mmc.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421
  1. /*
  2. * Copyright 2008, Freescale Semiconductor, Inc
  3. * Andy Fleming
  4. *
  5. * Based vaguely on the Linux code
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <config.h>
  26. #include <common.h>
  27. #include <command.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <malloc.h>
  31. #include <linux/list.h>
  32. #include <div64.h>
  33. /* Set block count limit because of 16 bit register limit on some hardware*/
  34. #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
  35. #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
  36. #endif
  37. static struct list_head mmc_devices;
  38. static int cur_dev_num = -1;
  39. int __board_mmc_getcd(struct mmc *mmc) {
  40. return -1;
  41. }
  42. int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
  43. alias("__board_mmc_getcd")));
  44. #ifdef CONFIG_MMC_BOUNCE_BUFFER
  45. static int mmc_bounce_need_bounce(struct mmc_data *orig)
  46. {
  47. ulong addr, len;
  48. if (orig->flags & MMC_DATA_READ)
  49. addr = (ulong)orig->dest;
  50. else
  51. addr = (ulong)orig->src;
  52. if (addr % ARCH_DMA_MINALIGN) {
  53. debug("MMC: Unaligned data destination address %08lx!\n", addr);
  54. return 1;
  55. }
  56. len = (ulong)(orig->blocksize * orig->blocks);
  57. if (len % ARCH_DMA_MINALIGN) {
  58. debug("MMC: Unaligned data destination length %08lx!\n", len);
  59. return 1;
  60. }
  61. return 0;
  62. }
  63. static int mmc_bounce_buffer_start(struct mmc_data *backup,
  64. struct mmc_data *orig)
  65. {
  66. ulong origlen, len;
  67. void *buffer;
  68. if (!orig)
  69. return 0;
  70. if (!mmc_bounce_need_bounce(orig))
  71. return 0;
  72. memcpy(backup, orig, sizeof(struct mmc_data));
  73. origlen = orig->blocksize * orig->blocks;
  74. len = roundup(origlen, ARCH_DMA_MINALIGN);
  75. buffer = memalign(ARCH_DMA_MINALIGN, len);
  76. if (!buffer) {
  77. puts("MMC: Error allocating MMC bounce buffer!\n");
  78. return 1;
  79. }
  80. if (orig->flags & MMC_DATA_READ) {
  81. orig->dest = buffer;
  82. } else {
  83. memcpy(buffer, orig->src, origlen);
  84. orig->src = buffer;
  85. }
  86. return 0;
  87. }
  88. static void mmc_bounce_buffer_stop(struct mmc_data *backup,
  89. struct mmc_data *orig)
  90. {
  91. ulong len;
  92. if (!orig)
  93. return;
  94. if (!mmc_bounce_need_bounce(backup))
  95. return;
  96. if (backup->flags & MMC_DATA_READ) {
  97. len = backup->blocksize * backup->blocks;
  98. memcpy(backup->dest, orig->dest, len);
  99. free(orig->dest);
  100. orig->dest = backup->dest;
  101. } else {
  102. free((void *)orig->src);
  103. orig->src = backup->src;
  104. }
  105. return;
  106. }
  107. #else
  108. static inline int mmc_bounce_buffer_start(struct mmc_data *backup,
  109. struct mmc_data *orig) { return 0; }
  110. static inline void mmc_bounce_buffer_stop(struct mmc_data *backup,
  111. struct mmc_data *orig) { }
  112. #endif
  113. int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
  114. {
  115. struct mmc_data backup;
  116. int ret;
  117. memset(&backup, 0, sizeof(backup));
  118. ret = mmc_bounce_buffer_start(&backup, data);
  119. if (ret)
  120. return ret;
  121. #ifdef CONFIG_MMC_TRACE
  122. int i;
  123. u8 *ptr;
  124. printf("CMD_SEND:%d\n", cmd->cmdidx);
  125. printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
  126. printf("\t\tFLAG\t\t\t %d\n", cmd->flags);
  127. ret = mmc->send_cmd(mmc, cmd, data);
  128. switch (cmd->resp_type) {
  129. case MMC_RSP_NONE:
  130. printf("\t\tMMC_RSP_NONE\n");
  131. break;
  132. case MMC_RSP_R1:
  133. printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
  134. cmd->response[0]);
  135. break;
  136. case MMC_RSP_R1b:
  137. printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
  138. cmd->response[0]);
  139. break;
  140. case MMC_RSP_R2:
  141. printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
  142. cmd->response[0]);
  143. printf("\t\t \t\t 0x%08X \n",
  144. cmd->response[1]);
  145. printf("\t\t \t\t 0x%08X \n",
  146. cmd->response[2]);
  147. printf("\t\t \t\t 0x%08X \n",
  148. cmd->response[3]);
  149. printf("\n");
  150. printf("\t\t\t\t\tDUMPING DATA\n");
  151. for (i = 0; i < 4; i++) {
  152. int j;
  153. printf("\t\t\t\t\t%03d - ", i*4);
  154. ptr = (u8 *)&cmd->response[i];
  155. ptr += 3;
  156. for (j = 0; j < 4; j++)
  157. printf("%02X ", *ptr--);
  158. printf("\n");
  159. }
  160. break;
  161. case MMC_RSP_R3:
  162. printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
  163. cmd->response[0]);
  164. break;
  165. default:
  166. printf("\t\tERROR MMC rsp not supported\n");
  167. break;
  168. }
  169. #else
  170. ret = mmc->send_cmd(mmc, cmd, data);
  171. #endif
  172. mmc_bounce_buffer_stop(&backup, data);
  173. return ret;
  174. }
  175. int mmc_send_status(struct mmc *mmc, int timeout)
  176. {
  177. struct mmc_cmd cmd;
  178. int err, retries = 5;
  179. #ifdef CONFIG_MMC_TRACE
  180. int status;
  181. #endif
  182. cmd.cmdidx = MMC_CMD_SEND_STATUS;
  183. cmd.resp_type = MMC_RSP_R1;
  184. if (!mmc_host_is_spi(mmc))
  185. cmd.cmdarg = mmc->rca << 16;
  186. cmd.flags = 0;
  187. do {
  188. err = mmc_send_cmd(mmc, &cmd, NULL);
  189. if (!err) {
  190. if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
  191. (cmd.response[0] & MMC_STATUS_CURR_STATE) !=
  192. MMC_STATE_PRG)
  193. break;
  194. else if (cmd.response[0] & MMC_STATUS_MASK) {
  195. printf("Status Error: 0x%08X\n",
  196. cmd.response[0]);
  197. return COMM_ERR;
  198. }
  199. } else if (--retries < 0)
  200. return err;
  201. udelay(1000);
  202. } while (timeout--);
  203. #ifdef CONFIG_MMC_TRACE
  204. status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
  205. printf("CURR STATE:%d\n", status);
  206. #endif
  207. if (!timeout) {
  208. printf("Timeout waiting card ready\n");
  209. return TIMEOUT;
  210. }
  211. return 0;
  212. }
  213. int mmc_set_blocklen(struct mmc *mmc, int len)
  214. {
  215. struct mmc_cmd cmd;
  216. cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
  217. cmd.resp_type = MMC_RSP_R1;
  218. cmd.cmdarg = len;
  219. cmd.flags = 0;
  220. return mmc_send_cmd(mmc, &cmd, NULL);
  221. }
  222. struct mmc *find_mmc_device(int dev_num)
  223. {
  224. struct mmc *m;
  225. struct list_head *entry;
  226. list_for_each(entry, &mmc_devices) {
  227. m = list_entry(entry, struct mmc, link);
  228. if (m->block_dev.dev == dev_num)
  229. return m;
  230. }
  231. printf("MMC Device %d not found\n", dev_num);
  232. return NULL;
  233. }
  234. static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
  235. {
  236. struct mmc_cmd cmd;
  237. ulong end;
  238. int err, start_cmd, end_cmd;
  239. if (mmc->high_capacity)
  240. end = start + blkcnt - 1;
  241. else {
  242. end = (start + blkcnt - 1) * mmc->write_bl_len;
  243. start *= mmc->write_bl_len;
  244. }
  245. if (IS_SD(mmc)) {
  246. start_cmd = SD_CMD_ERASE_WR_BLK_START;
  247. end_cmd = SD_CMD_ERASE_WR_BLK_END;
  248. } else {
  249. start_cmd = MMC_CMD_ERASE_GROUP_START;
  250. end_cmd = MMC_CMD_ERASE_GROUP_END;
  251. }
  252. cmd.cmdidx = start_cmd;
  253. cmd.cmdarg = start;
  254. cmd.resp_type = MMC_RSP_R1;
  255. cmd.flags = 0;
  256. err = mmc_send_cmd(mmc, &cmd, NULL);
  257. if (err)
  258. goto err_out;
  259. cmd.cmdidx = end_cmd;
  260. cmd.cmdarg = end;
  261. err = mmc_send_cmd(mmc, &cmd, NULL);
  262. if (err)
  263. goto err_out;
  264. cmd.cmdidx = MMC_CMD_ERASE;
  265. cmd.cmdarg = SECURE_ERASE;
  266. cmd.resp_type = MMC_RSP_R1b;
  267. err = mmc_send_cmd(mmc, &cmd, NULL);
  268. if (err)
  269. goto err_out;
  270. return 0;
  271. err_out:
  272. puts("mmc erase failed\n");
  273. return err;
  274. }
  275. static unsigned long
  276. mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
  277. {
  278. int err = 0;
  279. struct mmc *mmc = find_mmc_device(dev_num);
  280. lbaint_t blk = 0, blk_r = 0;
  281. int timeout = 1000;
  282. if (!mmc)
  283. return -1;
  284. if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
  285. printf("\n\nCaution! Your devices Erase group is 0x%x\n"
  286. "The erase range would be change to 0x%lx~0x%lx\n\n",
  287. mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
  288. ((start + blkcnt + mmc->erase_grp_size)
  289. & ~(mmc->erase_grp_size - 1)) - 1);
  290. while (blk < blkcnt) {
  291. blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
  292. mmc->erase_grp_size : (blkcnt - blk);
  293. err = mmc_erase_t(mmc, start + blk, blk_r);
  294. if (err)
  295. break;
  296. blk += blk_r;
  297. /* Waiting for the ready status */
  298. if (mmc_send_status(mmc, timeout))
  299. return 0;
  300. }
  301. return blk;
  302. }
  303. static ulong
  304. mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
  305. {
  306. struct mmc_cmd cmd;
  307. struct mmc_data data;
  308. int timeout = 1000;
  309. if ((start + blkcnt) > mmc->block_dev.lba) {
  310. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  311. start + blkcnt, mmc->block_dev.lba);
  312. return 0;
  313. }
  314. if (blkcnt > 1)
  315. cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
  316. else
  317. cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
  318. if (mmc->high_capacity)
  319. cmd.cmdarg = start;
  320. else
  321. cmd.cmdarg = start * mmc->write_bl_len;
  322. cmd.resp_type = MMC_RSP_R1;
  323. cmd.flags = 0;
  324. data.src = src;
  325. data.blocks = blkcnt;
  326. data.blocksize = mmc->write_bl_len;
  327. data.flags = MMC_DATA_WRITE;
  328. if (mmc_send_cmd(mmc, &cmd, &data)) {
  329. printf("mmc write failed\n");
  330. return 0;
  331. }
  332. /* SPI multiblock writes terminate using a special
  333. * token, not a STOP_TRANSMISSION request.
  334. */
  335. if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
  336. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  337. cmd.cmdarg = 0;
  338. cmd.resp_type = MMC_RSP_R1b;
  339. cmd.flags = 0;
  340. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  341. printf("mmc fail to send stop cmd\n");
  342. return 0;
  343. }
  344. }
  345. /* Waiting for the ready status */
  346. if (mmc_send_status(mmc, timeout))
  347. return 0;
  348. return blkcnt;
  349. }
  350. static ulong
  351. mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
  352. {
  353. lbaint_t cur, blocks_todo = blkcnt;
  354. struct mmc *mmc = find_mmc_device(dev_num);
  355. if (!mmc)
  356. return 0;
  357. if (mmc_set_blocklen(mmc, mmc->write_bl_len))
  358. return 0;
  359. do {
  360. cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
  361. if(mmc_write_blocks(mmc, start, cur, src) != cur)
  362. return 0;
  363. blocks_todo -= cur;
  364. start += cur;
  365. src += cur * mmc->write_bl_len;
  366. } while (blocks_todo > 0);
  367. return blkcnt;
  368. }
  369. int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
  370. {
  371. struct mmc_cmd cmd;
  372. struct mmc_data data;
  373. if (blkcnt > 1)
  374. cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
  375. else
  376. cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
  377. if (mmc->high_capacity)
  378. cmd.cmdarg = start;
  379. else
  380. cmd.cmdarg = start * mmc->read_bl_len;
  381. cmd.resp_type = MMC_RSP_R1;
  382. cmd.flags = 0;
  383. data.dest = dst;
  384. data.blocks = blkcnt;
  385. data.blocksize = mmc->read_bl_len;
  386. data.flags = MMC_DATA_READ;
  387. if (mmc_send_cmd(mmc, &cmd, &data))
  388. return 0;
  389. if (blkcnt > 1) {
  390. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  391. cmd.cmdarg = 0;
  392. cmd.resp_type = MMC_RSP_R1b;
  393. cmd.flags = 0;
  394. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  395. printf("mmc fail to send stop cmd\n");
  396. return 0;
  397. }
  398. }
  399. return blkcnt;
  400. }
  401. static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
  402. {
  403. lbaint_t cur, blocks_todo = blkcnt;
  404. if (blkcnt == 0)
  405. return 0;
  406. struct mmc *mmc = find_mmc_device(dev_num);
  407. if (!mmc)
  408. return 0;
  409. if ((start + blkcnt) > mmc->block_dev.lba) {
  410. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  411. start + blkcnt, mmc->block_dev.lba);
  412. return 0;
  413. }
  414. if (mmc_set_blocklen(mmc, mmc->read_bl_len))
  415. return 0;
  416. do {
  417. cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
  418. if(mmc_read_blocks(mmc, dst, start, cur) != cur)
  419. return 0;
  420. blocks_todo -= cur;
  421. start += cur;
  422. dst += cur * mmc->read_bl_len;
  423. } while (blocks_todo > 0);
  424. return blkcnt;
  425. }
  426. int mmc_go_idle(struct mmc* mmc)
  427. {
  428. struct mmc_cmd cmd;
  429. int err;
  430. udelay(1000);
  431. cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
  432. cmd.cmdarg = 0;
  433. cmd.resp_type = MMC_RSP_NONE;
  434. cmd.flags = 0;
  435. err = mmc_send_cmd(mmc, &cmd, NULL);
  436. if (err)
  437. return err;
  438. udelay(2000);
  439. return 0;
  440. }
  441. int
  442. sd_send_op_cond(struct mmc *mmc)
  443. {
  444. int timeout = 1000;
  445. int err;
  446. struct mmc_cmd cmd;
  447. do {
  448. cmd.cmdidx = MMC_CMD_APP_CMD;
  449. cmd.resp_type = MMC_RSP_R1;
  450. cmd.cmdarg = 0;
  451. cmd.flags = 0;
  452. err = mmc_send_cmd(mmc, &cmd, NULL);
  453. if (err)
  454. return err;
  455. cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
  456. cmd.resp_type = MMC_RSP_R3;
  457. /*
  458. * Most cards do not answer if some reserved bits
  459. * in the ocr are set. However, Some controller
  460. * can set bit 7 (reserved for low voltages), but
  461. * how to manage low voltages SD card is not yet
  462. * specified.
  463. */
  464. cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
  465. (mmc->voltages & 0xff8000);
  466. if (mmc->version == SD_VERSION_2)
  467. cmd.cmdarg |= OCR_HCS;
  468. err = mmc_send_cmd(mmc, &cmd, NULL);
  469. if (err)
  470. return err;
  471. udelay(1000);
  472. } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
  473. if (timeout <= 0)
  474. return UNUSABLE_ERR;
  475. if (mmc->version != SD_VERSION_2)
  476. mmc->version = SD_VERSION_1_0;
  477. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  478. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  479. cmd.resp_type = MMC_RSP_R3;
  480. cmd.cmdarg = 0;
  481. cmd.flags = 0;
  482. err = mmc_send_cmd(mmc, &cmd, NULL);
  483. if (err)
  484. return err;
  485. }
  486. mmc->ocr = cmd.response[0];
  487. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  488. mmc->rca = 0;
  489. return 0;
  490. }
  491. int mmc_send_op_cond(struct mmc *mmc)
  492. {
  493. int timeout = 10000;
  494. struct mmc_cmd cmd;
  495. int err;
  496. /* Some cards seem to need this */
  497. mmc_go_idle(mmc);
  498. /* Asking to the card its capabilities */
  499. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  500. cmd.resp_type = MMC_RSP_R3;
  501. cmd.cmdarg = 0;
  502. cmd.flags = 0;
  503. err = mmc_send_cmd(mmc, &cmd, NULL);
  504. if (err)
  505. return err;
  506. udelay(1000);
  507. do {
  508. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  509. cmd.resp_type = MMC_RSP_R3;
  510. cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 :
  511. (mmc->voltages &
  512. (cmd.response[0] & OCR_VOLTAGE_MASK)) |
  513. (cmd.response[0] & OCR_ACCESS_MODE));
  514. if (mmc->host_caps & MMC_MODE_HC)
  515. cmd.cmdarg |= OCR_HCS;
  516. cmd.flags = 0;
  517. err = mmc_send_cmd(mmc, &cmd, NULL);
  518. if (err)
  519. return err;
  520. udelay(1000);
  521. } while (!(cmd.response[0] & OCR_BUSY) && timeout--);
  522. if (timeout <= 0)
  523. return UNUSABLE_ERR;
  524. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  525. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  526. cmd.resp_type = MMC_RSP_R3;
  527. cmd.cmdarg = 0;
  528. cmd.flags = 0;
  529. err = mmc_send_cmd(mmc, &cmd, NULL);
  530. if (err)
  531. return err;
  532. }
  533. mmc->version = MMC_VERSION_UNKNOWN;
  534. mmc->ocr = cmd.response[0];
  535. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  536. mmc->rca = 0;
  537. return 0;
  538. }
  539. int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
  540. {
  541. struct mmc_cmd cmd;
  542. struct mmc_data data;
  543. int err;
  544. /* Get the Card Status Register */
  545. cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
  546. cmd.resp_type = MMC_RSP_R1;
  547. cmd.cmdarg = 0;
  548. cmd.flags = 0;
  549. data.dest = ext_csd;
  550. data.blocks = 1;
  551. data.blocksize = 512;
  552. data.flags = MMC_DATA_READ;
  553. err = mmc_send_cmd(mmc, &cmd, &data);
  554. return err;
  555. }
  556. int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
  557. {
  558. struct mmc_cmd cmd;
  559. int timeout = 1000;
  560. int ret;
  561. cmd.cmdidx = MMC_CMD_SWITCH;
  562. cmd.resp_type = MMC_RSP_R1b;
  563. cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
  564. (index << 16) |
  565. (value << 8);
  566. cmd.flags = 0;
  567. ret = mmc_send_cmd(mmc, &cmd, NULL);
  568. /* Waiting for the ready status */
  569. if (!ret)
  570. ret = mmc_send_status(mmc, timeout);
  571. return ret;
  572. }
  573. int mmc_change_freq(struct mmc *mmc)
  574. {
  575. ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
  576. char cardtype;
  577. int err;
  578. mmc->card_caps = 0;
  579. if (mmc_host_is_spi(mmc))
  580. return 0;
  581. /* Only version 4 supports high-speed */
  582. if (mmc->version < MMC_VERSION_4)
  583. return 0;
  584. err = mmc_send_ext_csd(mmc, ext_csd);
  585. if (err)
  586. return err;
  587. cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
  588. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
  589. if (err)
  590. return err;
  591. /* Now check to see that it worked */
  592. err = mmc_send_ext_csd(mmc, ext_csd);
  593. if (err)
  594. return err;
  595. /* No high-speed support */
  596. if (!ext_csd[EXT_CSD_HS_TIMING])
  597. return 0;
  598. /* High Speed is set, there are two types: 52MHz and 26MHz */
  599. if (cardtype & MMC_HS_52MHZ)
  600. mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  601. else
  602. mmc->card_caps |= MMC_MODE_HS;
  603. return 0;
  604. }
  605. int mmc_switch_part(int dev_num, unsigned int part_num)
  606. {
  607. struct mmc *mmc = find_mmc_device(dev_num);
  608. if (!mmc)
  609. return -1;
  610. return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
  611. (mmc->part_config & ~PART_ACCESS_MASK)
  612. | (part_num & PART_ACCESS_MASK));
  613. }
  614. int mmc_getcd(struct mmc *mmc)
  615. {
  616. int cd;
  617. cd = board_mmc_getcd(mmc);
  618. if ((cd < 0) && mmc->getcd)
  619. cd = mmc->getcd(mmc);
  620. return cd;
  621. }
  622. int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
  623. {
  624. struct mmc_cmd cmd;
  625. struct mmc_data data;
  626. /* Switch the frequency */
  627. cmd.cmdidx = SD_CMD_SWITCH_FUNC;
  628. cmd.resp_type = MMC_RSP_R1;
  629. cmd.cmdarg = (mode << 31) | 0xffffff;
  630. cmd.cmdarg &= ~(0xf << (group * 4));
  631. cmd.cmdarg |= value << (group * 4);
  632. cmd.flags = 0;
  633. data.dest = (char *)resp;
  634. data.blocksize = 64;
  635. data.blocks = 1;
  636. data.flags = MMC_DATA_READ;
  637. return mmc_send_cmd(mmc, &cmd, &data);
  638. }
  639. int sd_change_freq(struct mmc *mmc)
  640. {
  641. int err;
  642. struct mmc_cmd cmd;
  643. ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
  644. ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
  645. struct mmc_data data;
  646. int timeout;
  647. mmc->card_caps = 0;
  648. if (mmc_host_is_spi(mmc))
  649. return 0;
  650. /* Read the SCR to find out if this card supports higher speeds */
  651. cmd.cmdidx = MMC_CMD_APP_CMD;
  652. cmd.resp_type = MMC_RSP_R1;
  653. cmd.cmdarg = mmc->rca << 16;
  654. cmd.flags = 0;
  655. err = mmc_send_cmd(mmc, &cmd, NULL);
  656. if (err)
  657. return err;
  658. cmd.cmdidx = SD_CMD_APP_SEND_SCR;
  659. cmd.resp_type = MMC_RSP_R1;
  660. cmd.cmdarg = 0;
  661. cmd.flags = 0;
  662. timeout = 3;
  663. retry_scr:
  664. data.dest = (char *)scr;
  665. data.blocksize = 8;
  666. data.blocks = 1;
  667. data.flags = MMC_DATA_READ;
  668. err = mmc_send_cmd(mmc, &cmd, &data);
  669. if (err) {
  670. if (timeout--)
  671. goto retry_scr;
  672. return err;
  673. }
  674. mmc->scr[0] = __be32_to_cpu(scr[0]);
  675. mmc->scr[1] = __be32_to_cpu(scr[1]);
  676. switch ((mmc->scr[0] >> 24) & 0xf) {
  677. case 0:
  678. mmc->version = SD_VERSION_1_0;
  679. break;
  680. case 1:
  681. mmc->version = SD_VERSION_1_10;
  682. break;
  683. case 2:
  684. mmc->version = SD_VERSION_2;
  685. break;
  686. default:
  687. mmc->version = SD_VERSION_1_0;
  688. break;
  689. }
  690. if (mmc->scr[0] & SD_DATA_4BIT)
  691. mmc->card_caps |= MMC_MODE_4BIT;
  692. /* Version 1.0 doesn't support switching */
  693. if (mmc->version == SD_VERSION_1_0)
  694. return 0;
  695. timeout = 4;
  696. while (timeout--) {
  697. err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
  698. (u8 *)switch_status);
  699. if (err)
  700. return err;
  701. /* The high-speed function is busy. Try again */
  702. if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
  703. break;
  704. }
  705. /* If high-speed isn't supported, we return */
  706. if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
  707. return 0;
  708. /*
  709. * If the host doesn't support SD_HIGHSPEED, do not switch card to
  710. * HIGHSPEED mode even if the card support SD_HIGHSPPED.
  711. * This can avoid furthur problem when the card runs in different
  712. * mode between the host.
  713. */
  714. if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
  715. (mmc->host_caps & MMC_MODE_HS)))
  716. return 0;
  717. err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
  718. if (err)
  719. return err;
  720. if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
  721. mmc->card_caps |= MMC_MODE_HS;
  722. return 0;
  723. }
  724. /* frequency bases */
  725. /* divided by 10 to be nice to platforms without floating point */
  726. static const int fbase[] = {
  727. 10000,
  728. 100000,
  729. 1000000,
  730. 10000000,
  731. };
  732. /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
  733. * to platforms without floating point.
  734. */
  735. static const int multipliers[] = {
  736. 0, /* reserved */
  737. 10,
  738. 12,
  739. 13,
  740. 15,
  741. 20,
  742. 25,
  743. 30,
  744. 35,
  745. 40,
  746. 45,
  747. 50,
  748. 55,
  749. 60,
  750. 70,
  751. 80,
  752. };
  753. void mmc_set_ios(struct mmc *mmc)
  754. {
  755. mmc->set_ios(mmc);
  756. }
  757. void mmc_set_clock(struct mmc *mmc, uint clock)
  758. {
  759. if (clock > mmc->f_max)
  760. clock = mmc->f_max;
  761. if (clock < mmc->f_min)
  762. clock = mmc->f_min;
  763. mmc->clock = clock;
  764. mmc_set_ios(mmc);
  765. }
  766. void mmc_set_bus_width(struct mmc *mmc, uint width)
  767. {
  768. mmc->bus_width = width;
  769. mmc_set_ios(mmc);
  770. }
  771. int mmc_startup(struct mmc *mmc)
  772. {
  773. int err, width;
  774. uint mult, freq;
  775. u64 cmult, csize, capacity;
  776. struct mmc_cmd cmd;
  777. ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
  778. ALLOC_CACHE_ALIGN_BUFFER(char, test_csd, 512);
  779. int timeout = 1000;
  780. #ifdef CONFIG_MMC_SPI_CRC_ON
  781. if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
  782. cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
  783. cmd.resp_type = MMC_RSP_R1;
  784. cmd.cmdarg = 1;
  785. cmd.flags = 0;
  786. err = mmc_send_cmd(mmc, &cmd, NULL);
  787. if (err)
  788. return err;
  789. }
  790. #endif
  791. /* Put the Card in Identify Mode */
  792. cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
  793. MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
  794. cmd.resp_type = MMC_RSP_R2;
  795. cmd.cmdarg = 0;
  796. cmd.flags = 0;
  797. err = mmc_send_cmd(mmc, &cmd, NULL);
  798. if (err)
  799. return err;
  800. memcpy(mmc->cid, cmd.response, 16);
  801. /*
  802. * For MMC cards, set the Relative Address.
  803. * For SD cards, get the Relatvie Address.
  804. * This also puts the cards into Standby State
  805. */
  806. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  807. cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
  808. cmd.cmdarg = mmc->rca << 16;
  809. cmd.resp_type = MMC_RSP_R6;
  810. cmd.flags = 0;
  811. err = mmc_send_cmd(mmc, &cmd, NULL);
  812. if (err)
  813. return err;
  814. if (IS_SD(mmc))
  815. mmc->rca = (cmd.response[0] >> 16) & 0xffff;
  816. }
  817. /* Get the Card-Specific Data */
  818. cmd.cmdidx = MMC_CMD_SEND_CSD;
  819. cmd.resp_type = MMC_RSP_R2;
  820. cmd.cmdarg = mmc->rca << 16;
  821. cmd.flags = 0;
  822. err = mmc_send_cmd(mmc, &cmd, NULL);
  823. /* Waiting for the ready status */
  824. mmc_send_status(mmc, timeout);
  825. if (err)
  826. return err;
  827. mmc->csd[0] = cmd.response[0];
  828. mmc->csd[1] = cmd.response[1];
  829. mmc->csd[2] = cmd.response[2];
  830. mmc->csd[3] = cmd.response[3];
  831. if (mmc->version == MMC_VERSION_UNKNOWN) {
  832. int version = (cmd.response[0] >> 26) & 0xf;
  833. switch (version) {
  834. case 0:
  835. mmc->version = MMC_VERSION_1_2;
  836. break;
  837. case 1:
  838. mmc->version = MMC_VERSION_1_4;
  839. break;
  840. case 2:
  841. mmc->version = MMC_VERSION_2_2;
  842. break;
  843. case 3:
  844. mmc->version = MMC_VERSION_3;
  845. break;
  846. case 4:
  847. mmc->version = MMC_VERSION_4;
  848. break;
  849. default:
  850. mmc->version = MMC_VERSION_1_2;
  851. break;
  852. }
  853. }
  854. /* divide frequency by 10, since the mults are 10x bigger */
  855. freq = fbase[(cmd.response[0] & 0x7)];
  856. mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
  857. mmc->tran_speed = freq * mult;
  858. mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
  859. if (IS_SD(mmc))
  860. mmc->write_bl_len = mmc->read_bl_len;
  861. else
  862. mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
  863. if (mmc->high_capacity) {
  864. csize = (mmc->csd[1] & 0x3f) << 16
  865. | (mmc->csd[2] & 0xffff0000) >> 16;
  866. cmult = 8;
  867. } else {
  868. csize = (mmc->csd[1] & 0x3ff) << 2
  869. | (mmc->csd[2] & 0xc0000000) >> 30;
  870. cmult = (mmc->csd[2] & 0x00038000) >> 15;
  871. }
  872. mmc->capacity = (csize + 1) << (cmult + 2);
  873. mmc->capacity *= mmc->read_bl_len;
  874. if (mmc->read_bl_len > 512)
  875. mmc->read_bl_len = 512;
  876. if (mmc->write_bl_len > 512)
  877. mmc->write_bl_len = 512;
  878. /* Select the card, and put it into Transfer Mode */
  879. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  880. cmd.cmdidx = MMC_CMD_SELECT_CARD;
  881. cmd.resp_type = MMC_RSP_R1;
  882. cmd.cmdarg = mmc->rca << 16;
  883. cmd.flags = 0;
  884. err = mmc_send_cmd(mmc, &cmd, NULL);
  885. if (err)
  886. return err;
  887. }
  888. /*
  889. * For SD, its erase group is always one sector
  890. */
  891. mmc->erase_grp_size = 1;
  892. mmc->part_config = MMCPART_NOAVAILABLE;
  893. if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
  894. /* check ext_csd version and capacity */
  895. err = mmc_send_ext_csd(mmc, ext_csd);
  896. if (!err & (ext_csd[EXT_CSD_REV] >= 2)) {
  897. /*
  898. * According to the JEDEC Standard, the value of
  899. * ext_csd's capacity is valid if the value is more
  900. * than 2GB
  901. */
  902. capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
  903. | ext_csd[EXT_CSD_SEC_CNT + 1] << 8
  904. | ext_csd[EXT_CSD_SEC_CNT + 2] << 16
  905. | ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
  906. capacity *= 512;
  907. if ((capacity >> 20) > 2 * 1024)
  908. mmc->capacity = capacity;
  909. }
  910. /*
  911. * Check whether GROUP_DEF is set, if yes, read out
  912. * group size from ext_csd directly, or calculate
  913. * the group size from the csd value.
  914. */
  915. if (ext_csd[EXT_CSD_ERASE_GROUP_DEF])
  916. mmc->erase_grp_size =
  917. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 512 * 1024;
  918. else {
  919. int erase_gsz, erase_gmul;
  920. erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
  921. erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
  922. mmc->erase_grp_size = (erase_gsz + 1)
  923. * (erase_gmul + 1);
  924. }
  925. /* store the partition info of emmc */
  926. if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT)
  927. mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
  928. }
  929. if (IS_SD(mmc))
  930. err = sd_change_freq(mmc);
  931. else
  932. err = mmc_change_freq(mmc);
  933. if (err)
  934. return err;
  935. /* Restrict card's capabilities by what the host can do */
  936. mmc->card_caps &= mmc->host_caps;
  937. if (IS_SD(mmc)) {
  938. if (mmc->card_caps & MMC_MODE_4BIT) {
  939. cmd.cmdidx = MMC_CMD_APP_CMD;
  940. cmd.resp_type = MMC_RSP_R1;
  941. cmd.cmdarg = mmc->rca << 16;
  942. cmd.flags = 0;
  943. err = mmc_send_cmd(mmc, &cmd, NULL);
  944. if (err)
  945. return err;
  946. cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
  947. cmd.resp_type = MMC_RSP_R1;
  948. cmd.cmdarg = 2;
  949. cmd.flags = 0;
  950. err = mmc_send_cmd(mmc, &cmd, NULL);
  951. if (err)
  952. return err;
  953. mmc_set_bus_width(mmc, 4);
  954. }
  955. if (mmc->card_caps & MMC_MODE_HS)
  956. mmc->tran_speed = 50000000;
  957. else
  958. mmc->tran_speed = 25000000;
  959. } else {
  960. width = ((mmc->host_caps & MMC_MODE_MASK_WIDTH_BITS) >>
  961. MMC_MODE_WIDTH_BITS_SHIFT);
  962. for (; width >= 0; width--) {
  963. /* Set the card to use 4 bit*/
  964. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  965. EXT_CSD_BUS_WIDTH, width);
  966. if (err)
  967. continue;
  968. if (!width) {
  969. mmc_set_bus_width(mmc, 1);
  970. break;
  971. } else
  972. mmc_set_bus_width(mmc, 4 * width);
  973. err = mmc_send_ext_csd(mmc, test_csd);
  974. if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
  975. == test_csd[EXT_CSD_PARTITIONING_SUPPORT]
  976. && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
  977. == test_csd[EXT_CSD_ERASE_GROUP_DEF] \
  978. && ext_csd[EXT_CSD_REV] \
  979. == test_csd[EXT_CSD_REV]
  980. && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
  981. == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
  982. && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
  983. &test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
  984. mmc->card_caps |= width;
  985. break;
  986. }
  987. }
  988. if (mmc->card_caps & MMC_MODE_HS) {
  989. if (mmc->card_caps & MMC_MODE_HS_52MHz)
  990. mmc->tran_speed = 52000000;
  991. else
  992. mmc->tran_speed = 26000000;
  993. }
  994. }
  995. mmc_set_clock(mmc, mmc->tran_speed);
  996. /* fill in device description */
  997. mmc->block_dev.lun = 0;
  998. mmc->block_dev.type = 0;
  999. mmc->block_dev.blksz = mmc->read_bl_len;
  1000. mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
  1001. sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
  1002. (mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
  1003. sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
  1004. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  1005. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  1006. sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
  1007. (mmc->cid[2] >> 24) & 0xf);
  1008. init_part(&mmc->block_dev);
  1009. return 0;
  1010. }
  1011. int mmc_send_if_cond(struct mmc *mmc)
  1012. {
  1013. struct mmc_cmd cmd;
  1014. int err;
  1015. cmd.cmdidx = SD_CMD_SEND_IF_COND;
  1016. /* We set the bit if the host supports voltages between 2.7 and 3.6 V */
  1017. cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
  1018. cmd.resp_type = MMC_RSP_R7;
  1019. cmd.flags = 0;
  1020. err = mmc_send_cmd(mmc, &cmd, NULL);
  1021. if (err)
  1022. return err;
  1023. if ((cmd.response[0] & 0xff) != 0xaa)
  1024. return UNUSABLE_ERR;
  1025. else
  1026. mmc->version = SD_VERSION_2;
  1027. return 0;
  1028. }
  1029. int mmc_register(struct mmc *mmc)
  1030. {
  1031. /* Setup the universal parts of the block interface just once */
  1032. mmc->block_dev.if_type = IF_TYPE_MMC;
  1033. mmc->block_dev.dev = cur_dev_num++;
  1034. mmc->block_dev.removable = 1;
  1035. mmc->block_dev.block_read = mmc_bread;
  1036. mmc->block_dev.block_write = mmc_bwrite;
  1037. mmc->block_dev.block_erase = mmc_berase;
  1038. if (!mmc->b_max)
  1039. mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1040. INIT_LIST_HEAD (&mmc->link);
  1041. list_add_tail (&mmc->link, &mmc_devices);
  1042. return 0;
  1043. }
  1044. #ifdef CONFIG_PARTITIONS
  1045. block_dev_desc_t *mmc_get_dev(int dev)
  1046. {
  1047. struct mmc *mmc = find_mmc_device(dev);
  1048. if (!mmc)
  1049. return NULL;
  1050. mmc_init(mmc);
  1051. return &mmc->block_dev;
  1052. }
  1053. #endif
  1054. int mmc_init(struct mmc *mmc)
  1055. {
  1056. int err;
  1057. if (mmc_getcd(mmc) == 0) {
  1058. mmc->has_init = 0;
  1059. printf("MMC: no card present\n");
  1060. return NO_CARD_ERR;
  1061. }
  1062. if (mmc->has_init)
  1063. return 0;
  1064. err = mmc->init(mmc);
  1065. if (err)
  1066. return err;
  1067. mmc_set_bus_width(mmc, 1);
  1068. mmc_set_clock(mmc, 1);
  1069. /* Reset the Card */
  1070. err = mmc_go_idle(mmc);
  1071. if (err)
  1072. return err;
  1073. /* The internal partition reset to user partition(0) at every CMD0*/
  1074. mmc->part_num = 0;
  1075. /* Test for SD version 2 */
  1076. err = mmc_send_if_cond(mmc);
  1077. /* Now try to get the SD card's operating condition */
  1078. err = sd_send_op_cond(mmc);
  1079. /* If the command timed out, we check for an MMC card */
  1080. if (err == TIMEOUT) {
  1081. err = mmc_send_op_cond(mmc);
  1082. if (err) {
  1083. printf("Card did not respond to voltage select!\n");
  1084. return UNUSABLE_ERR;
  1085. }
  1086. }
  1087. err = mmc_startup(mmc);
  1088. if (err)
  1089. mmc->has_init = 0;
  1090. else
  1091. mmc->has_init = 1;
  1092. return err;
  1093. }
  1094. /*
  1095. * CPU and board-specific MMC initializations. Aliased function
  1096. * signals caller to move on
  1097. */
  1098. static int __def_mmc_init(bd_t *bis)
  1099. {
  1100. return -1;
  1101. }
  1102. int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  1103. int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  1104. void print_mmc_devices(char separator)
  1105. {
  1106. struct mmc *m;
  1107. struct list_head *entry;
  1108. list_for_each(entry, &mmc_devices) {
  1109. m = list_entry(entry, struct mmc, link);
  1110. printf("%s: %d", m->name, m->block_dev.dev);
  1111. if (entry->next != &mmc_devices)
  1112. printf("%c ", separator);
  1113. }
  1114. printf("\n");
  1115. }
  1116. int get_mmc_num(void)
  1117. {
  1118. return cur_dev_num;
  1119. }
  1120. int mmc_initialize(bd_t *bis)
  1121. {
  1122. INIT_LIST_HEAD (&mmc_devices);
  1123. cur_dev_num = 0;
  1124. if (board_mmc_init(bis) < 0)
  1125. cpu_mmc_init(bis);
  1126. print_mmc_devices(',');
  1127. return 0;
  1128. }