clk_stm32f.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716
  1. /*
  2. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  3. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <stm32_rcc.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include <asm/arch/stm32_pwr.h>
  14. #include <dt-bindings/mfd/stm32f7-rcc.h>
  15. #define RCC_CR_HSION BIT(0)
  16. #define RCC_CR_HSEON BIT(16)
  17. #define RCC_CR_HSERDY BIT(17)
  18. #define RCC_CR_HSEBYP BIT(18)
  19. #define RCC_CR_CSSON BIT(19)
  20. #define RCC_CR_PLLON BIT(24)
  21. #define RCC_CR_PLLRDY BIT(25)
  22. #define RCC_CR_PLLSAION BIT(28)
  23. #define RCC_CR_PLLSAIRDY BIT(29)
  24. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  25. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  26. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  27. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  28. #define RCC_PLLCFGR_PLLSRC BIT(22)
  29. #define RCC_PLLCFGR_PLLM_SHIFT 0
  30. #define RCC_PLLCFGR_PLLN_SHIFT 6
  31. #define RCC_PLLCFGR_PLLP_SHIFT 16
  32. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  33. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  34. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  35. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  36. #define RCC_CFGR_SW0 BIT(0)
  37. #define RCC_CFGR_SW1 BIT(1)
  38. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  39. #define RCC_CFGR_SW_HSI 0
  40. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  41. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  42. #define RCC_CFGR_SWS0 BIT(2)
  43. #define RCC_CFGR_SWS1 BIT(3)
  44. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  45. #define RCC_CFGR_SWS_HSI 0
  46. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  47. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  48. #define RCC_CFGR_HPRE_SHIFT 4
  49. #define RCC_CFGR_PPRE1_SHIFT 10
  50. #define RCC_CFGR_PPRE2_SHIFT 13
  51. #define RCC_PLLSAICFGR_PLLSAIN_MASK GENMASK(14, 6)
  52. #define RCC_PLLSAICFGR_PLLSAIP_MASK GENMASK(17, 16)
  53. #define RCC_PLLSAICFGR_PLLSAIQ_MASK GENMASK(27, 24)
  54. #define RCC_PLLSAICFGR_PLLSAIR_MASK GENMASK(30, 28)
  55. #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
  56. #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
  57. #define RCC_PLLSAICFGR_PLLSAIQ_SHIFT 24
  58. #define RCC_PLLSAICFGR_PLLSAIR_SHIFT 28
  59. #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
  60. #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
  61. #define RCC_PLLSAICFGR_PLLSAIR_3 BIT(29) | BIT(28)
  62. #define RCC_DCKCFGRX_TIMPRE BIT(24)
  63. #define RCC_DCKCFGRX_CK48MSEL BIT(27)
  64. #define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
  65. #define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
  66. #define RCC_DCKCFGR_PLLSAIDIVR_SHIFT 16
  67. #define RCC_DCKCFGR_PLLSAIDIVR_MASK GENMASK(17, 16)
  68. #define RCC_DCKCFGR_PLLSAIDIVR_2 0
  69. /*
  70. * RCC AHB1ENR specific definitions
  71. */
  72. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  73. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  74. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  75. /*
  76. * RCC APB1ENR specific definitions
  77. */
  78. #define RCC_APB1ENR_TIM2EN BIT(0)
  79. #define RCC_APB1ENR_PWREN BIT(28)
  80. /*
  81. * RCC APB2ENR specific definitions
  82. */
  83. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  84. #define RCC_APB2ENR_SAI1EN BIT(22)
  85. enum pllsai_div {
  86. PLLSAIP,
  87. PLLSAIQ,
  88. PLLSAIR,
  89. };
  90. static const struct stm32_clk_info stm32f4_clk_info = {
  91. /* 180 MHz */
  92. .sys_pll_psc = {
  93. .pll_n = 360,
  94. .pll_p = 2,
  95. .pll_q = 8,
  96. .ahb_psc = AHB_PSC_1,
  97. .apb1_psc = APB_PSC_4,
  98. .apb2_psc = APB_PSC_2,
  99. },
  100. .has_overdrive = false,
  101. .v2 = false,
  102. };
  103. static const struct stm32_clk_info stm32f7_clk_info = {
  104. /* 200 MHz */
  105. .sys_pll_psc = {
  106. .pll_n = 400,
  107. .pll_p = 2,
  108. .pll_q = 8,
  109. .ahb_psc = AHB_PSC_1,
  110. .apb1_psc = APB_PSC_4,
  111. .apb2_psc = APB_PSC_2,
  112. },
  113. .has_overdrive = true,
  114. .v2 = true,
  115. };
  116. struct stm32_clk {
  117. struct stm32_rcc_regs *base;
  118. struct stm32_pwr_regs *pwr_regs;
  119. struct stm32_clk_info info;
  120. unsigned long hse_rate;
  121. };
  122. #ifdef CONFIG_VIDEO_STM32
  123. static const u8 plldivr_table[] = { 0, 0, 2, 3, 4, 5, 6, 7 };
  124. #endif
  125. static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 };
  126. static int configure_clocks(struct udevice *dev)
  127. {
  128. struct stm32_clk *priv = dev_get_priv(dev);
  129. struct stm32_rcc_regs *regs = priv->base;
  130. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  131. struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
  132. /* Reset RCC configuration */
  133. setbits_le32(&regs->cr, RCC_CR_HSION);
  134. writel(0, &regs->cfgr); /* Reset CFGR */
  135. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  136. | RCC_CR_PLLON | RCC_CR_PLLSAION));
  137. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  138. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  139. writel(0, &regs->cir); /* Disable all interrupts */
  140. /* Configure for HSE+PLL operation */
  141. setbits_le32(&regs->cr, RCC_CR_HSEON);
  142. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  143. ;
  144. setbits_le32(&regs->cfgr, ((
  145. sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
  146. | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  147. | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  148. /* Configure the main PLL */
  149. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  150. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  151. sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  152. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  153. sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  154. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  155. ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  156. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  157. sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  158. /* configure SDMMC clock */
  159. if (priv->info.v2) { /*stm32f7 case */
  160. /* select PLLQ as 48MHz clock source */
  161. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  162. /* select 48MHz as SDMMC1 clock source */
  163. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
  164. /* select 48MHz as SDMMC2 clock source */
  165. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
  166. } else { /* stm32f4 case */
  167. /* select PLLQ as 48MHz clock source */
  168. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  169. /* select 48MHz as SDMMC1 clock source */
  170. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
  171. }
  172. #ifdef CONFIG_VIDEO_STM32
  173. /*
  174. * Configure the SAI PLL to generate LTDC pixel clock
  175. */
  176. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
  177. RCC_PLLSAICFGR_PLLSAIR_3);
  178. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK,
  179. 195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  180. clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
  181. RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
  182. #endif
  183. /* Enable the main PLL */
  184. setbits_le32(&regs->cr, RCC_CR_PLLON);
  185. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  186. ;
  187. #ifdef CONFIG_VIDEO_STM32
  188. /* Enable the SAI PLL */
  189. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  190. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  191. ;
  192. #endif
  193. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  194. if (priv->info.has_overdrive) {
  195. /*
  196. * Enable high performance mode
  197. * System frequency up to 200 MHz
  198. */
  199. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  200. /* Infinite wait! */
  201. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  202. ;
  203. /* Enable the Over-drive switch */
  204. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  205. /* Infinite wait! */
  206. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  207. ;
  208. }
  209. stm32_flash_latency_cfg(5);
  210. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  211. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  212. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  213. RCC_CFGR_SWS_PLL)
  214. ;
  215. #ifdef CONFIG_ETH_DESIGNWARE
  216. /* gate the SYSCFG clock, needed to set RMII ethernet interface */
  217. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
  218. #endif
  219. return 0;
  220. }
  221. static bool stm32_clk_get_ck48msel(struct stm32_clk *priv)
  222. {
  223. struct stm32_rcc_regs *regs = priv->base;
  224. if (priv->info.v2) /*stm32f7 case */
  225. return readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
  226. else
  227. return readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
  228. }
  229. static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv)
  230. {
  231. struct stm32_rcc_regs *regs = priv->base;
  232. u16 pllm, pllsain;
  233. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  234. pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK)
  235. >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  236. return ((priv->hse_rate / pllm) * pllsain);
  237. }
  238. static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv,
  239. enum pllsai_div output)
  240. {
  241. struct stm32_rcc_regs *regs = priv->base;
  242. u16 pll_div_output;
  243. switch (output) {
  244. case PLLSAIP:
  245. pll_div_output = ((((readl(&regs->pllsaicfgr)
  246. & RCC_PLLSAICFGR_PLLSAIP_MASK)
  247. >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
  248. break;
  249. case PLLSAIQ:
  250. pll_div_output = (readl(&regs->pllsaicfgr)
  251. & RCC_PLLSAICFGR_PLLSAIQ_MASK)
  252. >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT;
  253. break;
  254. case PLLSAIR:
  255. pll_div_output = (readl(&regs->pllsaicfgr)
  256. & RCC_PLLSAICFGR_PLLSAIR_MASK)
  257. >> RCC_PLLSAICFGR_PLLSAIR_SHIFT;
  258. break;
  259. default:
  260. pr_err("incorrect PLLSAI output %d\n", output);
  261. return -EINVAL;
  262. }
  263. return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output);
  264. }
  265. static bool stm32_get_timpre(struct stm32_clk *priv)
  266. {
  267. struct stm32_rcc_regs *regs = priv->base;
  268. u32 val;
  269. if (priv->info.v2) /*stm32f7 case */
  270. val = readl(&regs->dckcfgr2);
  271. else
  272. val = readl(&regs->dckcfgr);
  273. /* get timer prescaler */
  274. return !!(val & RCC_DCKCFGRX_TIMPRE);
  275. }
  276. static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
  277. {
  278. u8 shift;
  279. /* Prescaler table lookups for clock computation */
  280. u8 ahb_psc_table[16] = {
  281. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  282. };
  283. shift = ahb_psc_table[(
  284. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  285. >> RCC_CFGR_HPRE_SHIFT)];
  286. return sysclk >> shift;
  287. };
  288. static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
  289. {
  290. /* Prescaler table lookups for clock computation */
  291. u8 apb_psc_table[8] = {
  292. 0, 0, 0, 0, 1, 2, 3, 4
  293. };
  294. if (apb == APB1)
  295. return apb_psc_table[(
  296. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  297. >> RCC_CFGR_PPRE1_SHIFT)];
  298. else /* APB2 */
  299. return apb_psc_table[(
  300. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  301. >> RCC_CFGR_PPRE2_SHIFT)];
  302. };
  303. static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
  304. enum apb apb)
  305. {
  306. struct stm32_rcc_regs *regs = priv->base;
  307. u8 shift = stm32_get_apb_shift(regs, apb);
  308. if (stm32_get_timpre(priv))
  309. /*
  310. * if APB prescaler is configured to a
  311. * division factor of 1, 2 or 4
  312. */
  313. switch (shift) {
  314. case 0:
  315. case 1:
  316. case 2:
  317. return stm32_get_hclk_rate(regs, sysclk);
  318. default:
  319. return (sysclk >> shift) * 4;
  320. }
  321. else
  322. /*
  323. * if APB prescaler is configured to a
  324. * division factor of 1
  325. */
  326. if (shift == 0)
  327. return sysclk;
  328. else
  329. return (sysclk >> shift) * 2;
  330. };
  331. static ulong stm32_clk_get_rate(struct clk *clk)
  332. {
  333. struct stm32_clk *priv = dev_get_priv(clk->dev);
  334. struct stm32_rcc_regs *regs = priv->base;
  335. u32 sysclk = 0;
  336. u32 vco;
  337. u32 sdmmcxsel_bit;
  338. u32 saidivr;
  339. u32 pllsai_rate;
  340. u16 pllm, plln, pllp, pllq;
  341. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  342. RCC_CFGR_SWS_PLL) {
  343. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  344. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  345. >> RCC_PLLCFGR_PLLN_SHIFT);
  346. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  347. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  348. pllq = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
  349. >> RCC_PLLCFGR_PLLQ_SHIFT);
  350. vco = (priv->hse_rate / pllm) * plln;
  351. sysclk = vco / pllp;
  352. } else {
  353. return -EINVAL;
  354. }
  355. switch (clk->id) {
  356. /*
  357. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  358. * AHB1, AHB2 and AHB3
  359. */
  360. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  361. return stm32_get_hclk_rate(regs, sysclk);
  362. /* APB1 CLOCK */
  363. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  364. /* For timer clock, an additionnal prescaler is used*/
  365. switch (clk->id) {
  366. case STM32F7_APB1_CLOCK(TIM2):
  367. case STM32F7_APB1_CLOCK(TIM3):
  368. case STM32F7_APB1_CLOCK(TIM4):
  369. case STM32F7_APB1_CLOCK(TIM5):
  370. case STM32F7_APB1_CLOCK(TIM6):
  371. case STM32F7_APB1_CLOCK(TIM7):
  372. case STM32F7_APB1_CLOCK(TIM12):
  373. case STM32F7_APB1_CLOCK(TIM13):
  374. case STM32F7_APB1_CLOCK(TIM14):
  375. return stm32_get_timer_rate(priv, sysclk, APB1);
  376. }
  377. return (sysclk >> stm32_get_apb_shift(regs, APB1));
  378. /* APB2 CLOCK */
  379. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(DSI):
  380. switch (clk->id) {
  381. /*
  382. * particular case for SDMMC1 and SDMMC2 :
  383. * 48Mhz source clock can be from main PLL or from
  384. * PLLSAIP
  385. */
  386. case STM32F7_APB2_CLOCK(SDMMC1):
  387. case STM32F7_APB2_CLOCK(SDMMC2):
  388. if (clk->id == STM32F7_APB2_CLOCK(SDMMC1))
  389. sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL;
  390. else
  391. sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL;
  392. if (readl(&regs->dckcfgr2) & sdmmcxsel_bit)
  393. /* System clock is selected as SDMMC1 clock */
  394. return sysclk;
  395. /*
  396. * 48 MHz can be generated by either PLLSAIP
  397. * or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR
  398. */
  399. if (stm32_clk_get_ck48msel(priv))
  400. return stm32_clk_get_pllsai_rate(priv, PLLSAIP);
  401. else
  402. return (vco / pllq);
  403. break;
  404. /* For timer clock, an additionnal prescaler is used*/
  405. case STM32F7_APB2_CLOCK(TIM1):
  406. case STM32F7_APB2_CLOCK(TIM8):
  407. case STM32F7_APB2_CLOCK(TIM9):
  408. case STM32F7_APB2_CLOCK(TIM10):
  409. case STM32F7_APB2_CLOCK(TIM11):
  410. return stm32_get_timer_rate(priv, sysclk, APB2);
  411. break;
  412. /* particular case for LTDC clock */
  413. case STM32F7_APB2_CLOCK(LTDC):
  414. saidivr = readl(&regs->dckcfgr);
  415. saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK)
  416. >> RCC_DCKCFGR_PLLSAIDIVR_SHIFT;
  417. pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
  418. return pllsai_rate / pllsaidivr_table[saidivr];
  419. }
  420. return (sysclk >> stm32_get_apb_shift(regs, APB2));
  421. default:
  422. pr_err("clock index %ld out of range\n", clk->id);
  423. return -EINVAL;
  424. }
  425. }
  426. static ulong stm32_set_rate(struct clk *clk, ulong rate)
  427. {
  428. #ifdef CONFIG_VIDEO_STM32
  429. struct stm32_clk *priv = dev_get_priv(clk->dev);
  430. struct stm32_rcc_regs *regs = priv->base;
  431. u32 pllsair_rate, pllsai_vco_rate, current_rate;
  432. u32 best_div, best_diff, diff;
  433. u16 div;
  434. u8 best_plldivr, best_pllsaidivr;
  435. u8 i, j;
  436. bool found = false;
  437. /* Only set_rate for LTDC clock is implemented */
  438. if (clk->id != STM32F7_APB2_CLOCK(LTDC)) {
  439. pr_err("set_rate not implemented for clock index %ld\n",
  440. clk->id);
  441. return 0;
  442. }
  443. if (rate == stm32_clk_get_rate(clk))
  444. /* already set to requested rate */
  445. return rate;
  446. /* get the current PLLSAIR output freq */
  447. pllsair_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
  448. best_div = pllsair_rate / rate;
  449. /* look into pllsaidivr_table if this divider is available*/
  450. for (i = 0 ; i < sizeof(pllsaidivr_table); i++)
  451. if (best_div == pllsaidivr_table[i]) {
  452. /* set pll_saidivr with found value */
  453. clrsetbits_le32(&regs->dckcfgr,
  454. RCC_DCKCFGR_PLLSAIDIVR_MASK,
  455. pllsaidivr_table[i]);
  456. return rate;
  457. }
  458. /*
  459. * As no pllsaidivr value is suitable to obtain requested freq,
  460. * test all combination of pllsaidivr * pllsair and find the one
  461. * which give freq closest to requested rate.
  462. */
  463. pllsai_vco_rate = stm32_clk_get_pllsai_vco_rate(priv);
  464. best_diff = ULONG_MAX;
  465. best_pllsaidivr = 0;
  466. best_plldivr = 0;
  467. /*
  468. * start at index 2 of plldivr_table as divider value at index 0
  469. * and 1 are 0)
  470. */
  471. for (i = 2; i < sizeof(plldivr_table); i++) {
  472. for (j = 0; j < sizeof(pllsaidivr_table); j++) {
  473. div = plldivr_table[i] * pllsaidivr_table[j];
  474. current_rate = pllsai_vco_rate / div;
  475. /* perfect combination is found ? */
  476. if (current_rate == rate) {
  477. best_pllsaidivr = j;
  478. best_plldivr = i;
  479. found = true;
  480. break;
  481. }
  482. diff = (current_rate > rate) ?
  483. current_rate - rate : rate - current_rate;
  484. /* found a better combination ? */
  485. if (diff < best_diff) {
  486. best_diff = diff;
  487. best_pllsaidivr = j;
  488. best_plldivr = i;
  489. }
  490. }
  491. if (found)
  492. break;
  493. }
  494. /* Disable the SAI PLL */
  495. clrbits_le32(&regs->cr, RCC_CR_PLLSAION);
  496. /* set pll_saidivr with found value */
  497. clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
  498. best_pllsaidivr << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
  499. /* set pllsair with found value */
  500. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
  501. plldivr_table[best_plldivr]
  502. << RCC_PLLSAICFGR_PLLSAIR_SHIFT);
  503. /* Enable the SAI PLL */
  504. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  505. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  506. ;
  507. div = plldivr_table[best_plldivr] * pllsaidivr_table[best_pllsaidivr];
  508. return pllsai_vco_rate / div;
  509. #else
  510. return 0;
  511. #endif
  512. }
  513. static int stm32_clk_enable(struct clk *clk)
  514. {
  515. struct stm32_clk *priv = dev_get_priv(clk->dev);
  516. struct stm32_rcc_regs *regs = priv->base;
  517. u32 offset = clk->id / 32;
  518. u32 bit_index = clk->id % 32;
  519. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  520. __func__, clk->id, offset, bit_index);
  521. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  522. return 0;
  523. }
  524. static int stm32_clk_probe(struct udevice *dev)
  525. {
  526. struct ofnode_phandle_args args;
  527. struct udevice *fixed_clock_dev = NULL;
  528. struct clk clk;
  529. int err;
  530. debug("%s\n", __func__);
  531. struct stm32_clk *priv = dev_get_priv(dev);
  532. fdt_addr_t addr;
  533. addr = dev_read_addr(dev);
  534. if (addr == FDT_ADDR_T_NONE)
  535. return -EINVAL;
  536. priv->base = (struct stm32_rcc_regs *)addr;
  537. switch (dev_get_driver_data(dev)) {
  538. case STM32F4:
  539. memcpy(&priv->info, &stm32f4_clk_info,
  540. sizeof(struct stm32_clk_info));
  541. break;
  542. case STM32F7:
  543. memcpy(&priv->info, &stm32f7_clk_info,
  544. sizeof(struct stm32_clk_info));
  545. break;
  546. default:
  547. return -EINVAL;
  548. }
  549. /* retrieve HSE frequency (external oscillator) */
  550. err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
  551. &fixed_clock_dev);
  552. if (err) {
  553. pr_err("Can't find fixed clock (%d)", err);
  554. return err;
  555. }
  556. err = clk_request(fixed_clock_dev, &clk);
  557. if (err) {
  558. pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
  559. err);
  560. return err;
  561. }
  562. /*
  563. * set pllm factor accordingly to the external oscillator
  564. * frequency (HSE). For STM32F4 and STM32F7, we want VCO
  565. * freq at 1MHz
  566. * if input PLL frequency is 25Mhz, divide it by 25
  567. */
  568. clk.id = 0;
  569. priv->hse_rate = clk_get_rate(&clk);
  570. if (priv->hse_rate < 1000000) {
  571. pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
  572. priv->hse_rate);
  573. return -EINVAL;
  574. }
  575. priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
  576. if (priv->info.has_overdrive) {
  577. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  578. &args);
  579. if (err) {
  580. debug("%s: can't find syscon device (%d)\n", __func__,
  581. err);
  582. return err;
  583. }
  584. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  585. }
  586. configure_clocks(dev);
  587. return 0;
  588. }
  589. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  590. {
  591. debug("%s(clk=%p)\n", __func__, clk);
  592. if (args->args_count != 2) {
  593. debug("Invaild args_count: %d\n", args->args_count);
  594. return -EINVAL;
  595. }
  596. if (args->args_count)
  597. clk->id = args->args[1];
  598. else
  599. clk->id = 0;
  600. return 0;
  601. }
  602. static struct clk_ops stm32_clk_ops = {
  603. .of_xlate = stm32_clk_of_xlate,
  604. .enable = stm32_clk_enable,
  605. .get_rate = stm32_clk_get_rate,
  606. .set_rate = stm32_set_rate,
  607. };
  608. U_BOOT_DRIVER(stm32fx_clk) = {
  609. .name = "stm32fx_rcc_clock",
  610. .id = UCLASS_CLK,
  611. .ops = &stm32_clk_ops,
  612. .probe = stm32_clk_probe,
  613. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  614. .flags = DM_FLAG_PRE_RELOC,
  615. };