta_start_dev(struct mvneta_port *pp)
  940. {
  941. /* start the Rx/Tx activity */
  942. mvneta_port_enable(pp);
  943. }
  944. static void mvneta_adjust_link(struct udevice *dev)
  945. {
  946. struct mvneta_port *pp = dev_get_priv(dev);
  947. struct phy_device *phydev = pp->phydev;
  948. int status_change = 0;
  949. if (phydev->link) {
  950. if ((pp->speed != phydev->speed) ||
  951. (pp->duplex != phydev->duplex)) {
  952. u32 val;
  953. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  954. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  955. MVNETA_GMAC_CONFIG_GMII_SPEED |
  956. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  957. MVNETA_GMAC_AN_SPEED_EN |
  958. MVNETA_GMAC_AN_DUPLEX_EN);
  959. if (phydev->duplex)
  960. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  961. if (phydev->speed == SPEED_1000)
  962. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  963. else
  964. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  965. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  966. pp->duplex = phydev->duplex;
  967. pp->speed = phydev->speed;
  968. }
  969. }
  970. if (phydev->link != pp->link) {
  971. if (!phydev->link) {
  972. pp->duplex = -1;
  973. pp->speed = 0;
  974. }
  975. pp->link = phydev->link;
  976. status_change = 1;
  977. }
  978. if (status_change) {
  979. if (phydev->link) {
  980. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  981. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  982. MVNETA_GMAC_FORCE_LINK_DOWN);
  983. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  984. mvneta_port_up(pp);
  985. } else {
  986. mvneta_port_down(pp);
  987. }
  988. }
  989. }
  990. static int mvneta_open(struct udevice *dev)
  991. {
  992. struct mvneta_port *pp = dev_get_priv(dev);
  993. int ret;
  994. ret = mvneta_setup_rxqs(pp);
  995. if (ret)
  996. return ret;
  997. ret = mvneta_setup_txqs(pp);
  998. if (ret)
  999. return ret;
  1000. mvneta_adjust_link(dev);
  1001. mvneta_start_dev(pp);
  1002. return 0;
  1003. }
  1004. /* Initialize hw */
  1005. static int mvneta_init2(struct mvneta_port *pp)
  1006. {
  1007. int queue;
  1008. /* Disable port */
  1009. mvneta_port_disable(pp);
  1010. /* Set port default values */
  1011. mvneta_defaults_set(pp);
  1012. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  1013. GFP_KERNEL);
  1014. if (!pp->txqs)
  1015. return -ENOMEM;
  1016. /* U-Boot special: use preallocated area */
  1017. pp->txqs[0].descs = buffer_loc.tx_descs;
  1018. /* Initialize TX descriptor rings */
  1019. for (queue = 0; queue < txq_number; queue++) {
  1020. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  1021. txq->id = queue;
  1022. txq->size = pp->tx_ring_size;
  1023. }
  1024. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  1025. GFP_KERNEL);
  1026. if (!pp->rxqs) {
  1027. kfree(pp->txqs);
  1028. return -ENOMEM;
  1029. }
  1030. /* U-Boot special: use preallocated area */
  1031. pp->rxqs[0].descs = buffer_loc.rx_descs;
  1032. /* Create Rx descriptor rings */
  1033. for (queue = 0; queue < rxq_number; queue++) {
  1034. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  1035. rxq->id = queue;
  1036. rxq->size = pp->rx_ring_size;
  1037. }
  1038. return 0;
  1039. }
  1040. /* platform glue : initialize decoding windows */
  1041. /*
  1042. * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
  1043. * First layer is: GbE Address window that resides inside the GBE unit,
  1044. * Second layer is: Fabric address window which is located in the NIC400
  1045. * (South Fabric).
  1046. * To simplify the address decode configuration for Armada3700, we bypass the
  1047. * first layer of GBE decode window by setting the first window to 4GB.
  1048. */
  1049. static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
  1050. {
  1051. /*
  1052. * Set window size to 4GB, to bypass GBE address decode, leave the
  1053. * work to MBUS decode window
  1054. */
  1055. mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
  1056. /* Enable GBE address decode window 0 by set bit 0 to 0 */
  1057. clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
  1058. MVNETA_BASE_ADDR_ENABLE_BIT);
  1059. /* Set GBE address decode window 0 to full Access (read or write) */
  1060. setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
  1061. MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
  1062. }
  1063. static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
  1064. {
  1065. const struct mbus_dram_target_info *dram;
  1066. u32 win_enable;
  1067. u32 win_protect;
  1068. int i;
  1069. dram = mvebu_mbus_dram_info();
  1070. for (i = 0; i < 6; i++) {
  1071. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  1072. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  1073. if (i < 4)
  1074. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  1075. }
  1076. win_enable = 0x3f;
  1077. win_protect = 0;
  1078. for (i = 0; i < dram->num_cs; i++) {
  1079. const struct mbus_dram_window *cs = dram->cs + i;
  1080. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  1081. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  1082. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  1083. (cs->size - 1) & 0xffff0000);
  1084. win_enable &= ~(1 << i);
  1085. win_protect |= 3 << (2 * i);
  1086. }
  1087. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  1088. }
  1089. /* Power up the port */
  1090. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  1091. {
  1092. u32 ctrl;
  1093. /* MAC Cause register should be cleared */
  1094. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  1095. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  1096. /* Even though it might look weird, when we're configured in
  1097. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  1098. */
  1099. switch (phy_mode) {
  1100. case PHY_INTERFACE_MODE_QSGMII:
  1101. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  1102. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1103. break;
  1104. case PHY_INTERFACE_MODE_SGMII:
  1105. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  1106. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1107. break;
  1108. case PHY_INTERFACE_MODE_RGMII:
  1109. case PHY_INTERFACE_MODE_RGMII_ID:
  1110. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  1111. break;
  1112. default:
  1113. return -EINVAL;
  1114. }
  1115. /* Cancel Port Reset */
  1116. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  1117. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  1118. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  1119. MVNETA_GMAC2_PORT_RESET) != 0)
  1120. continue;
  1121. return 0;
  1122. }
  1123. /* Device initialization routine */
  1124. static int mvneta_init(struct udevice *dev)
  1125. {
  1126. struct eth_pdata *pdata = dev_get_platdata(dev);
  1127. struct mvneta_port *pp = dev_get_priv(dev);
  1128. int err;
  1129. pp->tx_ring_size = MVNETA_MAX_TXD;
  1130. pp->rx_ring_size = MVNETA_MAX_RXD;
  1131. err = mvneta_init2(pp);
  1132. if (err < 0) {
  1133. dev_err(&pdev->dev, "can't init eth hal\n");
  1134. return err;
  1135. }
  1136. mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
  1137. err = mvneta_port_power_up(pp, pp->phy_interface);
  1138. if (err < 0) {
  1139. dev_err(&pdev->dev, "can't power up port\n");
  1140. return err;
  1141. }
  1142. /* Call open() now as it needs to be done before runing send() */
  1143. mvneta_open(dev);
  1144. return 0;
  1145. }
  1146. /* U-Boot only functions follow here */
  1147. /* SMI / MDIO functions */
  1148. static int smi_wait_ready(struct mvneta_port *pp)
  1149. {
  1150. u32 timeout = MVNETA_SMI_TIMEOUT;
  1151. u32 smi_reg;
  1152. /* wait till the SMI is not busy */
  1153. do {
  1154. /* read smi register */
  1155. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1156. if (timeout-- == 0) {
  1157. printf("Error: SMI busy timeout\n");
  1158. return -EFAULT;
  1159. }
  1160. } while (smi_reg & MVNETA_SMI_BUSY);
  1161. return 0;
  1162. }
  1163. /*
  1164. * mvneta_mdio_read - miiphy_read callback function.
  1165. *
  1166. * Returns 16bit phy register value, or 0xffff on error
  1167. */
  1168. static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
  1169. {
  1170. struct mvneta_port *pp = bus->priv;
  1171. u32 smi_reg;
  1172. u32 timeout;
  1173. /* check parameters */
  1174. if (addr > MVNETA_PHY_ADDR_MASK) {
  1175. printf("Error: Invalid PHY address %d\n", addr);
  1176. return -EFAULT;
  1177. }
  1178. if (reg > MVNETA_PHY_REG_MASK) {
  1179. printf("Err: Invalid register offset %d\n", reg);
  1180. return -EFAULT;
  1181. }
  1182. /* wait till the SMI is not busy */
  1183. if (smi_wait_ready(pp) < 0)
  1184. return -EFAULT;
  1185. /* fill the phy address and regiser offset and read opcode */
  1186. smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1187. | (reg << MVNETA_SMI_REG_ADDR_OFFS)
  1188. | MVNETA_SMI_OPCODE_READ;
  1189. /* write the smi register */
  1190. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1191. /* wait till read value is ready */
  1192. timeout = MVNETA_SMI_TIMEOUT;
  1193. do {
  1194. /* read smi register */
  1195. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1196. if (timeout-- == 0) {
  1197. printf("Err: SMI read ready timeout\n");
  1198. return -EFAULT;
  1199. }
  1200. } while (!(smi_reg & MVNETA_SMI_READ_VALID));
  1201. /* Wait for the data to update in the SMI register */
  1202. for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
  1203. ;
  1204. return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
  1205. }
  1206. /*
  1207. * mvneta_mdio_write - miiphy_write callback function.
  1208. *
  1209. * Returns 0 if write succeed, -EINVAL on bad parameters
  1210. * -ETIME on timeout
  1211. */
  1212. static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
  1213. u16 value)
  1214. {
  1215. struct mvneta_port *pp = bus->priv;
  1216. u32 smi_reg;
  1217. /* check parameters */
  1218. if (addr > MVNETA_PHY_ADDR_MASK) {
  1219. printf("Error: Invalid PHY address %d\n", addr);
  1220. return -EFAULT;
  1221. }
  1222. if (reg > MVNETA_PHY_REG_MASK) {
  1223. printf("Err: Invalid register offset %d\n", reg);
  1224. return -EFAULT;
  1225. }
  1226. /* wait till the SMI is not busy */
  1227. if (smi_wait_ready(pp) < 0)
  1228. return -EFAULT;
  1229. /* fill the phy addr and reg offset and write opcode and data */
  1230. smi_reg = value << MVNETA_SMI_DATA_OFFS;
  1231. smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1232. | (reg << MVNETA_SMI_REG_ADDR_OFFS);
  1233. smi_reg &= ~MVNETA_SMI_OPCODE_READ;
  1234. /* write the smi register */
  1235. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1236. return 0;
  1237. }
  1238. static int mvneta_start(struct udevice *dev)
  1239. {
  1240. struct mvneta_port *pp = dev_get_priv(dev);
  1241. struct phy_device *phydev;
  1242. mvneta_port_power_up(pp, pp->phy_interface);
  1243. if (!pp->init || pp->link == 0) {
  1244. /* Set phy address of the port */
  1245. mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
  1246. phydev = phy_connect(pp->bus, pp->phyaddr, dev,
  1247. pp->phy_interface);
  1248. pp->phydev = phydev;
  1249. phy_config(phydev);
  1250. phy_startup(phydev);
  1251. if (!phydev->link) {
  1252. printf("%s: No link.\n", phydev->dev->name);
  1253. return -1;
  1254. }
  1255. /* Full init on first call */
  1256. mvneta_init(dev);
  1257. pp->init = 1;
  1258. } else {
  1259. /* Upon all following calls, this is enough */
  1260. mvneta_port_up(pp);
  1261. mvneta_port_enable(pp);
  1262. }
  1263. return 0;
  1264. }
  1265. static int mvneta_send(struct udevice *dev, void *packet, int length)
  1266. {
  1267. struct mvneta_port *pp = dev_get_priv(dev);
  1268. struct mvneta_tx_queue *txq = &pp->txqs[0];
  1269. struct mvneta_tx_desc *tx_desc;
  1270. int sent_desc;
  1271. u32 timeout = 0;
  1272. /* Get a descriptor for the first part of the packet */
  1273. tx_desc = mvneta_txq_next_desc_get(txq);
  1274. tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
  1275. tx_desc->data_size = length;
  1276. flush_dcache_range((ulong)packet,
  1277. (ulong)packet + ALIGN(length, PKTALIGN));
  1278. /* First and Last descriptor */
  1279. tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
  1280. mvneta_txq_pend_desc_add(pp, txq, 1);
  1281. /* Wait for packet to be sent (queue might help with speed here) */
  1282. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1283. while (!sent_desc) {
  1284. if (timeout++ > 10000) {
  1285. printf("timeout: packet not sent\n");
  1286. return -1;
  1287. }
  1288. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1289. }
  1290. /* txDone has increased - hw sent packet */
  1291. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  1292. return 0;
  1293. }
  1294. static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
  1295. {
  1296. struct mvneta_port *pp = dev_get_priv(dev);
  1297. int rx_done;
  1298. struct mvneta_rx_queue *rxq;
  1299. int rx_bytes = 0;
  1300. /* get rx queue */
  1301. rxq = mvneta_rxq_handle_get(pp, rxq_def);
  1302. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1303. if (rx_done) {
  1304. struct mvneta_rx_desc *rx_desc;
  1305. unsigned char *data;
  1306. u32 rx_status;
  1307. /*
  1308. * No cache invalidation needed here, since the desc's are
  1309. * located in a uncached memory region
  1310. */
  1311. rx_desc = mvneta_rxq_next_desc_get(rxq);
  1312. rx_status = rx_desc->status;
  1313. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1314. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1315. mvneta_rx_error(pp, rx_desc);
  1316. /* leave the descriptor untouched */
  1317. return -EIO;
  1318. }
  1319. /* 2 bytes for marvell header. 4 bytes for crc */
  1320. rx_bytes = rx_desc->data_size - 6;
  1321. /* give packet to stack - skip on first 2 bytes */
  1322. data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
  1323. /*
  1324. * No cache invalidation needed here, since the rx_buffer's are
  1325. * located in a uncached memory region
  1326. */
  1327. *packetp = data;
  1328. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1329. }
  1330. return rx_bytes;
  1331. }
  1332. static int mvneta_probe(struct udevice *dev)
  1333. {
  1334. struct eth_pdata *pdata = dev_get_platdata(dev);
  1335. struct mvneta_port *pp = dev_get_priv(dev);
  1336. void *blob = (void *)gd->fdt_blob;
  1337. int node = dev_of_offset(dev);
  1338. struct mii_dev *bus;
  1339. unsigned long addr;
  1340. void *bd_space;
  1341. int ret;
  1342. /*
  1343. * Allocate buffer area for descs and rx_buffers. This is only
  1344. * done once for all interfaces. As only one interface can
  1345. * be active. Make this area DMA safe by disabling the D-cache
  1346. */
  1347. if (!buffer_loc.tx_descs) {
  1348. /* Align buffer area for descs and rx_buffers to 1MiB */
  1349. bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
  1350. mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
  1351. DCACHE_OFF);
  1352. buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
  1353. buffer_loc.rx_descs = (struct mvneta_rx_desc *)
  1354. ((phys_addr_t)bd_space +
  1355. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
  1356. buffer_loc.rx_buffers = (phys_addr_t)
  1357. (bd_space +
  1358. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
  1359. MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
  1360. }
  1361. pp->base = (void __iomem *)pdata->iobase;
  1362. /* Configure MBUS address windows */
  1363. if (of_device_is_compatible(dev, "marvell,armada-3700-neta"))
  1364. mvneta_bypass_mbus_windows(pp);
  1365. else
  1366. mvneta_conf_mbus_windows(pp);
  1367. /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
  1368. pp->phy_interface = pdata->phy_interface;
  1369. /* Now read phyaddr from DT */
  1370. addr = fdtdec_get_int(blob, node, "phy", 0);
  1371. addr = fdt_node_offset_by_phandle(blob, addr);
  1372. pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
  1373. bus = mdio_alloc();
  1374. if (!bus) {
  1375. printf("Failed to allocate MDIO bus\n");
  1376. return -ENOMEM;
  1377. }
  1378. bus->read = mvneta_mdio_read;
  1379. bus->write = mvneta_mdio_write;
  1380. snprintf(bus->name, sizeof(bus->name), dev->name);
  1381. bus->priv = (void *)pp;
  1382. pp->bus = bus;
  1383. ret = mdio_register(bus);
  1384. if (ret)
  1385. return ret;
  1386. return board_network_enable(bus);
  1387. }
  1388. static void mvneta_stop(struct udevice *dev)
  1389. {
  1390. struct mvneta_port *pp = dev_get_priv(dev);
  1391. mvneta_port_down(pp);
  1392. mvneta_port_disable(pp);
  1393. }
  1394. static const struct eth_ops mvneta_ops = {
  1395. .start = mvneta_start,
  1396. .send = mvneta_send,
  1397. .recv = mvneta_recv,
  1398. .stop = mvneta_stop,
  1399. };
  1400. static int mvneta_ofdata_to_platdata(struct udevice *dev)
  1401. {
  1402. struct eth_pdata *pdata = dev_get_platdata(dev);
  1403. const char *phy_mode;
  1404. pdata->iobase = dev_get_addr(dev);
  1405. /* Get phy-mode / phy_interface from DT */
  1406. pdata->phy_interface = -1;
  1407. phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
  1408. NULL);
  1409. if (phy_mode)
  1410. pdata->phy_interface = phy_get_interface_by_name(phy_mode);
  1411. if (pdata->phy_interface == -1) {
  1412. debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
  1413. return -EINVAL;
  1414. }
  1415. return 0;
  1416. }
  1417. static const struct udevice_id mvneta_ids[] = {
  1418. { .compatible = "marvell,armada-370-neta" },
  1419. { .compatible = "marvell,armada-xp-neta" },
  1420. { .compatible = "marvell,armada-3700-neta" },
  1421. { }
  1422. };
  1423. U_BOOT_DRIVER(mvneta) = {
  1424. .name = "mvneta",
  1425. .id = UCLASS_ETH,
  1426. .of_match = mvneta_ids,
  1427. .ofdata_to_platdata = mvneta_ofdata_to_platdata,
  1428. .probe = mvneta_probe,
  1429. .ops = &mvneta_ops,
  1430. .priv_auto_alloc_size = sizeof(struct mvneta_port),
  1431. .platdata_auto_alloc_size = sizeof(struct eth_pdata),
  1432. };