tegra_spi.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. /*
  2. * Copyright (c) 2010-2012 NVIDIA Corporation
  3. * With help from the mpc8xxx SPI driver
  4. * With more help from omap3_spi SPI driver
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation; either version 2 of
  12. * the License, or (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <common.h>
  25. #include <malloc.h>
  26. #include <asm/io.h>
  27. #include <asm/gpio.h>
  28. #include <asm/arch/clock.h>
  29. #include <asm/arch/pinmux.h>
  30. #include <asm/arch-tegra/clk_rst.h>
  31. #include <asm/arch-tegra/tegra_spi.h>
  32. #include <spi.h>
  33. #include <fdtdec.h>
  34. DECLARE_GLOBAL_DATA_PTR;
  35. struct tegra_spi_slave {
  36. struct spi_slave slave;
  37. struct spi_tegra *regs;
  38. unsigned int freq;
  39. unsigned int mode;
  40. int periph_id;
  41. };
  42. static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
  43. {
  44. return container_of(slave, struct tegra_spi_slave, slave);
  45. }
  46. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  47. {
  48. /* Tegra20 SPI-Flash - only 1 device ('bus/cs') */
  49. if (bus != 0 || cs != 0)
  50. return 0;
  51. else
  52. return 1;
  53. }
  54. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  55. unsigned int max_hz, unsigned int mode)
  56. {
  57. struct tegra_spi_slave *spi;
  58. if (!spi_cs_is_valid(bus, cs)) {
  59. printf("SPI error: unsupported bus %d / chip select %d\n",
  60. bus, cs);
  61. return NULL;
  62. }
  63. if (max_hz > TEGRA_SPI_MAX_FREQ) {
  64. printf("SPI error: unsupported frequency %d Hz. Max frequency"
  65. " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
  66. return NULL;
  67. }
  68. spi = malloc(sizeof(struct tegra_spi_slave));
  69. if (!spi) {
  70. printf("SPI error: malloc of SPI structure failed\n");
  71. return NULL;
  72. }
  73. spi->slave.bus = bus;
  74. spi->slave.cs = cs;
  75. #ifdef CONFIG_OF_CONTROL
  76. int node = fdtdec_next_compatible(gd->fdt_blob, 0,
  77. COMPAT_NVIDIA_TEGRA20_SFLASH);
  78. if (node < 0) {
  79. debug("%s: cannot locate sflash node\n", __func__);
  80. return NULL;
  81. }
  82. if (!fdtdec_get_is_enabled(gd->fdt_blob, node)) {
  83. debug("%s: sflash is disabled\n", __func__);
  84. return NULL;
  85. }
  86. spi->regs = (struct spi_tegra *)fdtdec_get_addr(gd->fdt_blob,
  87. node, "reg");
  88. if ((fdt_addr_t)spi->regs == FDT_ADDR_T_NONE) {
  89. debug("%s: no sflash register found\n", __func__);
  90. return NULL;
  91. }
  92. spi->freq = fdtdec_get_int(gd->fdt_blob, node, "spi-max-frequency", 0);
  93. if (!spi->freq) {
  94. debug("%s: no sflash max frequency found\n", __func__);
  95. return NULL;
  96. }
  97. spi->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
  98. if (spi->periph_id == PERIPH_ID_NONE) {
  99. debug("%s: could not decode periph id\n", __func__);
  100. return NULL;
  101. }
  102. #else
  103. spi->regs = (struct spi_tegra *)NV_PA_SPI_BASE;
  104. spi->freq = TEGRA_SPI_MAX_FREQ;
  105. spi->periph_id = PERIPH_ID_SPI1;
  106. #endif
  107. if (max_hz < spi->freq) {
  108. debug("%s: limiting frequency from %u to %u\n", __func__,
  109. spi->freq, max_hz);
  110. spi->freq = max_hz;
  111. }
  112. debug("%s: controller initialized at %p, freq = %u, periph_id = %d\n",
  113. __func__, spi->regs, spi->freq, spi->periph_id);
  114. spi->mode = mode;
  115. return &spi->slave;
  116. }
  117. void spi_free_slave(struct spi_slave *slave)
  118. {
  119. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  120. free(spi);
  121. }
  122. void spi_init(void)
  123. {
  124. /* do nothing */
  125. }
  126. int spi_claim_bus(struct spi_slave *slave)
  127. {
  128. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  129. struct spi_tegra *regs = spi->regs;
  130. u32 reg;
  131. /* Change SPI clock to correct frequency, PLLP_OUT0 source */
  132. clock_start_periph_pll(spi->periph_id, CLOCK_ID_PERIPH, spi->freq);
  133. /* Clear stale status here */
  134. reg = SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH | \
  135. SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF;
  136. writel(reg, &regs->status);
  137. debug("spi_init: STATUS = %08x\n", readl(&regs->status));
  138. /*
  139. * Use sw-controlled CS, so we can clock in data after ReadID, etc.
  140. */
  141. reg = (spi->mode & 1) << SPI_CMD_ACTIVE_SDA_SHIFT;
  142. if (spi->mode & 2)
  143. reg |= 1 << SPI_CMD_ACTIVE_SCLK_SHIFT;
  144. clrsetbits_le32(&regs->command, SPI_CMD_ACTIVE_SCLK_MASK |
  145. SPI_CMD_ACTIVE_SDA_MASK, SPI_CMD_CS_SOFT | reg);
  146. debug("spi_init: COMMAND = %08x\n", readl(&regs->command));
  147. /*
  148. * SPI pins on Tegra20 are muxed - change pinmux later due to UART
  149. * issue.
  150. */
  151. pinmux_set_func(PINGRP_GMD, PMUX_FUNC_SFLASH);
  152. pinmux_tristate_disable(PINGRP_LSPI);
  153. pinmux_set_func(PINGRP_GMC, PMUX_FUNC_SFLASH);
  154. return 0;
  155. }
  156. void spi_release_bus(struct spi_slave *slave)
  157. {
  158. /*
  159. * We can't release UART_DISABLE and set pinmux to UART4 here since
  160. * some code (e,g, spi_flash_probe) uses printf() while the SPI
  161. * bus is held. That is arguably bad, but it has the advantage of
  162. * already being in the source tree.
  163. */
  164. }
  165. void spi_cs_activate(struct spi_slave *slave)
  166. {
  167. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  168. /* CS is negated on Tegra, so drive a 1 to get a 0 */
  169. setbits_le32(&spi->regs->command, SPI_CMD_CS_VAL);
  170. }
  171. void spi_cs_deactivate(struct spi_slave *slave)
  172. {
  173. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  174. /* CS is negated on Tegra, so drive a 0 to get a 1 */
  175. clrbits_le32(&spi->regs->command, SPI_CMD_CS_VAL);
  176. }
  177. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  178. const void *data_out, void *data_in, unsigned long flags)
  179. {
  180. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  181. struct spi_tegra *regs = spi->regs;
  182. u32 reg, tmpdout, tmpdin = 0;
  183. const u8 *dout = data_out;
  184. u8 *din = data_in;
  185. int num_bytes;
  186. int ret;
  187. debug("spi_xfer: slave %u:%u dout %08X din %08X bitlen %u\n",
  188. slave->bus, slave->cs, *(u8 *)dout, *(u8 *)din, bitlen);
  189. if (bitlen % 8)
  190. return -1;
  191. num_bytes = bitlen / 8;
  192. ret = 0;
  193. reg = readl(&regs->status);
  194. writel(reg, &regs->status); /* Clear all SPI events via R/W */
  195. debug("spi_xfer entry: STATUS = %08x\n", reg);
  196. reg = readl(&regs->command);
  197. reg |= SPI_CMD_TXEN | SPI_CMD_RXEN;
  198. writel(reg, &regs->command);
  199. debug("spi_xfer: COMMAND = %08x\n", readl(&regs->command));
  200. if (flags & SPI_XFER_BEGIN)
  201. spi_cs_activate(slave);
  202. /* handle data in 32-bit chunks */
  203. while (num_bytes > 0) {
  204. int bytes;
  205. int is_read = 0;
  206. int tm, i;
  207. tmpdout = 0;
  208. bytes = (num_bytes > 4) ? 4 : num_bytes;
  209. if (dout != NULL) {
  210. for (i = 0; i < bytes; ++i)
  211. tmpdout = (tmpdout << 8) | dout[i];
  212. }
  213. num_bytes -= bytes;
  214. if (dout)
  215. dout += bytes;
  216. clrsetbits_le32(&regs->command, SPI_CMD_BIT_LENGTH_MASK,
  217. bytes * 8 - 1);
  218. writel(tmpdout, &regs->tx_fifo);
  219. setbits_le32(&regs->command, SPI_CMD_GO);
  220. /*
  221. * Wait for SPI transmit FIFO to empty, or to time out.
  222. * The RX FIFO status will be read and cleared last
  223. */
  224. for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
  225. u32 status;
  226. status = readl(&regs->status);
  227. /* We can exit when we've had both RX and TX activity */
  228. if (is_read && (status & SPI_STAT_TXF_EMPTY))
  229. break;
  230. if ((status & (SPI_STAT_BSY | SPI_STAT_RDY)) !=
  231. SPI_STAT_RDY)
  232. tm++;
  233. else if (!(status & SPI_STAT_RXF_EMPTY)) {
  234. tmpdin = readl(&regs->rx_fifo);
  235. is_read = 1;
  236. /* swap bytes read in */
  237. if (din != NULL) {
  238. for (i = bytes - 1; i >= 0; --i) {
  239. din[i] = tmpdin & 0xff;
  240. tmpdin >>= 8;
  241. }
  242. din += bytes;
  243. }
  244. }
  245. }
  246. if (tm >= SPI_TIMEOUT)
  247. ret = tm;
  248. /* clear ACK RDY, etc. bits */
  249. writel(readl(&regs->status), &regs->status);
  250. }
  251. if (flags & SPI_XFER_END)
  252. spi_cs_deactivate(slave);
  253. debug("spi_xfer: transfer ended. Value=%08x, status = %08x\n",
  254. tmpdin, readl(&regs->status));
  255. if (ret) {
  256. printf("spi_xfer: timeout during SPI transfer, tm %d\n", ret);
  257. return -1;
  258. }
  259. return 0;
  260. }