stm32_qspi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. /*
  2. * (C) Copyright 2016
  3. *
  4. * Michael Kurz, <michi.kurz@gmail.com>
  5. *
  6. * STM32 QSPI driver
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. */
  10. #include <common.h>
  11. #include <malloc.h>
  12. #include <spi.h>
  13. #include <spi_flash.h>
  14. #include <asm/io.h>
  15. #include <dm.h>
  16. #include <errno.h>
  17. #include <asm/arch/stm32.h>
  18. #include <clk.h>
  19. DECLARE_GLOBAL_DATA_PTR;
  20. struct stm32_qspi_regs {
  21. u32 cr; /* 0x00 */
  22. u32 dcr; /* 0x04 */
  23. u32 sr; /* 0x08 */
  24. u32 fcr; /* 0x0C */
  25. u32 dlr; /* 0x10 */
  26. u32 ccr; /* 0x14 */
  27. u32 ar; /* 0x18 */
  28. u32 abr; /* 0x1C */
  29. u32 dr; /* 0x20 */
  30. u32 psmkr; /* 0x24 */
  31. u32 psmar; /* 0x28 */
  32. u32 pir; /* 0x2C */
  33. u32 lptr; /* 0x30 */
  34. };
  35. /*
  36. * QUADSPI control register
  37. */
  38. #define STM32_QSPI_CR_EN BIT(0)
  39. #define STM32_QSPI_CR_ABORT BIT(1)
  40. #define STM32_QSPI_CR_DMAEN BIT(2)
  41. #define STM32_QSPI_CR_TCEN BIT(3)
  42. #define STM32_QSPI_CR_SSHIFT BIT(4)
  43. #define STM32_QSPI_CR_DFM BIT(6)
  44. #define STM32_QSPI_CR_FSEL BIT(7)
  45. #define STM32_QSPI_CR_FTHRES_MASK GENMASK(4, 0)
  46. #define STM32_QSPI_CR_FTHRES_SHIFT (8)
  47. #define STM32_QSPI_CR_TEIE BIT(16)
  48. #define STM32_QSPI_CR_TCIE BIT(17)
  49. #define STM32_QSPI_CR_FTIE BIT(18)
  50. #define STM32_QSPI_CR_SMIE BIT(19)
  51. #define STM32_QSPI_CR_TOIE BIT(20)
  52. #define STM32_QSPI_CR_APMS BIT(22)
  53. #define STM32_QSPI_CR_PMM BIT(23)
  54. #define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0)
  55. #define STM32_QSPI_CR_PRESCALER_SHIFT (24)
  56. /*
  57. * QUADSPI device configuration register
  58. */
  59. #define STM32_QSPI_DCR_CKMODE BIT(0)
  60. #define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0)
  61. #define STM32_QSPI_DCR_CSHT_SHIFT (8)
  62. #define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0)
  63. #define STM32_QSPI_DCR_FSIZE_SHIFT (16)
  64. /*
  65. * QUADSPI status register
  66. */
  67. #define STM32_QSPI_SR_TEF BIT(0)
  68. #define STM32_QSPI_SR_TCF BIT(1)
  69. #define STM32_QSPI_SR_FTF BIT(2)
  70. #define STM32_QSPI_SR_SMF BIT(3)
  71. #define STM32_QSPI_SR_TOF BIT(4)
  72. #define STM32_QSPI_SR_BUSY BIT(5)
  73. #define STM32_QSPI_SR_FLEVEL_MASK GENMASK(5, 0)
  74. #define STM32_QSPI_SR_FLEVEL_SHIFT (8)
  75. /*
  76. * QUADSPI flag clear register
  77. */
  78. #define STM32_QSPI_FCR_CTEF BIT(0)
  79. #define STM32_QSPI_FCR_CTCF BIT(1)
  80. #define STM32_QSPI_FCR_CSMF BIT(3)
  81. #define STM32_QSPI_FCR_CTOF BIT(4)
  82. /*
  83. * QUADSPI communication configuration register
  84. */
  85. #define STM32_QSPI_CCR_DDRM BIT(31)
  86. #define STM32_QSPI_CCR_DHHC BIT(30)
  87. #define STM32_QSPI_CCR_SIOO BIT(28)
  88. #define STM32_QSPI_CCR_FMODE_SHIFT (26)
  89. #define STM32_QSPI_CCR_DMODE_SHIFT (24)
  90. #define STM32_QSPI_CCR_DCYC_SHIFT (18)
  91. #define STM32_QSPI_CCR_DCYC_MASK GENMASK(4, 0)
  92. #define STM32_QSPI_CCR_ABSIZE_SHIFT (16)
  93. #define STM32_QSPI_CCR_ABMODE_SHIFT (14)
  94. #define STM32_QSPI_CCR_ADSIZE_SHIFT (12)
  95. #define STM32_QSPI_CCR_ADMODE_SHIFT (10)
  96. #define STM32_QSPI_CCR_IMODE_SHIFT (8)
  97. #define STM32_QSPI_CCR_INSTRUCTION_MASK GENMASK(7, 0)
  98. enum STM32_QSPI_CCR_IMODE {
  99. STM32_QSPI_CCR_IMODE_NONE = 0,
  100. STM32_QSPI_CCR_IMODE_ONE_LINE = 1,
  101. STM32_QSPI_CCR_IMODE_TWO_LINE = 2,
  102. STM32_QSPI_CCR_IMODE_FOUR_LINE = 3,
  103. };
  104. enum STM32_QSPI_CCR_ADMODE {
  105. STM32_QSPI_CCR_ADMODE_NONE = 0,
  106. STM32_QSPI_CCR_ADMODE_ONE_LINE = 1,
  107. STM32_QSPI_CCR_ADMODE_TWO_LINE = 2,
  108. STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3,
  109. };
  110. enum STM32_QSPI_CCR_ADSIZE {
  111. STM32_QSPI_CCR_ADSIZE_8BIT = 0,
  112. STM32_QSPI_CCR_ADSIZE_16BIT = 1,
  113. STM32_QSPI_CCR_ADSIZE_24BIT = 2,
  114. STM32_QSPI_CCR_ADSIZE_32BIT = 3,
  115. };
  116. enum STM32_QSPI_CCR_ABMODE {
  117. STM32_QSPI_CCR_ABMODE_NONE = 0,
  118. STM32_QSPI_CCR_ABMODE_ONE_LINE = 1,
  119. STM32_QSPI_CCR_ABMODE_TWO_LINE = 2,
  120. STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3,
  121. };
  122. enum STM32_QSPI_CCR_ABSIZE {
  123. STM32_QSPI_CCR_ABSIZE_8BIT = 0,
  124. STM32_QSPI_CCR_ABSIZE_16BIT = 1,
  125. STM32_QSPI_CCR_ABSIZE_24BIT = 2,
  126. STM32_QSPI_CCR_ABSIZE_32BIT = 3,
  127. };
  128. enum STM32_QSPI_CCR_DMODE {
  129. STM32_QSPI_CCR_DMODE_NONE = 0,
  130. STM32_QSPI_CCR_DMODE_ONE_LINE = 1,
  131. STM32_QSPI_CCR_DMODE_TWO_LINE = 2,
  132. STM32_QSPI_CCR_DMODE_FOUR_LINE = 3,
  133. };
  134. enum STM32_QSPI_CCR_FMODE {
  135. STM32_QSPI_CCR_IND_WRITE = 0,
  136. STM32_QSPI_CCR_IND_READ = 1,
  137. STM32_QSPI_CCR_AUTO_POLL = 2,
  138. STM32_QSPI_CCR_MEM_MAP = 3,
  139. };
  140. /* default SCK frequency, unit: HZ */
  141. #define STM32_QSPI_DEFAULT_SCK_FREQ 108000000
  142. struct stm32_qspi_platdata {
  143. u32 base;
  144. u32 memory_map;
  145. u32 max_hz;
  146. };
  147. struct stm32_qspi_priv {
  148. struct stm32_qspi_regs *regs;
  149. ulong clock_rate;
  150. u32 max_hz;
  151. u32 mode;
  152. u32 command;
  153. u32 address;
  154. u32 dummycycles;
  155. #define CMD_HAS_ADR BIT(24)
  156. #define CMD_HAS_DUMMY BIT(25)
  157. #define CMD_HAS_DATA BIT(26)
  158. };
  159. static void _stm32_qspi_disable(struct stm32_qspi_priv *priv)
  160. {
  161. clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  162. }
  163. static void _stm32_qspi_enable(struct stm32_qspi_priv *priv)
  164. {
  165. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  166. }
  167. static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
  168. {
  169. while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY)
  170. ;
  171. }
  172. static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv)
  173. {
  174. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF))
  175. ;
  176. }
  177. static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv)
  178. {
  179. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF))
  180. ;
  181. }
  182. static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size)
  183. {
  184. u32 fsize = fls(size) - 1;
  185. clrsetbits_le32(&priv->regs->dcr,
  186. STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT,
  187. fsize << STM32_QSPI_DCR_FSIZE_SHIFT);
  188. }
  189. static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv)
  190. {
  191. unsigned int ccr_reg = 0;
  192. u8 imode, admode, dmode;
  193. u32 mode = priv->mode;
  194. u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK);
  195. imode = STM32_QSPI_CCR_IMODE_ONE_LINE;
  196. admode = STM32_QSPI_CCR_ADMODE_ONE_LINE;
  197. if (mode & SPI_RX_QUAD) {
  198. dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
  199. if (mode & SPI_TX_QUAD) {
  200. imode = STM32_QSPI_CCR_IMODE_FOUR_LINE;
  201. admode = STM32_QSPI_CCR_ADMODE_FOUR_LINE;
  202. }
  203. } else if (mode & SPI_RX_DUAL) {
  204. dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
  205. if (mode & SPI_TX_DUAL) {
  206. imode = STM32_QSPI_CCR_IMODE_TWO_LINE;
  207. admode = STM32_QSPI_CCR_ADMODE_TWO_LINE;
  208. }
  209. } else {
  210. dmode = STM32_QSPI_CCR_DMODE_ONE_LINE;
  211. }
  212. if (priv->command & CMD_HAS_DATA)
  213. ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT);
  214. if (priv->command & CMD_HAS_DUMMY)
  215. ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK)
  216. << STM32_QSPI_CCR_DCYC_SHIFT);
  217. if (priv->command & CMD_HAS_ADR) {
  218. ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT
  219. << STM32_QSPI_CCR_ADSIZE_SHIFT);
  220. ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT);
  221. }
  222. ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT);
  223. ccr_reg |= cmd;
  224. return ccr_reg;
  225. }
  226. static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv,
  227. struct spi_flash *flash)
  228. {
  229. priv->command = flash->read_cmd | CMD_HAS_ADR | CMD_HAS_DATA
  230. | CMD_HAS_DUMMY;
  231. priv->dummycycles = flash->dummy_byte * 8;
  232. unsigned int ccr_reg = _stm32_qspi_gen_ccr(priv);
  233. ccr_reg |= (STM32_QSPI_CCR_MEM_MAP << STM32_QSPI_CCR_FMODE_SHIFT);
  234. _stm32_qspi_wait_for_not_busy(priv);
  235. writel(ccr_reg, &priv->regs->ccr);
  236. priv->dummycycles = 0;
  237. }
  238. static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv)
  239. {
  240. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
  241. }
  242. static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv,
  243. u32 length)
  244. {
  245. writel(length - 1, &priv->regs->dlr);
  246. }
  247. static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg)
  248. {
  249. writel(cr_reg, &priv->regs->ccr);
  250. if (priv->command & CMD_HAS_ADR)
  251. writel(priv->address, &priv->regs->ar);
  252. }
  253. static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv,
  254. struct spi_flash *flash, unsigned int bitlen,
  255. const u8 *dout, u8 *din, unsigned long flags)
  256. {
  257. unsigned int words = bitlen / 8;
  258. if (flags & SPI_XFER_MMAP) {
  259. _stm32_qspi_enable_mmap(priv, flash);
  260. return 0;
  261. } else if (flags & SPI_XFER_MMAP_END) {
  262. _stm32_qspi_disable_mmap(priv);
  263. return 0;
  264. }
  265. if (bitlen == 0)
  266. return -1;
  267. if (bitlen % 8) {
  268. debug("spi_xfer: Non byte aligned SPI transfer\n");
  269. return -1;
  270. }
  271. if (dout && din) {
  272. debug("spi_xfer: QSPI cannot have data in and data out set\n");
  273. return -1;
  274. }
  275. if (!dout && (flags & SPI_XFER_BEGIN)) {
  276. debug("spi_xfer: QSPI transfer must begin with command\n");
  277. return -1;
  278. }
  279. if (dout) {
  280. if (flags & SPI_XFER_BEGIN) {
  281. /* data is command */
  282. priv->command = dout[0] | CMD_HAS_DATA;
  283. if (words >= 4) {
  284. /* address is here too */
  285. priv->address = (dout[1] << 16) |
  286. (dout[2] << 8) | dout[3];
  287. priv->command |= CMD_HAS_ADR;
  288. }
  289. if (words > 4) {
  290. /* rest is dummy bytes */
  291. priv->dummycycles = (words - 4) * 8;
  292. priv->command |= CMD_HAS_DUMMY;
  293. }
  294. if (flags & SPI_XFER_END) {
  295. /* command without data */
  296. priv->command &= ~(CMD_HAS_DATA);
  297. }
  298. }
  299. if (flags & SPI_XFER_END) {
  300. u32 ccr_reg = _stm32_qspi_gen_ccr(priv);
  301. ccr_reg |= STM32_QSPI_CCR_IND_WRITE
  302. << STM32_QSPI_CCR_FMODE_SHIFT;
  303. _stm32_qspi_wait_for_not_busy(priv);
  304. if (priv->command & CMD_HAS_DATA)
  305. _stm32_qspi_set_xfer_length(priv, words);
  306. _stm32_qspi_start_xfer(priv, ccr_reg);
  307. debug("%s: write: ccr:0x%08x adr:0x%08x\n",
  308. __func__, priv->regs->ccr, priv->regs->ar);
  309. if (priv->command & CMD_HAS_DATA) {
  310. _stm32_qspi_wait_for_ftf(priv);
  311. debug("%s: words:%d data:", __func__, words);
  312. int i = 0;
  313. while (words > i) {
  314. writeb(dout[i], &priv->regs->dr);
  315. debug("%02x ", dout[i]);
  316. i++;
  317. }
  318. debug("\n");
  319. _stm32_qspi_wait_for_complete(priv);
  320. } else {
  321. _stm32_qspi_wait_for_not_busy(priv);
  322. }
  323. }
  324. } else if (din) {
  325. u32 ccr_reg = _stm32_qspi_gen_ccr(priv);
  326. ccr_reg |= STM32_QSPI_CCR_IND_READ
  327. << STM32_QSPI_CCR_FMODE_SHIFT;
  328. _stm32_qspi_wait_for_not_busy(priv);
  329. _stm32_qspi_set_xfer_length(priv, words);
  330. _stm32_qspi_start_xfer(priv, ccr_reg);
  331. debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__,
  332. priv->regs->ccr, priv->regs->ar, priv->regs->dlr);
  333. debug("%s: data:", __func__);
  334. int i = 0;
  335. while (words > i) {
  336. din[i] = readb(&priv->regs->dr);
  337. debug("%02x ", din[i]);
  338. i++;
  339. }
  340. debug("\n");
  341. }
  342. return 0;
  343. }
  344. static int stm32_qspi_ofdata_to_platdata(struct udevice *bus)
  345. {
  346. struct fdt_resource res_regs, res_mem;
  347. struct stm32_qspi_platdata *plat = bus->platdata;
  348. const void *blob = gd->fdt_blob;
  349. int node = dev_of_offset(bus);
  350. int ret;
  351. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  352. "QuadSPI", &res_regs);
  353. if (ret) {
  354. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  355. return -ENOMEM;
  356. }
  357. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  358. "QuadSPI-memory", &res_mem);
  359. if (ret) {
  360. debug("Error: can't get mmap base address(ret = %d)!\n", ret);
  361. return -ENOMEM;
  362. }
  363. plat->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  364. STM32_QSPI_DEFAULT_SCK_FREQ);
  365. plat->base = res_regs.start;
  366. plat->memory_map = res_mem.start;
  367. debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n",
  368. __func__,
  369. plat->base,
  370. plat->memory_map,
  371. plat->max_hz
  372. );
  373. return 0;
  374. }
  375. static int stm32_qspi_probe(struct udevice *bus)
  376. {
  377. struct stm32_qspi_platdata *plat = dev_get_platdata(bus);
  378. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  379. struct dm_spi_bus *dm_spi_bus;
  380. dm_spi_bus = bus->uclass_priv;
  381. dm_spi_bus->max_hz = plat->max_hz;
  382. priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base;
  383. priv->max_hz = plat->max_hz;
  384. #ifdef CONFIG_CLK
  385. int ret;
  386. struct clk clk;
  387. ret = clk_get_by_index(bus, 0, &clk);
  388. if (ret < 0)
  389. return ret;
  390. ret = clk_enable(&clk);
  391. if (ret) {
  392. dev_err(bus, "failed to enable clock\n");
  393. return ret;
  394. }
  395. priv->clock_rate = clk_get_rate(&clk);
  396. if (priv->clock_rate < 0) {
  397. clk_disable(&clk);
  398. return priv->clock_rate;
  399. }
  400. #endif
  401. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
  402. return 0;
  403. }
  404. static int stm32_qspi_remove(struct udevice *bus)
  405. {
  406. return 0;
  407. }
  408. static int stm32_qspi_claim_bus(struct udevice *dev)
  409. {
  410. struct stm32_qspi_priv *priv;
  411. struct udevice *bus;
  412. struct spi_flash *flash;
  413. bus = dev->parent;
  414. priv = dev_get_priv(bus);
  415. flash = dev_get_uclass_priv(dev);
  416. _stm32_qspi_set_flash_size(priv, flash->size);
  417. _stm32_qspi_enable(priv);
  418. return 0;
  419. }
  420. static int stm32_qspi_release_bus(struct udevice *dev)
  421. {
  422. struct stm32_qspi_priv *priv;
  423. struct udevice *bus;
  424. bus = dev->parent;
  425. priv = dev_get_priv(bus);
  426. _stm32_qspi_disable(priv);
  427. return 0;
  428. }
  429. static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  430. const void *dout, void *din, unsigned long flags)
  431. {
  432. struct stm32_qspi_priv *priv;
  433. struct udevice *bus;
  434. struct spi_flash *flash;
  435. bus = dev->parent;
  436. priv = dev_get_priv(bus);
  437. flash = dev_get_uclass_priv(dev);
  438. return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout,
  439. (u8 *)din, flags);
  440. }
  441. static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
  442. {
  443. struct stm32_qspi_platdata *plat = bus->platdata;
  444. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  445. if (speed > plat->max_hz)
  446. speed = plat->max_hz;
  447. u32 qspi_clk = priv->clock_rate;
  448. u32 prescaler = 255;
  449. if (speed > 0) {
  450. prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
  451. if (prescaler > 255)
  452. prescaler = 255;
  453. else if (prescaler < 0)
  454. prescaler = 0;
  455. }
  456. u32 csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
  457. csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
  458. _stm32_qspi_wait_for_not_busy(priv);
  459. clrsetbits_le32(&priv->regs->cr,
  460. STM32_QSPI_CR_PRESCALER_MASK <<
  461. STM32_QSPI_CR_PRESCALER_SHIFT,
  462. prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
  463. clrsetbits_le32(&priv->regs->dcr,
  464. STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
  465. csht << STM32_QSPI_DCR_CSHT_SHIFT);
  466. debug("%s: regs=%p, speed=%d\n", __func__, priv->regs,
  467. (qspi_clk / (prescaler + 1)));
  468. return 0;
  469. }
  470. static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
  471. {
  472. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  473. _stm32_qspi_wait_for_not_busy(priv);
  474. if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
  475. setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  476. else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
  477. clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  478. else
  479. return -ENODEV;
  480. if (mode & SPI_CS_HIGH)
  481. return -ENODEV;
  482. if (mode & SPI_RX_QUAD)
  483. priv->mode |= SPI_RX_QUAD;
  484. else if (mode & SPI_RX_DUAL)
  485. priv->mode |= SPI_RX_DUAL;
  486. else
  487. priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL);
  488. if (mode & SPI_TX_QUAD)
  489. priv->mode |= SPI_TX_QUAD;
  490. else if (mode & SPI_TX_DUAL)
  491. priv->mode |= SPI_TX_DUAL;
  492. else
  493. priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL);
  494. debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode);
  495. if (mode & SPI_RX_QUAD)
  496. debug("quad, tx: ");
  497. else if (mode & SPI_RX_DUAL)
  498. debug("dual, tx: ");
  499. else
  500. debug("single, tx: ");
  501. if (mode & SPI_TX_QUAD)
  502. debug("quad\n");
  503. else if (mode & SPI_TX_DUAL)
  504. debug("dual\n");
  505. else
  506. debug("single\n");
  507. return 0;
  508. }
  509. static const struct dm_spi_ops stm32_qspi_ops = {
  510. .claim_bus = stm32_qspi_claim_bus,
  511. .release_bus = stm32_qspi_release_bus,
  512. .xfer = stm32_qspi_xfer,
  513. .set_speed = stm32_qspi_set_speed,
  514. .set_mode = stm32_qspi_set_mode,
  515. };
  516. static const struct udevice_id stm32_qspi_ids[] = {
  517. { .compatible = "st,stm32-qspi" },
  518. { }
  519. };
  520. U_BOOT_DRIVER(stm32_qspi) = {
  521. .name = "stm32_qspi",
  522. .id = UCLASS_SPI,
  523. .of_match = stm32_qspi_ids,
  524. .ops = &stm32_qspi_ops,
  525. .ofdata_to_platdata = stm32_qspi_ofdata_to_platdata,
  526. .platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata),
  527. .priv_auto_alloc_size = sizeof(struct stm32_qspi_priv),
  528. .probe = stm32_qspi_probe,
  529. .remove = stm32_qspi_remove,
  530. };