efi_memory.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. /*
  2. * EFI application memory management
  3. *
  4. * Copyright (c) 2016 Alexander Graf
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <efi_loader.h>
  10. #include <malloc.h>
  11. #include <asm/global_data.h>
  12. #include <libfdt_env.h>
  13. #include <linux/list_sort.h>
  14. #include <inttypes.h>
  15. #include <watchdog.h>
  16. DECLARE_GLOBAL_DATA_PTR;
  17. struct efi_mem_list {
  18. struct list_head link;
  19. struct efi_mem_desc desc;
  20. };
  21. #define EFI_CARVE_NO_OVERLAP -1
  22. #define EFI_CARVE_LOOP_AGAIN -2
  23. #define EFI_CARVE_OVERLAPS_NONRAM -3
  24. /* This list contains all memory map items */
  25. LIST_HEAD(efi_mem);
  26. #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
  27. void *efi_bounce_buffer;
  28. #endif
  29. /*
  30. * Sorts the memory list from highest address to lowest address
  31. *
  32. * When allocating memory we should always start from the highest
  33. * address chunk, so sort the memory list such that the first list
  34. * iterator gets the highest address and goes lower from there.
  35. */
  36. static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
  37. {
  38. struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
  39. struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
  40. if (mema->desc.physical_start == memb->desc.physical_start)
  41. return 0;
  42. else if (mema->desc.physical_start < memb->desc.physical_start)
  43. return 1;
  44. else
  45. return -1;
  46. }
  47. static void efi_mem_sort(void)
  48. {
  49. list_sort(NULL, &efi_mem, efi_mem_cmp);
  50. }
  51. /*
  52. * Unmaps all memory occupied by the carve_desc region from the
  53. * list entry pointed to by map.
  54. *
  55. * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
  56. * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
  57. * and the map contains anything but free ram.
  58. * (only when overlap_only_ram is true)
  59. * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
  60. * again, as it has been altered
  61. * Returns the number of overlapping pages. The pages are removed from
  62. * the mapping list.
  63. *
  64. * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
  65. * to readd the already carved out pages to the mapping.
  66. */
  67. static int efi_mem_carve_out(struct efi_mem_list *map,
  68. struct efi_mem_desc *carve_desc,
  69. bool overlap_only_ram)
  70. {
  71. struct efi_mem_list *newmap;
  72. struct efi_mem_desc *map_desc = &map->desc;
  73. uint64_t map_start = map_desc->physical_start;
  74. uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
  75. uint64_t carve_start = carve_desc->physical_start;
  76. uint64_t carve_end = carve_start +
  77. (carve_desc->num_pages << EFI_PAGE_SHIFT);
  78. /* check whether we're overlapping */
  79. if ((carve_end <= map_start) || (carve_start >= map_end))
  80. return EFI_CARVE_NO_OVERLAP;
  81. /* We're overlapping with non-RAM, warn the caller if desired */
  82. if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
  83. return EFI_CARVE_OVERLAPS_NONRAM;
  84. /* Sanitize carve_start and carve_end to lie within our bounds */
  85. carve_start = max(carve_start, map_start);
  86. carve_end = min(carve_end, map_end);
  87. /* Carving at the beginning of our map? Just move it! */
  88. if (carve_start == map_start) {
  89. if (map_end == carve_end) {
  90. /* Full overlap, just remove map */
  91. list_del(&map->link);
  92. }
  93. map_desc->physical_start = carve_end;
  94. map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT;
  95. return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
  96. }
  97. /*
  98. * Overlapping maps, just split the list map at carve_start,
  99. * it will get moved or removed in the next iteration.
  100. *
  101. * [ map_desc |__carve_start__| newmap ]
  102. */
  103. /* Create a new map from [ carve_start ... map_end ] */
  104. newmap = calloc(1, sizeof(*newmap));
  105. newmap->desc = map->desc;
  106. newmap->desc.physical_start = carve_start;
  107. newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
  108. list_add_tail(&newmap->link, &efi_mem);
  109. /* Shrink the map to [ map_start ... carve_start ] */
  110. map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
  111. return EFI_CARVE_LOOP_AGAIN;
  112. }
  113. uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
  114. bool overlap_only_ram)
  115. {
  116. struct list_head *lhandle;
  117. struct efi_mem_list *newlist;
  118. bool carve_again;
  119. uint64_t carved_pages = 0;
  120. debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
  121. start, pages, memory_type, overlap_only_ram ? "yes" : "no");
  122. if (!pages)
  123. return start;
  124. newlist = calloc(1, sizeof(*newlist));
  125. newlist->desc.type = memory_type;
  126. newlist->desc.physical_start = start;
  127. newlist->desc.virtual_start = start;
  128. newlist->desc.num_pages = pages;
  129. switch (memory_type) {
  130. case EFI_RUNTIME_SERVICES_CODE:
  131. case EFI_RUNTIME_SERVICES_DATA:
  132. newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
  133. (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
  134. break;
  135. case EFI_MMAP_IO:
  136. newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
  137. break;
  138. default:
  139. newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
  140. break;
  141. }
  142. /* Add our new map */
  143. do {
  144. carve_again = false;
  145. list_for_each(lhandle, &efi_mem) {
  146. struct efi_mem_list *lmem;
  147. int r;
  148. lmem = list_entry(lhandle, struct efi_mem_list, link);
  149. r = efi_mem_carve_out(lmem, &newlist->desc,
  150. overlap_only_ram);
  151. switch (r) {
  152. case EFI_CARVE_OVERLAPS_NONRAM:
  153. /*
  154. * The user requested to only have RAM overlaps,
  155. * but we hit a non-RAM region. Error out.
  156. */
  157. return 0;
  158. case EFI_CARVE_NO_OVERLAP:
  159. /* Just ignore this list entry */
  160. break;
  161. case EFI_CARVE_LOOP_AGAIN:
  162. /*
  163. * We split an entry, but need to loop through
  164. * the list again to actually carve it.
  165. */
  166. carve_again = true;
  167. break;
  168. default:
  169. /* We carved a number of pages */
  170. carved_pages += r;
  171. carve_again = true;
  172. break;
  173. }
  174. if (carve_again) {
  175. /* The list changed, we need to start over */
  176. break;
  177. }
  178. }
  179. } while (carve_again);
  180. if (overlap_only_ram && (carved_pages != pages)) {
  181. /*
  182. * The payload wanted to have RAM overlaps, but we overlapped
  183. * with an unallocated region. Error out.
  184. */
  185. return 0;
  186. }
  187. /* Add our new map */
  188. list_add_tail(&newlist->link, &efi_mem);
  189. /* And make sure memory is listed in descending order */
  190. efi_mem_sort();
  191. return start;
  192. }
  193. static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
  194. {
  195. struct list_head *lhandle;
  196. list_for_each(lhandle, &efi_mem) {
  197. struct efi_mem_list *lmem = list_entry(lhandle,
  198. struct efi_mem_list, link);
  199. struct efi_mem_desc *desc = &lmem->desc;
  200. uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
  201. uint64_t desc_end = desc->physical_start + desc_len;
  202. uint64_t curmax = min(max_addr, desc_end);
  203. uint64_t ret = curmax - len;
  204. /* We only take memory from free RAM */
  205. if (desc->type != EFI_CONVENTIONAL_MEMORY)
  206. continue;
  207. /* Out of bounds for max_addr */
  208. if ((ret + len) > max_addr)
  209. continue;
  210. /* Out of bounds for upper map limit */
  211. if ((ret + len) > desc_end)
  212. continue;
  213. /* Out of bounds for lower map limit */
  214. if (ret < desc->physical_start)
  215. continue;
  216. /* Return the highest address in this map within bounds */
  217. return ret;
  218. }
  219. return 0;
  220. }
  221. efi_status_t efi_allocate_pages(int type, int memory_type,
  222. unsigned long pages, uint64_t *memory)
  223. {
  224. u64 len = pages << EFI_PAGE_SHIFT;
  225. efi_status_t r = EFI_SUCCESS;
  226. uint64_t addr;
  227. switch (type) {
  228. case 0:
  229. /* Any page */
  230. addr = efi_find_free_memory(len, gd->start_addr_sp);
  231. if (!addr) {
  232. r = EFI_NOT_FOUND;
  233. break;
  234. }
  235. break;
  236. case 1:
  237. /* Max address */
  238. addr = efi_find_free_memory(len, *memory);
  239. if (!addr) {
  240. r = EFI_NOT_FOUND;
  241. break;
  242. }
  243. break;
  244. case 2:
  245. /* Exact address, reserve it. The addr is already in *memory. */
  246. addr = *memory;
  247. break;
  248. default:
  249. /* UEFI doesn't specify other allocation types */
  250. r = EFI_INVALID_PARAMETER;
  251. break;
  252. }
  253. if (r == EFI_SUCCESS) {
  254. uint64_t ret;
  255. /* Reserve that map in our memory maps */
  256. ret = efi_add_memory_map(addr, pages, memory_type, true);
  257. if (ret == addr) {
  258. *memory = addr;
  259. } else {
  260. /* Map would overlap, bail out */
  261. r = EFI_OUT_OF_RESOURCES;
  262. }
  263. }
  264. return r;
  265. }
  266. void *efi_alloc(uint64_t len, int memory_type)
  267. {
  268. uint64_t ret = 0;
  269. uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  270. efi_status_t r;
  271. r = efi_allocate_pages(0, memory_type, pages, &ret);
  272. if (r == EFI_SUCCESS)
  273. return (void*)(uintptr_t)ret;
  274. return NULL;
  275. }
  276. efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
  277. {
  278. /* We don't free, let's cross our fingers we have plenty RAM */
  279. return EFI_SUCCESS;
  280. }
  281. efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
  282. struct efi_mem_desc *memory_map,
  283. unsigned long *map_key,
  284. unsigned long *descriptor_size,
  285. uint32_t *descriptor_version)
  286. {
  287. ulong map_size = 0;
  288. int map_entries = 0;
  289. struct list_head *lhandle;
  290. list_for_each(lhandle, &efi_mem)
  291. map_entries++;
  292. map_size = map_entries * sizeof(struct efi_mem_desc);
  293. *memory_map_size = map_size;
  294. if (descriptor_size)
  295. *descriptor_size = sizeof(struct efi_mem_desc);
  296. if (descriptor_version)
  297. *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
  298. if (*memory_map_size < map_size)
  299. return EFI_BUFFER_TOO_SMALL;
  300. /* Copy list into array */
  301. if (memory_map) {
  302. /* Return the list in ascending order */
  303. memory_map = &memory_map[map_entries - 1];
  304. list_for_each(lhandle, &efi_mem) {
  305. struct efi_mem_list *lmem;
  306. lmem = list_entry(lhandle, struct efi_mem_list, link);
  307. *memory_map = lmem->desc;
  308. memory_map--;
  309. }
  310. }
  311. return EFI_SUCCESS;
  312. }
  313. int efi_memory_init(void)
  314. {
  315. unsigned long runtime_start, runtime_end, runtime_pages;
  316. unsigned long uboot_start, uboot_pages;
  317. unsigned long uboot_stack_size = 16 * 1024 * 1024;
  318. int i;
  319. /* Add RAM */
  320. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  321. u64 ram_start = gd->bd->bi_dram[i].start;
  322. u64 ram_size = gd->bd->bi_dram[i].size;
  323. u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  324. u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  325. efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
  326. false);
  327. }
  328. /* Add U-Boot */
  329. uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
  330. uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
  331. efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
  332. /* Add Runtime Services */
  333. runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
  334. runtime_end = (ulong)&__efi_runtime_stop;
  335. runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  336. runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
  337. efi_add_memory_map(runtime_start, runtime_pages,
  338. EFI_RUNTIME_SERVICES_CODE, false);
  339. #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
  340. /* Request a 32bit 64MB bounce buffer region */
  341. uint64_t efi_bounce_buffer_addr = 0xffffffff;
  342. if (efi_allocate_pages(1, EFI_LOADER_DATA,
  343. (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
  344. &efi_bounce_buffer_addr) != EFI_SUCCESS)
  345. return -1;
  346. efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
  347. #endif
  348. return 0;
  349. }