clk_stm32mp1.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+ BSD-3-Clause
  5. */
  6. #include <common.h>
  7. #include <clk-uclass.h>
  8. #include <div64.h>
  9. #include <dm.h>
  10. #include <regmap.h>
  11. #include <spl.h>
  12. #include <syscon.h>
  13. #include <linux/io.h>
  14. #include <linux/iopoll.h>
  15. #include <dt-bindings/clock/stm32mp1-clks.h>
  16. #include <dt-bindings/clock/stm32mp1-clksrc.h>
  17. #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
  18. /* activate clock tree initialization in the driver */
  19. #define STM32MP1_CLOCK_TREE_INIT
  20. #endif
  21. #define MAX_HSI_HZ 64000000
  22. /* TIMEOUT */
  23. #define TIMEOUT_200MS 200000
  24. #define TIMEOUT_1S 1000000
  25. /* RCC registers */
  26. #define RCC_OCENSETR 0x0C
  27. #define RCC_OCENCLRR 0x10
  28. #define RCC_HSICFGR 0x18
  29. #define RCC_MPCKSELR 0x20
  30. #define RCC_ASSCKSELR 0x24
  31. #define RCC_RCK12SELR 0x28
  32. #define RCC_MPCKDIVR 0x2C
  33. #define RCC_AXIDIVR 0x30
  34. #define RCC_APB4DIVR 0x3C
  35. #define RCC_APB5DIVR 0x40
  36. #define RCC_RTCDIVR 0x44
  37. #define RCC_MSSCKSELR 0x48
  38. #define RCC_PLL1CR 0x80
  39. #define RCC_PLL1CFGR1 0x84
  40. #define RCC_PLL1CFGR2 0x88
  41. #define RCC_PLL1FRACR 0x8C
  42. #define RCC_PLL1CSGR 0x90
  43. #define RCC_PLL2CR 0x94
  44. #define RCC_PLL2CFGR1 0x98
  45. #define RCC_PLL2CFGR2 0x9C
  46. #define RCC_PLL2FRACR 0xA0
  47. #define RCC_PLL2CSGR 0xA4
  48. #define RCC_I2C46CKSELR 0xC0
  49. #define RCC_CPERCKSELR 0xD0
  50. #define RCC_STGENCKSELR 0xD4
  51. #define RCC_DDRITFCR 0xD8
  52. #define RCC_BDCR 0x140
  53. #define RCC_RDLSICR 0x144
  54. #define RCC_MP_APB4ENSETR 0x200
  55. #define RCC_MP_APB5ENSETR 0x208
  56. #define RCC_MP_AHB5ENSETR 0x210
  57. #define RCC_MP_AHB6ENSETR 0x218
  58. #define RCC_OCRDYR 0x808
  59. #define RCC_DBGCFGR 0x80C
  60. #define RCC_RCK3SELR 0x820
  61. #define RCC_RCK4SELR 0x824
  62. #define RCC_MCUDIVR 0x830
  63. #define RCC_APB1DIVR 0x834
  64. #define RCC_APB2DIVR 0x838
  65. #define RCC_APB3DIVR 0x83C
  66. #define RCC_PLL3CR 0x880
  67. #define RCC_PLL3CFGR1 0x884
  68. #define RCC_PLL3CFGR2 0x888
  69. #define RCC_PLL3FRACR 0x88C
  70. #define RCC_PLL3CSGR 0x890
  71. #define RCC_PLL4CR 0x894
  72. #define RCC_PLL4CFGR1 0x898
  73. #define RCC_PLL4CFGR2 0x89C
  74. #define RCC_PLL4FRACR 0x8A0
  75. #define RCC_PLL4CSGR 0x8A4
  76. #define RCC_I2C12CKSELR 0x8C0
  77. #define RCC_I2C35CKSELR 0x8C4
  78. #define RCC_UART6CKSELR 0x8E4
  79. #define RCC_UART24CKSELR 0x8E8
  80. #define RCC_UART35CKSELR 0x8EC
  81. #define RCC_UART78CKSELR 0x8F0
  82. #define RCC_SDMMC12CKSELR 0x8F4
  83. #define RCC_SDMMC3CKSELR 0x8F8
  84. #define RCC_ETHCKSELR 0x8FC
  85. #define RCC_QSPICKSELR 0x900
  86. #define RCC_FMCCKSELR 0x904
  87. #define RCC_USBCKSELR 0x91C
  88. #define RCC_MP_APB1ENSETR 0xA00
  89. #define RCC_MP_APB2ENSETR 0XA08
  90. #define RCC_MP_AHB2ENSETR 0xA18
  91. #define RCC_MP_AHB4ENSETR 0xA28
  92. /* used for most of SELR register */
  93. #define RCC_SELR_SRC_MASK GENMASK(2, 0)
  94. #define RCC_SELR_SRCRDY BIT(31)
  95. /* Values of RCC_MPCKSELR register */
  96. #define RCC_MPCKSELR_HSI 0
  97. #define RCC_MPCKSELR_HSE 1
  98. #define RCC_MPCKSELR_PLL 2
  99. #define RCC_MPCKSELR_PLL_MPUDIV 3
  100. /* Values of RCC_ASSCKSELR register */
  101. #define RCC_ASSCKSELR_HSI 0
  102. #define RCC_ASSCKSELR_HSE 1
  103. #define RCC_ASSCKSELR_PLL 2
  104. /* Values of RCC_MSSCKSELR register */
  105. #define RCC_MSSCKSELR_HSI 0
  106. #define RCC_MSSCKSELR_HSE 1
  107. #define RCC_MSSCKSELR_CSI 2
  108. #define RCC_MSSCKSELR_PLL 3
  109. /* Values of RCC_CPERCKSELR register */
  110. #define RCC_CPERCKSELR_HSI 0
  111. #define RCC_CPERCKSELR_CSI 1
  112. #define RCC_CPERCKSELR_HSE 2
  113. /* used for most of DIVR register : max div for RTC */
  114. #define RCC_DIVR_DIV_MASK GENMASK(5, 0)
  115. #define RCC_DIVR_DIVRDY BIT(31)
  116. /* Masks for specific DIVR registers */
  117. #define RCC_APBXDIV_MASK GENMASK(2, 0)
  118. #define RCC_MPUDIV_MASK GENMASK(2, 0)
  119. #define RCC_AXIDIV_MASK GENMASK(2, 0)
  120. #define RCC_MCUDIV_MASK GENMASK(3, 0)
  121. /* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
  122. #define RCC_MP_ENCLRR_OFFSET 4
  123. /* Fields of RCC_BDCR register */
  124. #define RCC_BDCR_LSEON BIT(0)
  125. #define RCC_BDCR_LSEBYP BIT(1)
  126. #define RCC_BDCR_LSERDY BIT(2)
  127. #define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
  128. #define RCC_BDCR_LSEDRV_SHIFT 4
  129. #define RCC_BDCR_LSECSSON BIT(8)
  130. #define RCC_BDCR_RTCCKEN BIT(20)
  131. #define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
  132. #define RCC_BDCR_RTCSRC_SHIFT 16
  133. /* Fields of RCC_RDLSICR register */
  134. #define RCC_RDLSICR_LSION BIT(0)
  135. #define RCC_RDLSICR_LSIRDY BIT(1)
  136. /* used for ALL PLLNCR registers */
  137. #define RCC_PLLNCR_PLLON BIT(0)
  138. #define RCC_PLLNCR_PLLRDY BIT(1)
  139. #define RCC_PLLNCR_DIVPEN BIT(4)
  140. #define RCC_PLLNCR_DIVQEN BIT(5)
  141. #define RCC_PLLNCR_DIVREN BIT(6)
  142. #define RCC_PLLNCR_DIVEN_SHIFT 4
  143. /* used for ALL PLLNCFGR1 registers */
  144. #define RCC_PLLNCFGR1_DIVM_SHIFT 16
  145. #define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
  146. #define RCC_PLLNCFGR1_DIVN_SHIFT 0
  147. #define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
  148. /* only for PLL3 and PLL4 */
  149. #define RCC_PLLNCFGR1_IFRGE_SHIFT 24
  150. #define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
  151. /* used for ALL PLLNCFGR2 registers */
  152. #define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
  153. #define RCC_PLLNCFGR2_DIVP_SHIFT 0
  154. #define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
  155. #define RCC_PLLNCFGR2_DIVQ_SHIFT 8
  156. #define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
  157. #define RCC_PLLNCFGR2_DIVR_SHIFT 16
  158. #define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
  159. /* used for ALL PLLNFRACR registers */
  160. #define RCC_PLLNFRACR_FRACV_SHIFT 3
  161. #define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
  162. #define RCC_PLLNFRACR_FRACLE BIT(16)
  163. /* used for ALL PLLNCSGR registers */
  164. #define RCC_PLLNCSGR_INC_STEP_SHIFT 16
  165. #define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
  166. #define RCC_PLLNCSGR_MOD_PER_SHIFT 0
  167. #define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
  168. #define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
  169. #define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
  170. /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
  171. #define RCC_OCENR_HSION BIT(0)
  172. #define RCC_OCENR_CSION BIT(4)
  173. #define RCC_OCENR_HSEON BIT(8)
  174. #define RCC_OCENR_HSEBYP BIT(10)
  175. #define RCC_OCENR_HSECSSON BIT(11)
  176. /* Fields of RCC_OCRDYR register */
  177. #define RCC_OCRDYR_HSIRDY BIT(0)
  178. #define RCC_OCRDYR_HSIDIVRDY BIT(2)
  179. #define RCC_OCRDYR_CSIRDY BIT(4)
  180. #define RCC_OCRDYR_HSERDY BIT(8)
  181. /* Fields of DDRITFCR register */
  182. #define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
  183. #define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
  184. #define RCC_DDRITFCR_DDRCKMOD_SSR 0
  185. /* Fields of RCC_HSICFGR register */
  186. #define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
  187. /* used for MCO related operations */
  188. #define RCC_MCOCFG_MCOON BIT(12)
  189. #define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
  190. #define RCC_MCOCFG_MCODIV_SHIFT 4
  191. #define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
  192. enum stm32mp1_parent_id {
  193. /*
  194. * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
  195. * they are used as index in osc[] as entry point
  196. */
  197. _HSI,
  198. _HSE,
  199. _CSI,
  200. _LSI,
  201. _LSE,
  202. _I2S_CKIN,
  203. _USB_PHY_48,
  204. NB_OSC,
  205. /* other parent source */
  206. _HSI_KER = NB_OSC,
  207. _HSE_KER,
  208. _HSE_KER_DIV2,
  209. _CSI_KER,
  210. _PLL1_P,
  211. _PLL1_Q,
  212. _PLL1_R,
  213. _PLL2_P,
  214. _PLL2_Q,
  215. _PLL2_R,
  216. _PLL3_P,
  217. _PLL3_Q,
  218. _PLL3_R,
  219. _PLL4_P,
  220. _PLL4_Q,
  221. _PLL4_R,
  222. _ACLK,
  223. _PCLK1,
  224. _PCLK2,
  225. _PCLK3,
  226. _PCLK4,
  227. _PCLK5,
  228. _HCLK6,
  229. _HCLK2,
  230. _CK_PER,
  231. _CK_MPU,
  232. _CK_MCU,
  233. _PARENT_NB,
  234. _UNKNOWN_ID = 0xff,
  235. };
  236. enum stm32mp1_parent_sel {
  237. _I2C12_SEL,
  238. _I2C35_SEL,
  239. _I2C46_SEL,
  240. _UART6_SEL,
  241. _UART24_SEL,
  242. _UART35_SEL,
  243. _UART78_SEL,
  244. _SDMMC12_SEL,
  245. _SDMMC3_SEL,
  246. _ETH_SEL,
  247. _QSPI_SEL,
  248. _FMC_SEL,
  249. _USBPHY_SEL,
  250. _USBO_SEL,
  251. _STGEN_SEL,
  252. _PARENT_SEL_NB,
  253. _UNKNOWN_SEL = 0xff,
  254. };
  255. enum stm32mp1_pll_id {
  256. _PLL1,
  257. _PLL2,
  258. _PLL3,
  259. _PLL4,
  260. _PLL_NB
  261. };
  262. enum stm32mp1_div_id {
  263. _DIV_P,
  264. _DIV_Q,
  265. _DIV_R,
  266. _DIV_NB,
  267. };
  268. enum stm32mp1_clksrc_id {
  269. CLKSRC_MPU,
  270. CLKSRC_AXI,
  271. CLKSRC_MCU,
  272. CLKSRC_PLL12,
  273. CLKSRC_PLL3,
  274. CLKSRC_PLL4,
  275. CLKSRC_RTC,
  276. CLKSRC_MCO1,
  277. CLKSRC_MCO2,
  278. CLKSRC_NB
  279. };
  280. enum stm32mp1_clkdiv_id {
  281. CLKDIV_MPU,
  282. CLKDIV_AXI,
  283. CLKDIV_MCU,
  284. CLKDIV_APB1,
  285. CLKDIV_APB2,
  286. CLKDIV_APB3,
  287. CLKDIV_APB4,
  288. CLKDIV_APB5,
  289. CLKDIV_RTC,
  290. CLKDIV_MCO1,
  291. CLKDIV_MCO2,
  292. CLKDIV_NB
  293. };
  294. enum stm32mp1_pllcfg {
  295. PLLCFG_M,
  296. PLLCFG_N,
  297. PLLCFG_P,
  298. PLLCFG_Q,
  299. PLLCFG_R,
  300. PLLCFG_O,
  301. PLLCFG_NB
  302. };
  303. enum stm32mp1_pllcsg {
  304. PLLCSG_MOD_PER,
  305. PLLCSG_INC_STEP,
  306. PLLCSG_SSCG_MODE,
  307. PLLCSG_NB
  308. };
  309. enum stm32mp1_plltype {
  310. PLL_800,
  311. PLL_1600,
  312. PLL_TYPE_NB
  313. };
  314. struct stm32mp1_pll {
  315. u8 refclk_min;
  316. u8 refclk_max;
  317. u8 divn_max;
  318. };
  319. struct stm32mp1_clk_gate {
  320. u16 offset;
  321. u8 bit;
  322. u8 index;
  323. u8 set_clr;
  324. u8 sel;
  325. u8 fixed;
  326. };
  327. struct stm32mp1_clk_sel {
  328. u16 offset;
  329. u8 src;
  330. u8 msk;
  331. u8 nb_parent;
  332. const u8 *parent;
  333. };
  334. #define REFCLK_SIZE 4
  335. struct stm32mp1_clk_pll {
  336. enum stm32mp1_plltype plltype;
  337. u16 rckxselr;
  338. u16 pllxcfgr1;
  339. u16 pllxcfgr2;
  340. u16 pllxfracr;
  341. u16 pllxcr;
  342. u16 pllxcsgr;
  343. u8 refclk[REFCLK_SIZE];
  344. };
  345. struct stm32mp1_clk_data {
  346. const struct stm32mp1_clk_gate *gate;
  347. const struct stm32mp1_clk_sel *sel;
  348. const struct stm32mp1_clk_pll *pll;
  349. const int nb_gate;
  350. };
  351. struct stm32mp1_clk_priv {
  352. fdt_addr_t base;
  353. const struct stm32mp1_clk_data *data;
  354. ulong osc[NB_OSC];
  355. struct udevice *osc_dev[NB_OSC];
  356. };
  357. #define STM32MP1_CLK(off, b, idx, s) \
  358. { \
  359. .offset = (off), \
  360. .bit = (b), \
  361. .index = (idx), \
  362. .set_clr = 0, \
  363. .sel = (s), \
  364. .fixed = _UNKNOWN_ID, \
  365. }
  366. #define STM32MP1_CLK_F(off, b, idx, f) \
  367. { \
  368. .offset = (off), \
  369. .bit = (b), \
  370. .index = (idx), \
  371. .set_clr = 0, \
  372. .sel = _UNKNOWN_SEL, \
  373. .fixed = (f), \
  374. }
  375. #define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
  376. { \
  377. .offset = (off), \
  378. .bit = (b), \
  379. .index = (idx), \
  380. .set_clr = 1, \
  381. .sel = (s), \
  382. .fixed = _UNKNOWN_ID, \
  383. }
  384. #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
  385. { \
  386. .offset = (off), \
  387. .bit = (b), \
  388. .index = (idx), \
  389. .set_clr = 1, \
  390. .sel = _UNKNOWN_SEL, \
  391. .fixed = (f), \
  392. }
  393. #define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
  394. [(idx)] = { \
  395. .offset = (off), \
  396. .src = (s), \
  397. .msk = (m), \
  398. .parent = (p), \
  399. .nb_parent = ARRAY_SIZE((p)) \
  400. }
  401. #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
  402. p1, p2, p3, p4) \
  403. [(idx)] = { \
  404. .plltype = (type), \
  405. .rckxselr = (off1), \
  406. .pllxcfgr1 = (off2), \
  407. .pllxcfgr2 = (off3), \
  408. .pllxfracr = (off4), \
  409. .pllxcr = (off5), \
  410. .pllxcsgr = (off6), \
  411. .refclk[0] = (p1), \
  412. .refclk[1] = (p2), \
  413. .refclk[2] = (p3), \
  414. .refclk[3] = (p4), \
  415. }
  416. static const u8 stm32mp1_clks[][2] = {
  417. {CK_PER, _CK_PER},
  418. {CK_MPU, _CK_MPU},
  419. {CK_AXI, _ACLK},
  420. {CK_MCU, _CK_MCU},
  421. {CK_HSE, _HSE},
  422. {CK_CSI, _CSI},
  423. {CK_LSI, _LSI},
  424. {CK_LSE, _LSE},
  425. {CK_HSI, _HSI},
  426. {CK_HSE_DIV2, _HSE_KER_DIV2},
  427. };
  428. static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
  429. STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
  430. STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
  431. STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
  432. STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
  433. STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
  434. STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
  435. STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
  436. STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
  437. STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
  438. STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
  439. STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
  440. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
  441. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
  442. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
  443. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
  444. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
  445. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
  446. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
  447. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
  448. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
  449. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
  450. STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
  451. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
  452. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
  453. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
  454. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
  455. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
  456. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
  457. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
  458. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
  459. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
  460. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
  461. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
  462. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
  463. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
  464. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
  465. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
  466. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
  467. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
  468. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
  469. STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
  470. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _UNKNOWN_SEL),
  471. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
  472. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
  473. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 10, ETHMAC_K, _ETH_SEL),
  474. STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
  475. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
  476. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
  477. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
  478. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
  479. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
  480. STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
  481. };
  482. static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  483. static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  484. static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
  485. static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
  486. _HSE_KER};
  487. static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  488. _HSE_KER};
  489. static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  490. _HSE_KER};
  491. static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  492. _HSE_KER};
  493. static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
  494. static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
  495. static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
  496. static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  497. static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  498. static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
  499. static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
  500. static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
  501. static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
  502. STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
  503. STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
  504. STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
  505. STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
  506. STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
  507. uart24_parents),
  508. STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
  509. uart35_parents),
  510. STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
  511. uart78_parents),
  512. STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
  513. sdmmc12_parents),
  514. STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
  515. sdmmc3_parents),
  516. STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
  517. STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
  518. STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
  519. STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
  520. STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
  521. STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
  522. };
  523. #ifdef STM32MP1_CLOCK_TREE_INIT
  524. /* define characteristic of PLL according type */
  525. #define DIVN_MIN 24
  526. static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
  527. [PLL_800] = {
  528. .refclk_min = 4,
  529. .refclk_max = 16,
  530. .divn_max = 99,
  531. },
  532. [PLL_1600] = {
  533. .refclk_min = 8,
  534. .refclk_max = 16,
  535. .divn_max = 199,
  536. },
  537. };
  538. #endif /* STM32MP1_CLOCK_TREE_INIT */
  539. static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
  540. STM32MP1_CLK_PLL(_PLL1, PLL_1600,
  541. RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
  542. RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
  543. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  544. STM32MP1_CLK_PLL(_PLL2, PLL_1600,
  545. RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
  546. RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
  547. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  548. STM32MP1_CLK_PLL(_PLL3, PLL_800,
  549. RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
  550. RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
  551. _HSI, _HSE, _CSI, _UNKNOWN_ID),
  552. STM32MP1_CLK_PLL(_PLL4, PLL_800,
  553. RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
  554. RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
  555. _HSI, _HSE, _CSI, _I2S_CKIN),
  556. };
  557. /* Prescaler table lookups for clock computation */
  558. /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
  559. static const u8 stm32mp1_mcu_div[16] = {
  560. 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
  561. };
  562. /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
  563. #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
  564. #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
  565. static const u8 stm32mp1_mpu_apbx_div[8] = {
  566. 0, 1, 2, 3, 4, 4, 4, 4
  567. };
  568. /* div = /1 /2 /3 /4 */
  569. static const u8 stm32mp1_axi_div[8] = {
  570. 1, 2, 3, 4, 4, 4, 4, 4
  571. };
  572. #ifdef DEBUG
  573. static const char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
  574. [_HSI] = "HSI",
  575. [_HSE] = "HSE",
  576. [_CSI] = "CSI",
  577. [_LSI] = "LSI",
  578. [_LSE] = "LSE",
  579. [_I2S_CKIN] = "I2S_CKIN",
  580. [_HSI_KER] = "HSI_KER",
  581. [_HSE_KER] = "HSE_KER",
  582. [_HSE_KER_DIV2] = "HSE_KER_DIV2",
  583. [_CSI_KER] = "CSI_KER",
  584. [_PLL1_P] = "PLL1_P",
  585. [_PLL1_Q] = "PLL1_Q",
  586. [_PLL1_R] = "PLL1_R",
  587. [_PLL2_P] = "PLL2_P",
  588. [_PLL2_Q] = "PLL2_Q",
  589. [_PLL2_R] = "PLL2_R",
  590. [_PLL3_P] = "PLL3_P",
  591. [_PLL3_Q] = "PLL3_Q",
  592. [_PLL3_R] = "PLL3_R",
  593. [_PLL4_P] = "PLL4_P",
  594. [_PLL4_Q] = "PLL4_Q",
  595. [_PLL4_R] = "PLL4_R",
  596. [_ACLK] = "ACLK",
  597. [_PCLK1] = "PCLK1",
  598. [_PCLK2] = "PCLK2",
  599. [_PCLK3] = "PCLK3",
  600. [_PCLK4] = "PCLK4",
  601. [_PCLK5] = "PCLK5",
  602. [_HCLK6] = "KCLK6",
  603. [_HCLK2] = "HCLK2",
  604. [_CK_PER] = "CK_PER",
  605. [_CK_MPU] = "CK_MPU",
  606. [_CK_MCU] = "CK_MCU",
  607. [_USB_PHY_48] = "USB_PHY_48"
  608. };
  609. static const char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
  610. [_I2C12_SEL] = "I2C12",
  611. [_I2C35_SEL] = "I2C35",
  612. [_I2C46_SEL] = "I2C46",
  613. [_UART6_SEL] = "UART6",
  614. [_UART24_SEL] = "UART24",
  615. [_UART35_SEL] = "UART35",
  616. [_UART78_SEL] = "UART78",
  617. [_SDMMC12_SEL] = "SDMMC12",
  618. [_SDMMC3_SEL] = "SDMMC3",
  619. [_ETH_SEL] = "ETH",
  620. [_QSPI_SEL] = "QSPI",
  621. [_FMC_SEL] = "FMC",
  622. [_USBPHY_SEL] = "USBPHY",
  623. [_USBO_SEL] = "USBO",
  624. [_STGEN_SEL] = "STGEN"
  625. };
  626. #endif
  627. static const struct stm32mp1_clk_data stm32mp1_data = {
  628. .gate = stm32mp1_clk_gate,
  629. .sel = stm32mp1_clk_sel,
  630. .pll = stm32mp1_clk_pll,
  631. .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
  632. };
  633. static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
  634. {
  635. if (idx >= NB_OSC) {
  636. debug("%s: clk id %d not found\n", __func__, idx);
  637. return 0;
  638. }
  639. debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
  640. (u32)priv->osc[idx], priv->osc[idx] / 1000);
  641. return priv->osc[idx];
  642. }
  643. static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
  644. {
  645. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  646. int i, nb_clks = priv->data->nb_gate;
  647. for (i = 0; i < nb_clks; i++) {
  648. if (gate[i].index == id)
  649. break;
  650. }
  651. if (i == nb_clks) {
  652. printf("%s: clk id %d not found\n", __func__, (u32)id);
  653. return -EINVAL;
  654. }
  655. return i;
  656. }
  657. static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
  658. int i)
  659. {
  660. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  661. if (gate[i].sel > _PARENT_SEL_NB) {
  662. printf("%s: parents for clk id %d not found\n",
  663. __func__, i);
  664. return -EINVAL;
  665. }
  666. return gate[i].sel;
  667. }
  668. static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
  669. int i)
  670. {
  671. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  672. if (gate[i].fixed == _UNKNOWN_ID)
  673. return -ENOENT;
  674. return gate[i].fixed;
  675. }
  676. static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
  677. unsigned long id)
  678. {
  679. const struct stm32mp1_clk_sel *sel = priv->data->sel;
  680. int i;
  681. int s, p;
  682. for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
  683. if (stm32mp1_clks[i][0] == id)
  684. return stm32mp1_clks[i][1];
  685. i = stm32mp1_clk_get_id(priv, id);
  686. if (i < 0)
  687. return i;
  688. p = stm32mp1_clk_get_fixed_parent(priv, i);
  689. if (p >= 0 && p < _PARENT_NB)
  690. return p;
  691. s = stm32mp1_clk_get_sel(priv, i);
  692. if (s < 0)
  693. return s;
  694. p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
  695. if (p < sel[s].nb_parent) {
  696. #ifdef DEBUG
  697. debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
  698. stm32mp1_clk_parent_name[sel[s].parent[p]],
  699. stm32mp1_clk_parent_sel_name[s],
  700. (u32)id);
  701. #endif
  702. return sel[s].parent[p];
  703. }
  704. pr_err("%s: no parents defined for clk id %d\n",
  705. __func__, (u32)id);
  706. return -EINVAL;
  707. }
  708. static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
  709. int pll_id, int div_id)
  710. {
  711. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  712. int divm, divn, divy, src;
  713. ulong refclk, dfout;
  714. u32 selr, cfgr1, cfgr2, fracr;
  715. const u8 shift[_DIV_NB] = {
  716. [_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
  717. [_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
  718. [_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT };
  719. debug("%s(%d, %d)\n", __func__, pll_id, div_id);
  720. if (div_id > _DIV_NB)
  721. return 0;
  722. selr = readl(priv->base + pll[pll_id].rckxselr);
  723. cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
  724. cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
  725. fracr = readl(priv->base + pll[pll_id].pllxfracr);
  726. debug("PLL%d : selr=%x cfgr1=%x cfgr2=%x fracr=%x\n",
  727. pll_id, selr, cfgr1, cfgr2, fracr);
  728. divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
  729. divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
  730. divy = (cfgr2 >> shift[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
  731. debug(" DIVN=%d DIVM=%d DIVY=%d\n", divn, divm, divy);
  732. src = selr & RCC_SELR_SRC_MASK;
  733. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
  734. debug(" refclk = %d kHz\n", (u32)(refclk / 1000));
  735. /*
  736. * For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
  737. * So same final result than PLL2 et 4
  738. * with FRACV :
  739. * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
  740. * / (DIVM + 1) * (DIVy + 1)
  741. * without FRACV
  742. * Fck_pll_y = Fck_ref * ((DIVN + 1) / (DIVM + 1) *(DIVy + 1)
  743. */
  744. if (fracr & RCC_PLLNFRACR_FRACLE) {
  745. u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
  746. >> RCC_PLLNFRACR_FRACV_SHIFT;
  747. dfout = (ulong)lldiv((unsigned long long)refclk *
  748. (((divn + 1) << 13) + fracv),
  749. ((unsigned long long)(divm + 1) *
  750. (divy + 1)) << 13);
  751. } else {
  752. dfout = (ulong)(refclk * (divn + 1) / (divm + 1) * (divy + 1));
  753. }
  754. debug(" => dfout = %d kHz\n", (u32)(dfout / 1000));
  755. return dfout;
  756. }
  757. static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
  758. {
  759. u32 reg;
  760. ulong clock = 0;
  761. switch (p) {
  762. case _CK_MPU:
  763. /* MPU sub system */
  764. reg = readl(priv->base + RCC_MPCKSELR);
  765. switch (reg & RCC_SELR_SRC_MASK) {
  766. case RCC_MPCKSELR_HSI:
  767. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  768. break;
  769. case RCC_MPCKSELR_HSE:
  770. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  771. break;
  772. case RCC_MPCKSELR_PLL:
  773. case RCC_MPCKSELR_PLL_MPUDIV:
  774. clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
  775. if (p == RCC_MPCKSELR_PLL_MPUDIV) {
  776. reg = readl(priv->base + RCC_MPCKDIVR);
  777. clock /= stm32mp1_mpu_div[reg &
  778. RCC_MPUDIV_MASK];
  779. }
  780. break;
  781. }
  782. break;
  783. /* AXI sub system */
  784. case _ACLK:
  785. case _HCLK2:
  786. case _HCLK6:
  787. case _PCLK4:
  788. case _PCLK5:
  789. reg = readl(priv->base + RCC_ASSCKSELR);
  790. switch (reg & RCC_SELR_SRC_MASK) {
  791. case RCC_ASSCKSELR_HSI:
  792. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  793. break;
  794. case RCC_ASSCKSELR_HSE:
  795. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  796. break;
  797. case RCC_ASSCKSELR_PLL:
  798. clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
  799. break;
  800. }
  801. /* System clock divider */
  802. reg = readl(priv->base + RCC_AXIDIVR);
  803. clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
  804. switch (p) {
  805. case _PCLK4:
  806. reg = readl(priv->base + RCC_APB4DIVR);
  807. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  808. break;
  809. case _PCLK5:
  810. reg = readl(priv->base + RCC_APB5DIVR);
  811. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  812. break;
  813. default:
  814. break;
  815. }
  816. break;
  817. /* MCU sub system */
  818. case _CK_MCU:
  819. case _PCLK1:
  820. case _PCLK2:
  821. case _PCLK3:
  822. reg = readl(priv->base + RCC_MSSCKSELR);
  823. switch (reg & RCC_SELR_SRC_MASK) {
  824. case RCC_MSSCKSELR_HSI:
  825. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  826. break;
  827. case RCC_MSSCKSELR_HSE:
  828. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  829. break;
  830. case RCC_MSSCKSELR_CSI:
  831. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  832. break;
  833. case RCC_MSSCKSELR_PLL:
  834. clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
  835. break;
  836. }
  837. /* MCU clock divider */
  838. reg = readl(priv->base + RCC_MCUDIVR);
  839. clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
  840. switch (p) {
  841. case _PCLK1:
  842. reg = readl(priv->base + RCC_APB1DIVR);
  843. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  844. break;
  845. case _PCLK2:
  846. reg = readl(priv->base + RCC_APB2DIVR);
  847. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  848. break;
  849. case _PCLK3:
  850. reg = readl(priv->base + RCC_APB3DIVR);
  851. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  852. break;
  853. case _CK_MCU:
  854. default:
  855. break;
  856. }
  857. break;
  858. case _CK_PER:
  859. reg = readl(priv->base + RCC_CPERCKSELR);
  860. switch (reg & RCC_SELR_SRC_MASK) {
  861. case RCC_CPERCKSELR_HSI:
  862. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  863. break;
  864. case RCC_CPERCKSELR_HSE:
  865. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  866. break;
  867. case RCC_CPERCKSELR_CSI:
  868. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  869. break;
  870. }
  871. break;
  872. case _HSI:
  873. case _HSI_KER:
  874. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  875. break;
  876. case _CSI:
  877. case _CSI_KER:
  878. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  879. break;
  880. case _HSE:
  881. case _HSE_KER:
  882. case _HSE_KER_DIV2:
  883. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  884. if (p == _HSE_KER_DIV2)
  885. clock >>= 1;
  886. break;
  887. case _LSI:
  888. clock = stm32mp1_clk_get_fixed(priv, _LSI);
  889. break;
  890. case _LSE:
  891. clock = stm32mp1_clk_get_fixed(priv, _LSE);
  892. break;
  893. /* PLL */
  894. case _PLL1_P:
  895. case _PLL1_Q:
  896. case _PLL1_R:
  897. clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
  898. break;
  899. case _PLL2_P:
  900. case _PLL2_Q:
  901. case _PLL2_R:
  902. clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
  903. break;
  904. case _PLL3_P:
  905. case _PLL3_Q:
  906. case _PLL3_R:
  907. clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
  908. break;
  909. case _PLL4_P:
  910. case _PLL4_Q:
  911. case _PLL4_R:
  912. clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
  913. break;
  914. /* other */
  915. case _USB_PHY_48:
  916. clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
  917. break;
  918. default:
  919. break;
  920. }
  921. debug("%s(%d) clock = %lx : %ld kHz\n",
  922. __func__, p, clock, clock / 1000);
  923. return clock;
  924. }
  925. static int stm32mp1_clk_enable(struct clk *clk)
  926. {
  927. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  928. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  929. int i = stm32mp1_clk_get_id(priv, clk->id);
  930. if (i < 0)
  931. return i;
  932. if (gate[i].set_clr)
  933. writel(BIT(gate[i].bit), priv->base + gate[i].offset);
  934. else
  935. setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  936. debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
  937. return 0;
  938. }
  939. static int stm32mp1_clk_disable(struct clk *clk)
  940. {
  941. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  942. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  943. int i = stm32mp1_clk_get_id(priv, clk->id);
  944. if (i < 0)
  945. return i;
  946. if (gate[i].set_clr)
  947. writel(BIT(gate[i].bit),
  948. priv->base + gate[i].offset
  949. + RCC_MP_ENCLRR_OFFSET);
  950. else
  951. clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  952. debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
  953. return 0;
  954. }
  955. static ulong stm32mp1_clk_get_rate(struct clk *clk)
  956. {
  957. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  958. int p = stm32mp1_clk_get_parent(priv, clk->id);
  959. ulong rate;
  960. if (p < 0)
  961. return 0;
  962. rate = stm32mp1_clk_get(priv, p);
  963. #ifdef DEBUG
  964. debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
  965. __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
  966. #endif
  967. return rate;
  968. }
  969. #ifdef STM32MP1_CLOCK_TREE_INIT
  970. static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
  971. u32 mask_on)
  972. {
  973. u32 address = rcc + offset;
  974. if (enable)
  975. setbits_le32(address, mask_on);
  976. else
  977. clrbits_le32(address, mask_on);
  978. }
  979. static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
  980. {
  981. if (enable)
  982. setbits_le32(rcc + RCC_OCENSETR, mask_on);
  983. else
  984. setbits_le32(rcc + RCC_OCENCLRR, mask_on);
  985. }
  986. static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
  987. u32 mask_rdy)
  988. {
  989. u32 mask_test = 0;
  990. u32 address = rcc + offset;
  991. u32 val;
  992. int ret;
  993. if (enable)
  994. mask_test = mask_rdy;
  995. ret = readl_poll_timeout(address, val,
  996. (val & mask_rdy) == mask_test,
  997. TIMEOUT_1S);
  998. if (ret)
  999. pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
  1000. mask_rdy, address, enable, readl(address));
  1001. return ret;
  1002. }
  1003. static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int lsedrv)
  1004. {
  1005. u32 value;
  1006. if (bypass)
  1007. setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
  1008. /*
  1009. * warning: not recommended to switch directly from "high drive"
  1010. * to "medium low drive", and vice-versa.
  1011. */
  1012. value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
  1013. >> RCC_BDCR_LSEDRV_SHIFT;
  1014. while (value != lsedrv) {
  1015. if (value > lsedrv)
  1016. value--;
  1017. else
  1018. value++;
  1019. clrsetbits_le32(rcc + RCC_BDCR,
  1020. RCC_BDCR_LSEDRV_MASK,
  1021. value << RCC_BDCR_LSEDRV_SHIFT);
  1022. }
  1023. stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
  1024. }
  1025. static void stm32mp1_lse_wait(fdt_addr_t rcc)
  1026. {
  1027. stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
  1028. }
  1029. static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
  1030. {
  1031. stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
  1032. stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
  1033. }
  1034. static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int css)
  1035. {
  1036. if (bypass)
  1037. setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
  1038. stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
  1039. stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
  1040. if (css)
  1041. setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
  1042. }
  1043. static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
  1044. {
  1045. stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
  1046. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
  1047. }
  1048. static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
  1049. {
  1050. stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
  1051. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
  1052. }
  1053. static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
  1054. {
  1055. u32 address = rcc + RCC_OCRDYR;
  1056. u32 val;
  1057. int ret;
  1058. clrsetbits_le32(rcc + RCC_HSICFGR,
  1059. RCC_HSICFGR_HSIDIV_MASK,
  1060. RCC_HSICFGR_HSIDIV_MASK & hsidiv);
  1061. ret = readl_poll_timeout(address, val,
  1062. val & RCC_OCRDYR_HSIDIVRDY,
  1063. TIMEOUT_200MS);
  1064. if (ret)
  1065. pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
  1066. address, readl(address));
  1067. return ret;
  1068. }
  1069. static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
  1070. {
  1071. u8 hsidiv;
  1072. u32 hsidivfreq = MAX_HSI_HZ;
  1073. for (hsidiv = 0; hsidiv < 4; hsidiv++,
  1074. hsidivfreq = hsidivfreq / 2)
  1075. if (hsidivfreq == hsifreq)
  1076. break;
  1077. if (hsidiv == 4) {
  1078. pr_err("clk-hsi frequency invalid");
  1079. return -1;
  1080. }
  1081. if (hsidiv > 0)
  1082. return stm32mp1_set_hsidiv(rcc, hsidiv);
  1083. return 0;
  1084. }
  1085. static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
  1086. {
  1087. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1088. writel(RCC_PLLNCR_PLLON, priv->base + pll[pll_id].pllxcr);
  1089. }
  1090. static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
  1091. {
  1092. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1093. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1094. u32 val;
  1095. int ret;
  1096. ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
  1097. TIMEOUT_200MS);
  1098. if (ret) {
  1099. pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
  1100. pll_id, pllxcr, readl(pllxcr));
  1101. return ret;
  1102. }
  1103. /* start the requested output */
  1104. setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
  1105. return 0;
  1106. }
  1107. static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
  1108. {
  1109. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1110. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1111. u32 val;
  1112. /* stop all output */
  1113. clrbits_le32(pllxcr,
  1114. RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
  1115. /* stop PLL */
  1116. clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
  1117. /* wait PLL stopped */
  1118. return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
  1119. TIMEOUT_200MS);
  1120. }
  1121. static void pll_config_output(struct stm32mp1_clk_priv *priv,
  1122. int pll_id, u32 *pllcfg)
  1123. {
  1124. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1125. fdt_addr_t rcc = priv->base;
  1126. u32 value;
  1127. value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
  1128. & RCC_PLLNCFGR2_DIVP_MASK;
  1129. value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
  1130. & RCC_PLLNCFGR2_DIVQ_MASK;
  1131. value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
  1132. & RCC_PLLNCFGR2_DIVR_MASK;
  1133. writel(value, rcc + pll[pll_id].pllxcfgr2);
  1134. }
  1135. static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
  1136. u32 *pllcfg, u32 fracv)
  1137. {
  1138. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1139. fdt_addr_t rcc = priv->base;
  1140. enum stm32mp1_plltype type = pll[pll_id].plltype;
  1141. int src;
  1142. ulong refclk;
  1143. u8 ifrge = 0;
  1144. u32 value;
  1145. src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
  1146. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
  1147. (pllcfg[PLLCFG_M] + 1);
  1148. if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
  1149. refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
  1150. debug("invalid refclk = %x\n", (u32)refclk);
  1151. return -EINVAL;
  1152. }
  1153. if (type == PLL_800 && refclk >= 8000000)
  1154. ifrge = 1;
  1155. value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
  1156. & RCC_PLLNCFGR1_DIVN_MASK;
  1157. value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
  1158. & RCC_PLLNCFGR1_DIVM_MASK;
  1159. value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
  1160. & RCC_PLLNCFGR1_IFRGE_MASK;
  1161. writel(value, rcc + pll[pll_id].pllxcfgr1);
  1162. /* fractional configuration: load sigma-delta modulator (SDM) */
  1163. /* Write into FRACV the new fractional value , and FRACLE to 0 */
  1164. writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
  1165. rcc + pll[pll_id].pllxfracr);
  1166. /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
  1167. setbits_le32(rcc + pll[pll_id].pllxfracr,
  1168. RCC_PLLNFRACR_FRACLE);
  1169. pll_config_output(priv, pll_id, pllcfg);
  1170. return 0;
  1171. }
  1172. static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
  1173. {
  1174. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1175. u32 pllxcsg;
  1176. pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
  1177. RCC_PLLNCSGR_MOD_PER_MASK) |
  1178. ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
  1179. RCC_PLLNCSGR_INC_STEP_MASK) |
  1180. ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
  1181. RCC_PLLNCSGR_SSCG_MODE_MASK);
  1182. writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
  1183. }
  1184. static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
  1185. {
  1186. u32 address = priv->base + (clksrc >> 4);
  1187. u32 val;
  1188. int ret;
  1189. clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
  1190. ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
  1191. TIMEOUT_200MS);
  1192. if (ret)
  1193. pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
  1194. clksrc, address, readl(address));
  1195. return ret;
  1196. }
  1197. static int set_clkdiv(unsigned int clkdiv, u32 address)
  1198. {
  1199. u32 val;
  1200. int ret;
  1201. clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
  1202. ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
  1203. TIMEOUT_200MS);
  1204. if (ret)
  1205. pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
  1206. clkdiv, address, readl(address));
  1207. return ret;
  1208. }
  1209. static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
  1210. u32 clksrc, u32 clkdiv)
  1211. {
  1212. u32 address = priv->base + (clksrc >> 4);
  1213. /*
  1214. * binding clksrc : bit15-4 offset
  1215. * bit3: disable
  1216. * bit2-0: MCOSEL[2:0]
  1217. */
  1218. if (clksrc & 0x8) {
  1219. clrbits_le32(address, RCC_MCOCFG_MCOON);
  1220. } else {
  1221. clrsetbits_le32(address,
  1222. RCC_MCOCFG_MCOSRC_MASK,
  1223. clksrc & RCC_MCOCFG_MCOSRC_MASK);
  1224. clrsetbits_le32(address,
  1225. RCC_MCOCFG_MCODIV_MASK,
  1226. clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
  1227. setbits_le32(address, RCC_MCOCFG_MCOON);
  1228. }
  1229. }
  1230. static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
  1231. unsigned int clksrc,
  1232. int lse_css)
  1233. {
  1234. u32 address = priv->base + RCC_BDCR;
  1235. if (readl(address) & RCC_BDCR_RTCCKEN)
  1236. goto skip_rtc;
  1237. if (clksrc == CLK_RTC_DISABLED)
  1238. goto skip_rtc;
  1239. clrsetbits_le32(address,
  1240. RCC_BDCR_RTCSRC_MASK,
  1241. clksrc << RCC_BDCR_RTCSRC_SHIFT);
  1242. setbits_le32(address, RCC_BDCR_RTCCKEN);
  1243. skip_rtc:
  1244. if (lse_css)
  1245. setbits_le32(address, RCC_BDCR_LSECSSON);
  1246. }
  1247. static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
  1248. {
  1249. u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
  1250. u32 value = pkcs & 0xF;
  1251. u32 mask = 0xF;
  1252. if (pkcs & BIT(31)) {
  1253. mask <<= 4;
  1254. value <<= 4;
  1255. }
  1256. clrsetbits_le32(address, mask, value);
  1257. }
  1258. static int stm32mp1_clktree(struct udevice *dev)
  1259. {
  1260. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1261. fdt_addr_t rcc = priv->base;
  1262. unsigned int clksrc[CLKSRC_NB];
  1263. unsigned int clkdiv[CLKDIV_NB];
  1264. unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
  1265. ofnode plloff[_PLL_NB];
  1266. int ret;
  1267. int i, len;
  1268. int lse_css = 0;
  1269. const u32 *pkcs_cell;
  1270. /* check mandatory field */
  1271. ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
  1272. if (ret < 0) {
  1273. debug("field st,clksrc invalid: error %d\n", ret);
  1274. return -FDT_ERR_NOTFOUND;
  1275. }
  1276. ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
  1277. if (ret < 0) {
  1278. debug("field st,clkdiv invalid: error %d\n", ret);
  1279. return -FDT_ERR_NOTFOUND;
  1280. }
  1281. /* check mandatory field in each pll */
  1282. for (i = 0; i < _PLL_NB; i++) {
  1283. char name[12];
  1284. sprintf(name, "st,pll@%d", i);
  1285. plloff[i] = dev_read_subnode(dev, name);
  1286. if (!ofnode_valid(plloff[i]))
  1287. continue;
  1288. ret = ofnode_read_u32_array(plloff[i], "cfg",
  1289. pllcfg[i], PLLCFG_NB);
  1290. if (ret < 0) {
  1291. debug("field cfg invalid: error %d\n", ret);
  1292. return -FDT_ERR_NOTFOUND;
  1293. }
  1294. }
  1295. debug("configuration MCO\n");
  1296. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
  1297. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
  1298. debug("switch ON osillator\n");
  1299. /*
  1300. * switch ON oscillator found in device-tree,
  1301. * HSI already ON after bootrom
  1302. */
  1303. if (priv->osc[_LSI])
  1304. stm32mp1_lsi_set(rcc, 1);
  1305. if (priv->osc[_LSE]) {
  1306. int bypass;
  1307. int lsedrv;
  1308. struct udevice *dev = priv->osc_dev[_LSE];
  1309. bypass = dev_read_bool(dev, "st,bypass");
  1310. lse_css = dev_read_bool(dev, "st,css");
  1311. lsedrv = dev_read_u32_default(dev, "st,drive",
  1312. LSEDRV_MEDIUM_HIGH);
  1313. stm32mp1_lse_enable(rcc, bypass, lsedrv);
  1314. }
  1315. if (priv->osc[_HSE]) {
  1316. int bypass, css;
  1317. struct udevice *dev = priv->osc_dev[_HSE];
  1318. bypass = dev_read_bool(dev, "st,bypass");
  1319. css = dev_read_bool(dev, "st,css");
  1320. stm32mp1_hse_enable(rcc, bypass, css);
  1321. }
  1322. /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
  1323. * => switch on CSI even if node is not present in device tree
  1324. */
  1325. stm32mp1_csi_set(rcc, 1);
  1326. /* come back to HSI */
  1327. debug("come back to HSI\n");
  1328. set_clksrc(priv, CLK_MPU_HSI);
  1329. set_clksrc(priv, CLK_AXI_HSI);
  1330. set_clksrc(priv, CLK_MCU_HSI);
  1331. debug("pll stop\n");
  1332. for (i = 0; i < _PLL_NB; i++)
  1333. pll_stop(priv, i);
  1334. /* configure HSIDIV */
  1335. debug("configure HSIDIV\n");
  1336. if (priv->osc[_HSI])
  1337. stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
  1338. /* select DIV */
  1339. debug("select DIV\n");
  1340. /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
  1341. writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
  1342. set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
  1343. set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
  1344. set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
  1345. set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
  1346. set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
  1347. set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
  1348. set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
  1349. /* no ready bit for RTC */
  1350. writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
  1351. /* configure PLLs source */
  1352. debug("configure PLLs source\n");
  1353. set_clksrc(priv, clksrc[CLKSRC_PLL12]);
  1354. set_clksrc(priv, clksrc[CLKSRC_PLL3]);
  1355. set_clksrc(priv, clksrc[CLKSRC_PLL4]);
  1356. /* configure and start PLLs */
  1357. debug("configure PLLs\n");
  1358. for (i = 0; i < _PLL_NB; i++) {
  1359. u32 fracv;
  1360. u32 csg[PLLCSG_NB];
  1361. debug("configure PLL %d @ %d\n", i,
  1362. ofnode_to_offset(plloff[i]));
  1363. if (!ofnode_valid(plloff[i]))
  1364. continue;
  1365. fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
  1366. pll_config(priv, i, pllcfg[i], fracv);
  1367. ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
  1368. if (!ret) {
  1369. pll_csg(priv, i, csg);
  1370. } else if (ret != -FDT_ERR_NOTFOUND) {
  1371. debug("invalid csg node for pll@%d res=%d\n", i, ret);
  1372. return ret;
  1373. }
  1374. pll_start(priv, i);
  1375. }
  1376. /* wait and start PLLs ouptut when ready */
  1377. for (i = 0; i < _PLL_NB; i++) {
  1378. if (!ofnode_valid(plloff[i]))
  1379. continue;
  1380. debug("output PLL %d\n", i);
  1381. pll_output(priv, i, pllcfg[i][PLLCFG_O]);
  1382. }
  1383. /* wait LSE ready before to use it */
  1384. if (priv->osc[_LSE])
  1385. stm32mp1_lse_wait(rcc);
  1386. /* configure with expected clock source */
  1387. debug("CLKSRC\n");
  1388. set_clksrc(priv, clksrc[CLKSRC_MPU]);
  1389. set_clksrc(priv, clksrc[CLKSRC_AXI]);
  1390. set_clksrc(priv, clksrc[CLKSRC_MCU]);
  1391. set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
  1392. /* configure PKCK */
  1393. debug("PKCK\n");
  1394. pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
  1395. if (pkcs_cell) {
  1396. bool ckper_disabled = false;
  1397. for (i = 0; i < len / sizeof(u32); i++) {
  1398. u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
  1399. if (pkcs == CLK_CKPER_DISABLED) {
  1400. ckper_disabled = true;
  1401. continue;
  1402. }
  1403. pkcs_config(priv, pkcs);
  1404. }
  1405. /* CKPER is source for some peripheral clock
  1406. * (FMC-NAND / QPSI-NOR) and switching source is allowed
  1407. * only if previous clock is still ON
  1408. * => deactivated CKPER only after switching clock
  1409. */
  1410. if (ckper_disabled)
  1411. pkcs_config(priv, CLK_CKPER_DISABLED);
  1412. }
  1413. debug("oscillator off\n");
  1414. /* switch OFF HSI if not found in device-tree */
  1415. if (!priv->osc[_HSI])
  1416. stm32mp1_hsi_set(rcc, 0);
  1417. /* Software Self-Refresh mode (SSR) during DDR initilialization */
  1418. clrsetbits_le32(priv->base + RCC_DDRITFCR,
  1419. RCC_DDRITFCR_DDRCKMOD_MASK,
  1420. RCC_DDRITFCR_DDRCKMOD_SSR <<
  1421. RCC_DDRITFCR_DDRCKMOD_SHIFT);
  1422. return 0;
  1423. }
  1424. #endif /* STM32MP1_CLOCK_TREE_INIT */
  1425. static void stm32mp1_osc_clk_init(const char *name,
  1426. struct stm32mp1_clk_priv *priv,
  1427. int index)
  1428. {
  1429. struct clk clk;
  1430. struct udevice *dev = NULL;
  1431. priv->osc[index] = 0;
  1432. clk.id = 0;
  1433. if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
  1434. if (clk_request(dev, &clk))
  1435. pr_err("%s request", name);
  1436. else
  1437. priv->osc[index] = clk_get_rate(&clk);
  1438. }
  1439. priv->osc_dev[index] = dev;
  1440. }
  1441. static void stm32mp1_osc_init(struct udevice *dev)
  1442. {
  1443. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1444. int i;
  1445. const char *name[NB_OSC] = {
  1446. [_LSI] = "clk-lsi",
  1447. [_LSE] = "clk-lse",
  1448. [_HSI] = "clk-hsi",
  1449. [_HSE] = "clk-hse",
  1450. [_CSI] = "clk-csi",
  1451. [_I2S_CKIN] = "i2s_ckin",
  1452. [_USB_PHY_48] = "ck_usbo_48m"};
  1453. for (i = 0; i < NB_OSC; i++) {
  1454. stm32mp1_osc_clk_init(name[i], priv, i);
  1455. debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
  1456. }
  1457. }
  1458. static int stm32mp1_clk_probe(struct udevice *dev)
  1459. {
  1460. int result = 0;
  1461. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1462. priv->base = dev_read_addr(dev->parent);
  1463. if (priv->base == FDT_ADDR_T_NONE)
  1464. return -EINVAL;
  1465. priv->data = (void *)&stm32mp1_data;
  1466. if (!priv->data->gate || !priv->data->sel ||
  1467. !priv->data->pll)
  1468. return -EINVAL;
  1469. stm32mp1_osc_init(dev);
  1470. #ifdef STM32MP1_CLOCK_TREE_INIT
  1471. /* clock tree init is done only one time, before relocation */
  1472. if (!(gd->flags & GD_FLG_RELOC))
  1473. result = stm32mp1_clktree(dev);
  1474. #endif
  1475. return result;
  1476. }
  1477. static const struct clk_ops stm32mp1_clk_ops = {
  1478. .enable = stm32mp1_clk_enable,
  1479. .disable = stm32mp1_clk_disable,
  1480. .get_rate = stm32mp1_clk_get_rate,
  1481. };
  1482. static const struct udevice_id stm32mp1_clk_ids[] = {
  1483. { .compatible = "st,stm32mp1-rcc-clk" },
  1484. { }
  1485. };
  1486. U_BOOT_DRIVER(stm32mp1_clock) = {
  1487. .name = "stm32mp1_clk",
  1488. .id = UCLASS_CLK,
  1489. .of_match = stm32mp1_clk_ids,
  1490. .ops = &stm32mp1_clk_ops,
  1491. .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
  1492. .probe = stm32mp1_clk_probe,
  1493. };