davinci_i2c.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. /*
  2. * TI DaVinci (TMS320DM644x) I2C driver.
  3. *
  4. * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
  5. *
  6. * --------------------------------------------------------
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. */
  10. #include <common.h>
  11. #include <i2c.h>
  12. #include <asm/arch/hardware.h>
  13. #include <asm/arch/i2c_defs.h>
  14. #define CHECK_NACK() \
  15. do {\
  16. if (tmp & (I2C_TIMEOUT | I2C_STAT_NACK)) {\
  17. REG(I2C_CON) = 0;\
  18. return(1);\
  19. }\
  20. } while (0)
  21. static int wait_for_bus(void)
  22. {
  23. int stat, timeout;
  24. REG(I2C_STAT) = 0xffff;
  25. for (timeout = 0; timeout < 10; timeout++) {
  26. if (!((stat = REG(I2C_STAT)) & I2C_STAT_BB)) {
  27. REG(I2C_STAT) = 0xffff;
  28. return(0);
  29. }
  30. REG(I2C_STAT) = stat;
  31. udelay(50000);
  32. }
  33. REG(I2C_STAT) = 0xffff;
  34. return(1);
  35. }
  36. static int poll_i2c_irq(int mask)
  37. {
  38. int stat, timeout;
  39. for (timeout = 0; timeout < 10; timeout++) {
  40. udelay(1000);
  41. stat = REG(I2C_STAT);
  42. if (stat & mask) {
  43. return(stat);
  44. }
  45. }
  46. REG(I2C_STAT) = 0xffff;
  47. return(stat | I2C_TIMEOUT);
  48. }
  49. void flush_rx(void)
  50. {
  51. while (1) {
  52. if (!(REG(I2C_STAT) & I2C_STAT_RRDY))
  53. break;
  54. REG(I2C_DRR);
  55. REG(I2C_STAT) = I2C_STAT_RRDY;
  56. udelay(1000);
  57. }
  58. }
  59. void i2c_init(int speed, int slaveadd)
  60. {
  61. u_int32_t div, psc;
  62. if (REG(I2C_CON) & I2C_CON_EN) {
  63. REG(I2C_CON) = 0;
  64. udelay (50000);
  65. }
  66. psc = 2;
  67. div = (CONFIG_SYS_HZ_CLOCK / ((psc + 1) * speed)) - 10; /* SCLL + SCLH */
  68. REG(I2C_PSC) = psc; /* 27MHz / (2 + 1) = 9MHz */
  69. REG(I2C_SCLL) = (div * 50) / 100; /* 50% Duty */
  70. REG(I2C_SCLH) = div - REG(I2C_SCLL);
  71. REG(I2C_OA) = slaveadd;
  72. REG(I2C_CNT) = 0;
  73. /* Interrupts must be enabled or I2C module won't work */
  74. REG(I2C_IE) = I2C_IE_SCD_IE | I2C_IE_XRDY_IE |
  75. I2C_IE_RRDY_IE | I2C_IE_ARDY_IE | I2C_IE_NACK_IE;
  76. /* Now enable I2C controller (get it out of reset) */
  77. REG(I2C_CON) = I2C_CON_EN;
  78. udelay(1000);
  79. }
  80. int i2c_set_bus_speed(unsigned int speed)
  81. {
  82. i2c_init(speed, CONFIG_SYS_I2C_SLAVE);
  83. return 0;
  84. }
  85. int i2c_probe(u_int8_t chip)
  86. {
  87. int rc = 1;
  88. if (chip == REG(I2C_OA)) {
  89. return(rc);
  90. }
  91. REG(I2C_CON) = 0;
  92. if (wait_for_bus()) {return(1);}
  93. /* try to read one byte from current (or only) address */
  94. REG(I2C_CNT) = 1;
  95. REG(I2C_SA) = chip;
  96. REG(I2C_CON) = (I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP);
  97. udelay (50000);
  98. if (!(REG(I2C_STAT) & I2C_STAT_NACK)) {
  99. rc = 0;
  100. flush_rx();
  101. REG(I2C_STAT) = 0xffff;
  102. } else {
  103. REG(I2C_STAT) = 0xffff;
  104. REG(I2C_CON) |= I2C_CON_STP;
  105. udelay(20000);
  106. if (wait_for_bus()) {return(1);}
  107. }
  108. flush_rx();
  109. REG(I2C_STAT) = 0xffff;
  110. REG(I2C_CNT) = 0;
  111. return(rc);
  112. }
  113. int i2c_read(u_int8_t chip, u_int32_t addr, int alen, u_int8_t *buf, int len)
  114. {
  115. u_int32_t tmp;
  116. int i;
  117. if ((alen < 0) || (alen > 2)) {
  118. printf("%s(): bogus address length %x\n", __FUNCTION__, alen);
  119. return(1);
  120. }
  121. if (wait_for_bus()) {return(1);}
  122. if (alen != 0) {
  123. /* Start address phase */
  124. tmp = I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX;
  125. REG(I2C_CNT) = alen;
  126. REG(I2C_SA) = chip;
  127. REG(I2C_CON) = tmp;
  128. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK);
  129. CHECK_NACK();
  130. switch (alen) {
  131. case 2:
  132. /* Send address MSByte */
  133. if (tmp & I2C_STAT_XRDY) {
  134. REG(I2C_DXR) = (addr >> 8) & 0xff;
  135. } else {
  136. REG(I2C_CON) = 0;
  137. return(1);
  138. }
  139. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK);
  140. CHECK_NACK();
  141. /* No break, fall through */
  142. case 1:
  143. /* Send address LSByte */
  144. if (tmp & I2C_STAT_XRDY) {
  145. REG(I2C_DXR) = addr & 0xff;
  146. } else {
  147. REG(I2C_CON) = 0;
  148. return(1);
  149. }
  150. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK | I2C_STAT_ARDY);
  151. CHECK_NACK();
  152. if (!(tmp & I2C_STAT_ARDY)) {
  153. REG(I2C_CON) = 0;
  154. return(1);
  155. }
  156. }
  157. }
  158. /* Address phase is over, now read 'len' bytes and stop */
  159. tmp = I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_STP;
  160. REG(I2C_CNT) = len & 0xffff;
  161. REG(I2C_SA) = chip;
  162. REG(I2C_CON) = tmp;
  163. for (i = 0; i < len; i++) {
  164. tmp = poll_i2c_irq(I2C_STAT_RRDY | I2C_STAT_NACK | I2C_STAT_ROVR);
  165. CHECK_NACK();
  166. if (tmp & I2C_STAT_RRDY) {
  167. buf[i] = REG(I2C_DRR);
  168. } else {
  169. REG(I2C_CON) = 0;
  170. return(1);
  171. }
  172. }
  173. tmp = poll_i2c_irq(I2C_STAT_SCD | I2C_STAT_NACK);
  174. CHECK_NACK();
  175. if (!(tmp & I2C_STAT_SCD)) {
  176. REG(I2C_CON) = 0;
  177. return(1);
  178. }
  179. flush_rx();
  180. REG(I2C_STAT) = 0xffff;
  181. REG(I2C_CNT) = 0;
  182. REG(I2C_CON) = 0;
  183. return(0);
  184. }
  185. int i2c_write(u_int8_t chip, u_int32_t addr, int alen, u_int8_t *buf, int len)
  186. {
  187. u_int32_t tmp;
  188. int i;
  189. if ((alen < 0) || (alen > 2)) {
  190. printf("%s(): bogus address length %x\n", __FUNCTION__, alen);
  191. return(1);
  192. }
  193. if (len < 0) {
  194. printf("%s(): bogus length %x\n", __FUNCTION__, len);
  195. return(1);
  196. }
  197. if (wait_for_bus()) {return(1);}
  198. /* Start address phase */
  199. tmp = I2C_CON_EN | I2C_CON_MST | I2C_CON_STT | I2C_CON_TRX | I2C_CON_STP;
  200. REG(I2C_CNT) = (alen == 0) ? len & 0xffff : (len & 0xffff) + alen;
  201. REG(I2C_SA) = chip;
  202. REG(I2C_CON) = tmp;
  203. switch (alen) {
  204. case 2:
  205. /* Send address MSByte */
  206. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK);
  207. CHECK_NACK();
  208. if (tmp & I2C_STAT_XRDY) {
  209. REG(I2C_DXR) = (addr >> 8) & 0xff;
  210. } else {
  211. REG(I2C_CON) = 0;
  212. return(1);
  213. }
  214. /* No break, fall through */
  215. case 1:
  216. /* Send address LSByte */
  217. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK);
  218. CHECK_NACK();
  219. if (tmp & I2C_STAT_XRDY) {
  220. REG(I2C_DXR) = addr & 0xff;
  221. } else {
  222. REG(I2C_CON) = 0;
  223. return(1);
  224. }
  225. }
  226. for (i = 0; i < len; i++) {
  227. tmp = poll_i2c_irq(I2C_STAT_XRDY | I2C_STAT_NACK);
  228. CHECK_NACK();
  229. if (tmp & I2C_STAT_XRDY) {
  230. REG(I2C_DXR) = buf[i];
  231. } else {
  232. return(1);
  233. }
  234. }
  235. tmp = poll_i2c_irq(I2C_STAT_SCD | I2C_STAT_NACK);
  236. CHECK_NACK();
  237. if (!(tmp & I2C_STAT_SCD)) {
  238. REG(I2C_CON) = 0;
  239. return(1);
  240. }
  241. flush_rx();
  242. REG(I2C_STAT) = 0xffff;
  243. REG(I2C_CNT) = 0;
  244. REG(I2C_CON) = 0;
  245. return(0);
  246. }