uec.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439
  1. /*
  2. * Copyright (C) 2006-2011 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #include "miiphy.h"
  32. #include <phy.h>
  33. /* Default UTBIPAR SMI address */
  34. #ifndef CONFIG_UTBIPAR_INIT_TBIPA
  35. #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
  36. #endif
  37. static uec_info_t uec_info[] = {
  38. #ifdef CONFIG_UEC_ETH1
  39. STD_UEC_INFO(1), /* UEC1 */
  40. #endif
  41. #ifdef CONFIG_UEC_ETH2
  42. STD_UEC_INFO(2), /* UEC2 */
  43. #endif
  44. #ifdef CONFIG_UEC_ETH3
  45. STD_UEC_INFO(3), /* UEC3 */
  46. #endif
  47. #ifdef CONFIG_UEC_ETH4
  48. STD_UEC_INFO(4), /* UEC4 */
  49. #endif
  50. #ifdef CONFIG_UEC_ETH5
  51. STD_UEC_INFO(5), /* UEC5 */
  52. #endif
  53. #ifdef CONFIG_UEC_ETH6
  54. STD_UEC_INFO(6), /* UEC6 */
  55. #endif
  56. #ifdef CONFIG_UEC_ETH7
  57. STD_UEC_INFO(7), /* UEC7 */
  58. #endif
  59. #ifdef CONFIG_UEC_ETH8
  60. STD_UEC_INFO(8), /* UEC8 */
  61. #endif
  62. };
  63. #define MAXCONTROLLERS (8)
  64. static struct eth_device *devlist[MAXCONTROLLERS];
  65. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  66. {
  67. uec_t *uec_regs;
  68. u32 maccfg1;
  69. if (!uec) {
  70. printf("%s: uec not initial\n", __FUNCTION__);
  71. return -EINVAL;
  72. }
  73. uec_regs = uec->uec_regs;
  74. maccfg1 = in_be32(&uec_regs->maccfg1);
  75. if (mode & COMM_DIR_TX) {
  76. maccfg1 |= MACCFG1_ENABLE_TX;
  77. out_be32(&uec_regs->maccfg1, maccfg1);
  78. uec->mac_tx_enabled = 1;
  79. }
  80. if (mode & COMM_DIR_RX) {
  81. maccfg1 |= MACCFG1_ENABLE_RX;
  82. out_be32(&uec_regs->maccfg1, maccfg1);
  83. uec->mac_rx_enabled = 1;
  84. }
  85. return 0;
  86. }
  87. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  88. {
  89. uec_t *uec_regs;
  90. u32 maccfg1;
  91. if (!uec) {
  92. printf("%s: uec not initial\n", __FUNCTION__);
  93. return -EINVAL;
  94. }
  95. uec_regs = uec->uec_regs;
  96. maccfg1 = in_be32(&uec_regs->maccfg1);
  97. if (mode & COMM_DIR_TX) {
  98. maccfg1 &= ~MACCFG1_ENABLE_TX;
  99. out_be32(&uec_regs->maccfg1, maccfg1);
  100. uec->mac_tx_enabled = 0;
  101. }
  102. if (mode & COMM_DIR_RX) {
  103. maccfg1 &= ~MACCFG1_ENABLE_RX;
  104. out_be32(&uec_regs->maccfg1, maccfg1);
  105. uec->mac_rx_enabled = 0;
  106. }
  107. return 0;
  108. }
  109. static int uec_graceful_stop_tx(uec_private_t *uec)
  110. {
  111. ucc_fast_t *uf_regs;
  112. u32 cecr_subblock;
  113. u32 ucce;
  114. if (!uec || !uec->uccf) {
  115. printf("%s: No handle passed.\n", __FUNCTION__);
  116. return -EINVAL;
  117. }
  118. uf_regs = uec->uccf->uf_regs;
  119. /* Clear the grace stop event */
  120. out_be32(&uf_regs->ucce, UCCE_GRA);
  121. /* Issue host command */
  122. cecr_subblock =
  123. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  124. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  125. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  126. /* Wait for command to complete */
  127. do {
  128. ucce = in_be32(&uf_regs->ucce);
  129. } while (! (ucce & UCCE_GRA));
  130. uec->grace_stopped_tx = 1;
  131. return 0;
  132. }
  133. static int uec_graceful_stop_rx(uec_private_t *uec)
  134. {
  135. u32 cecr_subblock;
  136. u8 ack;
  137. if (!uec) {
  138. printf("%s: No handle passed.\n", __FUNCTION__);
  139. return -EINVAL;
  140. }
  141. if (!uec->p_rx_glbl_pram) {
  142. printf("%s: No init rx global parameter\n", __FUNCTION__);
  143. return -EINVAL;
  144. }
  145. /* Clear acknowledge bit */
  146. ack = uec->p_rx_glbl_pram->rxgstpack;
  147. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  148. uec->p_rx_glbl_pram->rxgstpack = ack;
  149. /* Keep issuing cmd and checking ack bit until it is asserted */
  150. do {
  151. /* Issue host command */
  152. cecr_subblock =
  153. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  154. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  155. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  156. ack = uec->p_rx_glbl_pram->rxgstpack;
  157. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  158. uec->grace_stopped_rx = 1;
  159. return 0;
  160. }
  161. static int uec_restart_tx(uec_private_t *uec)
  162. {
  163. u32 cecr_subblock;
  164. if (!uec || !uec->uec_info) {
  165. printf("%s: No handle passed.\n", __FUNCTION__);
  166. return -EINVAL;
  167. }
  168. cecr_subblock =
  169. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  170. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  171. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  172. uec->grace_stopped_tx = 0;
  173. return 0;
  174. }
  175. static int uec_restart_rx(uec_private_t *uec)
  176. {
  177. u32 cecr_subblock;
  178. if (!uec || !uec->uec_info) {
  179. printf("%s: No handle passed.\n", __FUNCTION__);
  180. return -EINVAL;
  181. }
  182. cecr_subblock =
  183. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  184. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  185. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  186. uec->grace_stopped_rx = 0;
  187. return 0;
  188. }
  189. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  190. {
  191. ucc_fast_private_t *uccf;
  192. if (!uec || !uec->uccf) {
  193. printf("%s: No handle passed.\n", __FUNCTION__);
  194. return -EINVAL;
  195. }
  196. uccf = uec->uccf;
  197. /* check if the UCC number is in range. */
  198. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  199. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  200. return -EINVAL;
  201. }
  202. /* Enable MAC */
  203. uec_mac_enable(uec, mode);
  204. /* Enable UCC fast */
  205. ucc_fast_enable(uccf, mode);
  206. /* RISC microcode start */
  207. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  208. uec_restart_tx(uec);
  209. }
  210. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  211. uec_restart_rx(uec);
  212. }
  213. return 0;
  214. }
  215. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  216. {
  217. if (!uec || !uec->uccf) {
  218. printf("%s: No handle passed.\n", __FUNCTION__);
  219. return -EINVAL;
  220. }
  221. /* check if the UCC number is in range. */
  222. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  223. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  224. return -EINVAL;
  225. }
  226. /* Stop any transmissions */
  227. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  228. uec_graceful_stop_tx(uec);
  229. }
  230. /* Stop any receptions */
  231. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  232. uec_graceful_stop_rx(uec);
  233. }
  234. /* Disable the UCC fast */
  235. ucc_fast_disable(uec->uccf, mode);
  236. /* Disable the MAC */
  237. uec_mac_disable(uec, mode);
  238. return 0;
  239. }
  240. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  241. {
  242. uec_t *uec_regs;
  243. u32 maccfg2;
  244. if (!uec) {
  245. printf("%s: uec not initial\n", __FUNCTION__);
  246. return -EINVAL;
  247. }
  248. uec_regs = uec->uec_regs;
  249. if (duplex == DUPLEX_HALF) {
  250. maccfg2 = in_be32(&uec_regs->maccfg2);
  251. maccfg2 &= ~MACCFG2_FDX;
  252. out_be32(&uec_regs->maccfg2, maccfg2);
  253. }
  254. if (duplex == DUPLEX_FULL) {
  255. maccfg2 = in_be32(&uec_regs->maccfg2);
  256. maccfg2 |= MACCFG2_FDX;
  257. out_be32(&uec_regs->maccfg2, maccfg2);
  258. }
  259. return 0;
  260. }
  261. static int uec_set_mac_if_mode(uec_private_t *uec,
  262. phy_interface_t if_mode, int speed)
  263. {
  264. phy_interface_t enet_if_mode;
  265. uec_t *uec_regs;
  266. u32 upsmr;
  267. u32 maccfg2;
  268. if (!uec) {
  269. printf("%s: uec not initial\n", __FUNCTION__);
  270. return -EINVAL;
  271. }
  272. uec_regs = uec->uec_regs;
  273. enet_if_mode = if_mode;
  274. maccfg2 = in_be32(&uec_regs->maccfg2);
  275. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  276. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  277. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  278. switch (speed) {
  279. case SPEED_10:
  280. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  281. switch (enet_if_mode) {
  282. case PHY_INTERFACE_MODE_MII:
  283. break;
  284. case PHY_INTERFACE_MODE_RGMII:
  285. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  286. break;
  287. case PHY_INTERFACE_MODE_RMII:
  288. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  289. break;
  290. default:
  291. return -EINVAL;
  292. break;
  293. }
  294. break;
  295. case SPEED_100:
  296. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  297. switch (enet_if_mode) {
  298. case PHY_INTERFACE_MODE_MII:
  299. break;
  300. case PHY_INTERFACE_MODE_RGMII:
  301. upsmr |= UPSMR_RPM;
  302. break;
  303. case PHY_INTERFACE_MODE_RMII:
  304. upsmr |= UPSMR_RMM;
  305. break;
  306. default:
  307. return -EINVAL;
  308. break;
  309. }
  310. break;
  311. case SPEED_1000:
  312. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  313. switch (enet_if_mode) {
  314. case PHY_INTERFACE_MODE_GMII:
  315. break;
  316. case PHY_INTERFACE_MODE_TBI:
  317. upsmr |= UPSMR_TBIM;
  318. break;
  319. case PHY_INTERFACE_MODE_RTBI:
  320. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  321. break;
  322. case PHY_INTERFACE_MODE_RGMII_RXID:
  323. case PHY_INTERFACE_MODE_RGMII_TXID:
  324. case PHY_INTERFACE_MODE_RGMII_ID:
  325. case PHY_INTERFACE_MODE_RGMII:
  326. upsmr |= UPSMR_RPM;
  327. break;
  328. case PHY_INTERFACE_MODE_SGMII:
  329. upsmr |= UPSMR_SGMM;
  330. break;
  331. default:
  332. return -EINVAL;
  333. break;
  334. }
  335. break;
  336. default:
  337. return -EINVAL;
  338. break;
  339. }
  340. out_be32(&uec_regs->maccfg2, maccfg2);
  341. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  342. return 0;
  343. }
  344. static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
  345. {
  346. uint timeout = 0x1000;
  347. u32 miimcfg = 0;
  348. miimcfg = in_be32(&uec_mii_regs->miimcfg);
  349. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  350. out_be32(&uec_mii_regs->miimcfg, miimcfg);
  351. /* Wait until the bus is free */
  352. while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  353. if (timeout <= 0) {
  354. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  355. return -ETIMEDOUT;
  356. }
  357. return 0;
  358. }
  359. static int init_phy(struct eth_device *dev)
  360. {
  361. uec_private_t *uec;
  362. uec_mii_t *umii_regs;
  363. struct uec_mii_info *mii_info;
  364. struct phy_info *curphy;
  365. int err;
  366. uec = (uec_private_t *)dev->priv;
  367. umii_regs = uec->uec_mii_regs;
  368. uec->oldlink = 0;
  369. uec->oldspeed = 0;
  370. uec->oldduplex = -1;
  371. mii_info = malloc(sizeof(*mii_info));
  372. if (!mii_info) {
  373. printf("%s: Could not allocate mii_info", dev->name);
  374. return -ENOMEM;
  375. }
  376. memset(mii_info, 0, sizeof(*mii_info));
  377. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  378. mii_info->speed = SPEED_1000;
  379. } else {
  380. mii_info->speed = SPEED_100;
  381. }
  382. mii_info->duplex = DUPLEX_FULL;
  383. mii_info->pause = 0;
  384. mii_info->link = 1;
  385. mii_info->advertising = (ADVERTISED_10baseT_Half |
  386. ADVERTISED_10baseT_Full |
  387. ADVERTISED_100baseT_Half |
  388. ADVERTISED_100baseT_Full |
  389. ADVERTISED_1000baseT_Full);
  390. mii_info->autoneg = 1;
  391. mii_info->mii_id = uec->uec_info->phy_address;
  392. mii_info->dev = dev;
  393. mii_info->mdio_read = &uec_read_phy_reg;
  394. mii_info->mdio_write = &uec_write_phy_reg;
  395. uec->mii_info = mii_info;
  396. qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
  397. if (init_mii_management_configuration(umii_regs)) {
  398. printf("%s: The MII Bus is stuck!", dev->name);
  399. err = -1;
  400. goto bus_fail;
  401. }
  402. /* get info for this PHY */
  403. curphy = uec_get_phy_info(uec->mii_info);
  404. if (!curphy) {
  405. printf("%s: No PHY found", dev->name);
  406. err = -1;
  407. goto no_phy;
  408. }
  409. mii_info->phyinfo = curphy;
  410. /* Run the commands which initialize the PHY */
  411. if (curphy->init) {
  412. err = curphy->init(uec->mii_info);
  413. if (err)
  414. goto phy_init_fail;
  415. }
  416. return 0;
  417. phy_init_fail:
  418. no_phy:
  419. bus_fail:
  420. free(mii_info);
  421. return err;
  422. }
  423. static void adjust_link(struct eth_device *dev)
  424. {
  425. uec_private_t *uec = (uec_private_t *)dev->priv;
  426. struct uec_mii_info *mii_info = uec->mii_info;
  427. extern void change_phy_interface_mode(struct eth_device *dev,
  428. phy_interface_t mode, int speed);
  429. if (mii_info->link) {
  430. /* Now we make sure that we can be in full duplex mode.
  431. * If not, we operate in half-duplex mode. */
  432. if (mii_info->duplex != uec->oldduplex) {
  433. if (!(mii_info->duplex)) {
  434. uec_set_mac_duplex(uec, DUPLEX_HALF);
  435. printf("%s: Half Duplex\n", dev->name);
  436. } else {
  437. uec_set_mac_duplex(uec, DUPLEX_FULL);
  438. printf("%s: Full Duplex\n", dev->name);
  439. }
  440. uec->oldduplex = mii_info->duplex;
  441. }
  442. if (mii_info->speed != uec->oldspeed) {
  443. phy_interface_t mode =
  444. uec->uec_info->enet_interface_type;
  445. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  446. switch (mii_info->speed) {
  447. case SPEED_1000:
  448. break;
  449. case SPEED_100:
  450. printf ("switching to rgmii 100\n");
  451. mode = PHY_INTERFACE_MODE_RGMII;
  452. break;
  453. case SPEED_10:
  454. printf ("switching to rgmii 10\n");
  455. mode = PHY_INTERFACE_MODE_RGMII;
  456. break;
  457. default:
  458. printf("%s: Ack,Speed(%d)is illegal\n",
  459. dev->name, mii_info->speed);
  460. break;
  461. }
  462. }
  463. /* change phy */
  464. change_phy_interface_mode(dev, mode, mii_info->speed);
  465. /* change the MAC interface mode */
  466. uec_set_mac_if_mode(uec, mode, mii_info->speed);
  467. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  468. uec->oldspeed = mii_info->speed;
  469. }
  470. if (!uec->oldlink) {
  471. printf("%s: Link is up\n", dev->name);
  472. uec->oldlink = 1;
  473. }
  474. } else { /* if (mii_info->link) */
  475. if (uec->oldlink) {
  476. printf("%s: Link is down\n", dev->name);
  477. uec->oldlink = 0;
  478. uec->oldspeed = 0;
  479. uec->oldduplex = -1;
  480. }
  481. }
  482. }
  483. static void phy_change(struct eth_device *dev)
  484. {
  485. uec_private_t *uec = (uec_private_t *)dev->priv;
  486. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  487. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  488. ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
  489. /* QE9 and QE12 need to be set for enabling QE MII managment signals */
  490. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE9);
  491. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  492. #endif
  493. /* Update the link, speed, duplex */
  494. uec->mii_info->phyinfo->read_status(uec->mii_info);
  495. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  496. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  497. /*
  498. * QE12 is muxed with LBCTL, it needs to be released for enabling
  499. * LBCTL signal for LBC usage.
  500. */
  501. clrbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  502. #endif
  503. /* Adjust the interface according to speed */
  504. adjust_link(dev);
  505. }
  506. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  507. /*
  508. * Find a device index from the devlist by name
  509. *
  510. * Returns:
  511. * The index where the device is located, -1 on error
  512. */
  513. static int uec_miiphy_find_dev_by_name(const char *devname)
  514. {
  515. int i;
  516. for (i = 0; i < MAXCONTROLLERS; i++) {
  517. if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
  518. break;
  519. }
  520. }
  521. /* If device cannot be found, returns -1 */
  522. if (i == MAXCONTROLLERS) {
  523. debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
  524. i = -1;
  525. }
  526. return i;
  527. }
  528. /*
  529. * Read a MII PHY register.
  530. *
  531. * Returns:
  532. * 0 on success
  533. */
  534. static int uec_miiphy_read(const char *devname, unsigned char addr,
  535. unsigned char reg, unsigned short *value)
  536. {
  537. int devindex = 0;
  538. if (devname == NULL || value == NULL) {
  539. debug("%s: NULL pointer given\n", __FUNCTION__);
  540. } else {
  541. devindex = uec_miiphy_find_dev_by_name(devname);
  542. if (devindex >= 0) {
  543. *value = uec_read_phy_reg(devlist[devindex], addr, reg);
  544. }
  545. }
  546. return 0;
  547. }
  548. /*
  549. * Write a MII PHY register.
  550. *
  551. * Returns:
  552. * 0 on success
  553. */
  554. static int uec_miiphy_write(const char *devname, unsigned char addr,
  555. unsigned char reg, unsigned short value)
  556. {
  557. int devindex = 0;
  558. if (devname == NULL) {
  559. debug("%s: NULL pointer given\n", __FUNCTION__);
  560. } else {
  561. devindex = uec_miiphy_find_dev_by_name(devname);
  562. if (devindex >= 0) {
  563. uec_write_phy_reg(devlist[devindex], addr, reg, value);
  564. }
  565. }
  566. return 0;
  567. }
  568. #endif
  569. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  570. {
  571. uec_t *uec_regs;
  572. u32 mac_addr1;
  573. u32 mac_addr2;
  574. if (!uec) {
  575. printf("%s: uec not initial\n", __FUNCTION__);
  576. return -EINVAL;
  577. }
  578. uec_regs = uec->uec_regs;
  579. /* if a station address of 0x12345678ABCD, perform a write to
  580. MACSTNADDR1 of 0xCDAB7856,
  581. MACSTNADDR2 of 0x34120000 */
  582. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  583. (mac_addr[3] << 8) | (mac_addr[2]);
  584. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  585. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  586. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  587. return 0;
  588. }
  589. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  590. int *threads_num_ret)
  591. {
  592. int num_threads_numerica;
  593. switch (threads_num) {
  594. case UEC_NUM_OF_THREADS_1:
  595. num_threads_numerica = 1;
  596. break;
  597. case UEC_NUM_OF_THREADS_2:
  598. num_threads_numerica = 2;
  599. break;
  600. case UEC_NUM_OF_THREADS_4:
  601. num_threads_numerica = 4;
  602. break;
  603. case UEC_NUM_OF_THREADS_6:
  604. num_threads_numerica = 6;
  605. break;
  606. case UEC_NUM_OF_THREADS_8:
  607. num_threads_numerica = 8;
  608. break;
  609. default:
  610. printf("%s: Bad number of threads value.",
  611. __FUNCTION__);
  612. return -EINVAL;
  613. }
  614. *threads_num_ret = num_threads_numerica;
  615. return 0;
  616. }
  617. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  618. {
  619. uec_info_t *uec_info;
  620. u32 end_bd;
  621. u8 bmrx = 0;
  622. int i;
  623. uec_info = uec->uec_info;
  624. /* Alloc global Tx parameter RAM page */
  625. uec->tx_glbl_pram_offset = qe_muram_alloc(
  626. sizeof(uec_tx_global_pram_t),
  627. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  628. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  629. qe_muram_addr(uec->tx_glbl_pram_offset);
  630. /* Zero the global Tx prameter RAM */
  631. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  632. /* Init global Tx parameter RAM */
  633. /* TEMODER, RMON statistics disable, one Tx queue */
  634. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  635. /* SQPTR */
  636. uec->send_q_mem_reg_offset = qe_muram_alloc(
  637. sizeof(uec_send_queue_qd_t),
  638. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  639. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  640. qe_muram_addr(uec->send_q_mem_reg_offset);
  641. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  642. /* Setup the table with TxBDs ring */
  643. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  644. * SIZEOFBD;
  645. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  646. (u32)(uec->p_tx_bd_ring));
  647. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  648. end_bd);
  649. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  650. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  651. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  652. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  653. /* TSTATE, global snooping, big endian, the CSB bus selected */
  654. bmrx = BMR_INIT_VALUE;
  655. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  656. /* IPH_Offset */
  657. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  658. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  659. }
  660. /* VTAG table */
  661. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  662. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  663. }
  664. /* TQPTR */
  665. uec->thread_dat_tx_offset = qe_muram_alloc(
  666. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  667. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  668. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  669. qe_muram_addr(uec->thread_dat_tx_offset);
  670. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  671. }
  672. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  673. {
  674. u8 bmrx = 0;
  675. int i;
  676. uec_82xx_address_filtering_pram_t *p_af_pram;
  677. /* Allocate global Rx parameter RAM page */
  678. uec->rx_glbl_pram_offset = qe_muram_alloc(
  679. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  680. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  681. qe_muram_addr(uec->rx_glbl_pram_offset);
  682. /* Zero Global Rx parameter RAM */
  683. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  684. /* Init global Rx parameter RAM */
  685. /* REMODER, Extended feature mode disable, VLAN disable,
  686. LossLess flow control disable, Receive firmware statisic disable,
  687. Extended address parsing mode disable, One Rx queues,
  688. Dynamic maximum/minimum frame length disable, IP checksum check
  689. disable, IP address alignment disable
  690. */
  691. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  692. /* RQPTR */
  693. uec->thread_dat_rx_offset = qe_muram_alloc(
  694. num_threads_rx * sizeof(uec_thread_data_rx_t),
  695. UEC_THREAD_DATA_ALIGNMENT);
  696. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  697. qe_muram_addr(uec->thread_dat_rx_offset);
  698. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  699. /* Type_or_Len */
  700. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  701. /* RxRMON base pointer, we don't need it */
  702. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  703. /* IntCoalescingPTR, we don't need it, no interrupt */
  704. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  705. /* RSTATE, global snooping, big endian, the CSB bus selected */
  706. bmrx = BMR_INIT_VALUE;
  707. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  708. /* MRBLR */
  709. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  710. /* RBDQPTR */
  711. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  712. sizeof(uec_rx_bd_queues_entry_t) + \
  713. sizeof(uec_rx_prefetched_bds_t),
  714. UEC_RX_BD_QUEUES_ALIGNMENT);
  715. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  716. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  717. /* Zero it */
  718. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  719. sizeof(uec_rx_prefetched_bds_t));
  720. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  721. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  722. (u32)uec->p_rx_bd_ring);
  723. /* MFLR */
  724. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  725. /* MINFLR */
  726. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  727. /* MAXD1 */
  728. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  729. /* MAXD2 */
  730. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  731. /* ECAM_PTR */
  732. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  733. /* L2QT */
  734. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  735. /* L3QT */
  736. for (i = 0; i < 8; i++) {
  737. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  738. }
  739. /* VLAN_TYPE */
  740. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  741. /* TCI */
  742. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  743. /* Clear PQ2 style address filtering hash table */
  744. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  745. uec->p_rx_glbl_pram->addressfiltering;
  746. p_af_pram->iaddr_h = 0;
  747. p_af_pram->iaddr_l = 0;
  748. p_af_pram->gaddr_h = 0;
  749. p_af_pram->gaddr_l = 0;
  750. }
  751. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  752. int thread_tx, int thread_rx)
  753. {
  754. uec_init_cmd_pram_t *p_init_enet_param;
  755. u32 init_enet_param_offset;
  756. uec_info_t *uec_info;
  757. int i;
  758. int snum;
  759. u32 init_enet_offset;
  760. u32 entry_val;
  761. u32 command;
  762. u32 cecr_subblock;
  763. uec_info = uec->uec_info;
  764. /* Allocate init enet command parameter */
  765. uec->init_enet_param_offset = qe_muram_alloc(
  766. sizeof(uec_init_cmd_pram_t), 4);
  767. init_enet_param_offset = uec->init_enet_param_offset;
  768. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  769. qe_muram_addr(uec->init_enet_param_offset);
  770. /* Zero init enet command struct */
  771. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  772. /* Init the command struct */
  773. p_init_enet_param = uec->p_init_enet_param;
  774. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  775. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  776. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  777. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  778. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  779. p_init_enet_param->largestexternallookupkeysize = 0;
  780. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  781. << ENET_INIT_PARAM_RGF_SHIFT;
  782. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  783. << ENET_INIT_PARAM_TGF_SHIFT;
  784. /* Init Rx global parameter pointer */
  785. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  786. (u32)uec_info->risc_rx;
  787. /* Init Rx threads */
  788. for (i = 0; i < (thread_rx + 1); i++) {
  789. if ((snum = qe_get_snum()) < 0) {
  790. printf("%s can not get snum\n", __FUNCTION__);
  791. return -ENOMEM;
  792. }
  793. if (i==0) {
  794. init_enet_offset = 0;
  795. } else {
  796. init_enet_offset = qe_muram_alloc(
  797. sizeof(uec_thread_rx_pram_t),
  798. UEC_THREAD_RX_PRAM_ALIGNMENT);
  799. }
  800. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  801. init_enet_offset | (u32)uec_info->risc_rx;
  802. p_init_enet_param->rxthread[i] = entry_val;
  803. }
  804. /* Init Tx global parameter pointer */
  805. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  806. (u32)uec_info->risc_tx;
  807. /* Init Tx threads */
  808. for (i = 0; i < thread_tx; i++) {
  809. if ((snum = qe_get_snum()) < 0) {
  810. printf("%s can not get snum\n", __FUNCTION__);
  811. return -ENOMEM;
  812. }
  813. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  814. UEC_THREAD_TX_PRAM_ALIGNMENT);
  815. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  816. init_enet_offset | (u32)uec_info->risc_tx;
  817. p_init_enet_param->txthread[i] = entry_val;
  818. }
  819. __asm__ __volatile__("sync");
  820. /* Issue QE command */
  821. command = QE_INIT_TX_RX;
  822. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  823. uec->uec_info->uf_info.ucc_num);
  824. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  825. init_enet_param_offset);
  826. return 0;
  827. }
  828. static int uec_startup(uec_private_t *uec)
  829. {
  830. uec_info_t *uec_info;
  831. ucc_fast_info_t *uf_info;
  832. ucc_fast_private_t *uccf;
  833. ucc_fast_t *uf_regs;
  834. uec_t *uec_regs;
  835. int num_threads_tx;
  836. int num_threads_rx;
  837. u32 utbipar;
  838. u32 length;
  839. u32 align;
  840. qe_bd_t *bd;
  841. u8 *buf;
  842. int i;
  843. if (!uec || !uec->uec_info) {
  844. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  845. return -EINVAL;
  846. }
  847. uec_info = uec->uec_info;
  848. uf_info = &(uec_info->uf_info);
  849. /* Check if Rx BD ring len is illegal */
  850. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  851. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  852. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  853. __FUNCTION__);
  854. return -EINVAL;
  855. }
  856. /* Check if Tx BD ring len is illegal */
  857. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  858. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  859. __FUNCTION__);
  860. return -EINVAL;
  861. }
  862. /* Check if MRBLR is illegal */
  863. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  864. printf("%s: max rx buffer length must be mutliple of 128.\n",
  865. __FUNCTION__);
  866. return -EINVAL;
  867. }
  868. /* Both Rx and Tx are stopped */
  869. uec->grace_stopped_rx = 1;
  870. uec->grace_stopped_tx = 1;
  871. /* Init UCC fast */
  872. if (ucc_fast_init(uf_info, &uccf)) {
  873. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  874. return -ENOMEM;
  875. }
  876. /* Save uccf */
  877. uec->uccf = uccf;
  878. /* Convert the Tx threads number */
  879. if (uec_convert_threads_num(uec_info->num_threads_tx,
  880. &num_threads_tx)) {
  881. return -EINVAL;
  882. }
  883. /* Convert the Rx threads number */
  884. if (uec_convert_threads_num(uec_info->num_threads_rx,
  885. &num_threads_rx)) {
  886. return -EINVAL;
  887. }
  888. uf_regs = uccf->uf_regs;
  889. /* UEC register is following UCC fast registers */
  890. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  891. /* Save the UEC register pointer to UEC private struct */
  892. uec->uec_regs = uec_regs;
  893. /* Init UPSMR, enable hardware statistics (UCC) */
  894. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  895. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  896. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  897. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  898. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  899. /* Setup MAC interface mode */
  900. uec_set_mac_if_mode(uec, uec_info->enet_interface_type, uec_info->speed);
  901. /* Setup MII management base */
  902. #ifndef CONFIG_eTSEC_MDIO_BUS
  903. uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
  904. #else
  905. uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
  906. #endif
  907. /* Setup MII master clock source */
  908. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  909. /* Setup UTBIPAR */
  910. utbipar = in_be32(&uec_regs->utbipar);
  911. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  912. /* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
  913. * This frees up the remaining SMI addresses for use.
  914. */
  915. utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
  916. out_be32(&uec_regs->utbipar, utbipar);
  917. /* Configure the TBI for SGMII operation */
  918. if ((uec->uec_info->enet_interface_type == PHY_INTERFACE_MODE_SGMII) &&
  919. (uec->uec_info->speed == SPEED_1000)) {
  920. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  921. ENET_TBI_MII_ANA, TBIANA_SETTINGS);
  922. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  923. ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
  924. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  925. ENET_TBI_MII_CR, TBICR_SETTINGS);
  926. }
  927. /* Allocate Tx BDs */
  928. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  929. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  930. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  931. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  932. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  933. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  934. }
  935. align = UEC_TX_BD_RING_ALIGNMENT;
  936. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  937. if (uec->tx_bd_ring_offset != 0) {
  938. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  939. & ~(align - 1));
  940. }
  941. /* Zero all of Tx BDs */
  942. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  943. /* Allocate Rx BDs */
  944. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  945. align = UEC_RX_BD_RING_ALIGNMENT;
  946. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  947. if (uec->rx_bd_ring_offset != 0) {
  948. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  949. & ~(align - 1));
  950. }
  951. /* Zero all of Rx BDs */
  952. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  953. /* Allocate Rx buffer */
  954. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  955. align = UEC_RX_DATA_BUF_ALIGNMENT;
  956. uec->rx_buf_offset = (u32)malloc(length + align);
  957. if (uec->rx_buf_offset != 0) {
  958. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  959. & ~(align - 1));
  960. }
  961. /* Zero all of the Rx buffer */
  962. memset((void *)(uec->rx_buf_offset), 0, length + align);
  963. /* Init TxBD ring */
  964. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  965. uec->txBd = bd;
  966. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  967. BD_DATA_CLEAR(bd);
  968. BD_STATUS_SET(bd, 0);
  969. BD_LENGTH_SET(bd, 0);
  970. bd ++;
  971. }
  972. BD_STATUS_SET((--bd), TxBD_WRAP);
  973. /* Init RxBD ring */
  974. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  975. uec->rxBd = bd;
  976. buf = uec->p_rx_buf;
  977. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  978. BD_DATA_SET(bd, buf);
  979. BD_LENGTH_SET(bd, 0);
  980. BD_STATUS_SET(bd, RxBD_EMPTY);
  981. buf += MAX_RXBUF_LEN;
  982. bd ++;
  983. }
  984. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  985. /* Init global Tx parameter RAM */
  986. uec_init_tx_parameter(uec, num_threads_tx);
  987. /* Init global Rx parameter RAM */
  988. uec_init_rx_parameter(uec, num_threads_rx);
  989. /* Init ethernet Tx and Rx parameter command */
  990. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  991. num_threads_rx)) {
  992. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  993. return -ENOMEM;
  994. }
  995. return 0;
  996. }
  997. static int uec_init(struct eth_device* dev, bd_t *bd)
  998. {
  999. uec_private_t *uec;
  1000. int err, i;
  1001. struct phy_info *curphy;
  1002. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1003. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1004. ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
  1005. #endif
  1006. uec = (uec_private_t *)dev->priv;
  1007. if (uec->the_first_run == 0) {
  1008. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1009. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1010. /* QE9 and QE12 need to be set for enabling QE MII managment signals */
  1011. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE9);
  1012. setbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  1013. #endif
  1014. err = init_phy(dev);
  1015. if (err) {
  1016. printf("%s: Cannot initialize PHY, aborting.\n",
  1017. dev->name);
  1018. return err;
  1019. }
  1020. curphy = uec->mii_info->phyinfo;
  1021. if (curphy->config_aneg) {
  1022. err = curphy->config_aneg(uec->mii_info);
  1023. if (err) {
  1024. printf("%s: Can't negotiate PHY\n", dev->name);
  1025. return err;
  1026. }
  1027. }
  1028. /* Give PHYs up to 5 sec to report a link */
  1029. i = 50;
  1030. do {
  1031. err = curphy->read_status(uec->mii_info);
  1032. if (!(((i-- > 0) && !uec->mii_info->link) || err))
  1033. break;
  1034. udelay(100000);
  1035. } while (1);
  1036. #if defined(CONFIG_P1012) || defined(CONFIG_P1016) || \
  1037. defined(CONFIG_P1021) || defined(CONFIG_P1025)
  1038. /* QE12 needs to be released for enabling LBCTL signal*/
  1039. clrbits_be32(&gur->pmuxcr, MPC85xx_PMUXCR_QE12);
  1040. #endif
  1041. if (err || i <= 0)
  1042. printf("warning: %s: timeout on PHY link\n", dev->name);
  1043. adjust_link(dev);
  1044. uec->the_first_run = 1;
  1045. }
  1046. /* Set up the MAC address */
  1047. if (dev->enetaddr[0] & 0x01) {
  1048. printf("%s: MacAddress is multcast address\n",
  1049. __FUNCTION__);
  1050. return -1;
  1051. }
  1052. uec_set_mac_address(uec, dev->enetaddr);
  1053. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  1054. if (err) {
  1055. printf("%s: cannot enable UEC device\n", dev->name);
  1056. return -1;
  1057. }
  1058. phy_change(dev);
  1059. return (uec->mii_info->link ? 0 : -1);
  1060. }
  1061. static void uec_halt(struct eth_device* dev)
  1062. {
  1063. uec_private_t *uec = (uec_private_t *)dev->priv;
  1064. uec_stop(uec, COMM_DIR_RX_AND_TX);
  1065. }
  1066. static int uec_send(struct eth_device *dev, void *buf, int len)
  1067. {
  1068. uec_private_t *uec;
  1069. ucc_fast_private_t *uccf;
  1070. volatile qe_bd_t *bd;
  1071. u16 status;
  1072. int i;
  1073. int result = 0;
  1074. uec = (uec_private_t *)dev->priv;
  1075. uccf = uec->uccf;
  1076. bd = uec->txBd;
  1077. /* Find an empty TxBD */
  1078. for (i = 0; bd->status & TxBD_READY; i++) {
  1079. if (i > 0x100000) {
  1080. printf("%s: tx buffer not ready\n", dev->name);
  1081. return result;
  1082. }
  1083. }
  1084. /* Init TxBD */
  1085. BD_DATA_SET(bd, buf);
  1086. BD_LENGTH_SET(bd, len);
  1087. status = bd->status;
  1088. status &= BD_WRAP;
  1089. status |= (TxBD_READY | TxBD_LAST);
  1090. BD_STATUS_SET(bd, status);
  1091. /* Tell UCC to transmit the buffer */
  1092. ucc_fast_transmit_on_demand(uccf);
  1093. /* Wait for buffer to be transmitted */
  1094. for (i = 0; bd->status & TxBD_READY; i++) {
  1095. if (i > 0x100000) {
  1096. printf("%s: tx error\n", dev->name);
  1097. return result;
  1098. }
  1099. }
  1100. /* Ok, the buffer be transimitted */
  1101. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  1102. uec->txBd = bd;
  1103. result = 1;
  1104. return result;
  1105. }
  1106. static int uec_recv(struct eth_device* dev)
  1107. {
  1108. uec_private_t *uec = dev->priv;
  1109. volatile qe_bd_t *bd;
  1110. u16 status;
  1111. u16 len;
  1112. u8 *data;
  1113. bd = uec->rxBd;
  1114. status = bd->status;
  1115. while (!(status & RxBD_EMPTY)) {
  1116. if (!(status & RxBD_ERROR)) {
  1117. data = BD_DATA(bd);
  1118. len = BD_LENGTH(bd);
  1119. NetReceive(data, len);
  1120. } else {
  1121. printf("%s: Rx error\n", dev->name);
  1122. }
  1123. status &= BD_CLEAN;
  1124. BD_LENGTH_SET(bd, 0);
  1125. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  1126. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  1127. status = bd->status;
  1128. }
  1129. uec->rxBd = bd;
  1130. return 1;
  1131. }
  1132. int uec_initialize(bd_t *bis, uec_info_t *uec_info)
  1133. {
  1134. struct eth_device *dev;
  1135. int i;
  1136. uec_private_t *uec;
  1137. int err;
  1138. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1139. if (!dev)
  1140. return 0;
  1141. memset(dev, 0, sizeof(struct eth_device));
  1142. /* Allocate the UEC private struct */
  1143. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1144. if (!uec) {
  1145. return -ENOMEM;
  1146. }
  1147. memset(uec, 0, sizeof(uec_private_t));
  1148. /* Adjust uec_info */
  1149. #if (MAX_QE_RISC == 4)
  1150. uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1151. uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1152. #endif
  1153. devlist[uec_info->uf_info.ucc_num] = dev;
  1154. uec->uec_info = uec_info;
  1155. uec->dev = dev;
  1156. sprintf(dev->name, "UEC%d", uec_info->uf_info.ucc_num);
  1157. dev->iobase = 0;
  1158. dev->priv = (void *)uec;
  1159. dev->init = uec_init;
  1160. dev->halt = uec_halt;
  1161. dev->send = uec_send;
  1162. dev->recv = uec_recv;
  1163. /* Clear the ethnet address */
  1164. for (i = 0; i < 6; i++)
  1165. dev->enetaddr[i] = 0;
  1166. eth_register(dev);
  1167. err = uec_startup(uec);
  1168. if (err) {
  1169. printf("%s: Cannot configure net device, aborting.",dev->name);
  1170. return err;
  1171. }
  1172. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  1173. miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
  1174. #endif
  1175. return 1;
  1176. }
  1177. int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
  1178. {
  1179. int i;
  1180. for (i = 0; i < num; i++)
  1181. uec_initialize(bis, &uecs[i]);
  1182. return 0;
  1183. }
  1184. int uec_standard_init(bd_t *bis)
  1185. {
  1186. return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
  1187. }