sdram.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563
  1. /*
  2. * Copyright (c) 2011 The Chromium OS Authors.
  3. * (C) Copyright 2010,2011
  4. * Graeme Russ, <graeme.russ@gmail.com>
  5. *
  6. * Portions from Coreboot mainboard/google/link/romstage.c
  7. * Copyright (C) 2007-2010 coresystems GmbH
  8. * Copyright (C) 2011 Google Inc.
  9. *
  10. * SPDX-License-Identifier: GPL-2.0
  11. */
  12. #include <common.h>
  13. #include <errno.h>
  14. #include <fdtdec.h>
  15. #include <malloc.h>
  16. #include <net.h>
  17. #include <rtc.h>
  18. #include <spi.h>
  19. #include <spi_flash.h>
  20. #include <syscon.h>
  21. #include <asm/cpu.h>
  22. #include <asm/processor.h>
  23. #include <asm/gpio.h>
  24. #include <asm/global_data.h>
  25. #include <asm/intel_regs.h>
  26. #include <asm/mrccache.h>
  27. #include <asm/mrc_common.h>
  28. #include <asm/mtrr.h>
  29. #include <asm/pci.h>
  30. #include <asm/report_platform.h>
  31. #include <asm/arch/me.h>
  32. #include <asm/arch/pei_data.h>
  33. #include <asm/arch/pch.h>
  34. #include <asm/post.h>
  35. #include <asm/arch/sandybridge.h>
  36. DECLARE_GLOBAL_DATA_PTR;
  37. #define CMOS_OFFSET_MRC_SEED 152
  38. #define CMOS_OFFSET_MRC_SEED_S3 156
  39. #define CMOS_OFFSET_MRC_SEED_CHK 160
  40. ulong board_get_usable_ram_top(ulong total_size)
  41. {
  42. return mrc_common_board_get_usable_ram_top(total_size);
  43. }
  44. int dram_init_banksize(void)
  45. {
  46. mrc_common_dram_init_banksize();
  47. return 0;
  48. }
  49. static int read_seed_from_cmos(struct pei_data *pei_data)
  50. {
  51. u16 c1, c2, checksum, seed_checksum;
  52. struct udevice *dev;
  53. int ret = 0;
  54. ret = uclass_get_device(UCLASS_RTC, 0, &dev);
  55. if (ret) {
  56. debug("Cannot find RTC: err=%d\n", ret);
  57. return -ENODEV;
  58. }
  59. /*
  60. * Read scrambler seeds from CMOS RAM. We don't want to store them in
  61. * SPI flash since they change on every boot and that would wear down
  62. * the flash too much. So we store these in CMOS and the large MRC
  63. * data in SPI flash.
  64. */
  65. ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED, &pei_data->scrambler_seed);
  66. if (!ret) {
  67. ret = rtc_read32(dev, CMOS_OFFSET_MRC_SEED_S3,
  68. &pei_data->scrambler_seed_s3);
  69. }
  70. if (ret) {
  71. debug("Failed to read from RTC %s\n", dev->name);
  72. return ret;
  73. }
  74. debug("Read scrambler seed 0x%08x from CMOS 0x%02x\n",
  75. pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
  76. debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
  77. pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
  78. /* Compute seed checksum and compare */
  79. c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
  80. sizeof(u32));
  81. c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
  82. sizeof(u32));
  83. checksum = add_ip_checksums(sizeof(u32), c1, c2);
  84. seed_checksum = rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK);
  85. seed_checksum |= rtc_read8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
  86. if (checksum != seed_checksum) {
  87. debug("%s: invalid seed checksum\n", __func__);
  88. pei_data->scrambler_seed = 0;
  89. pei_data->scrambler_seed_s3 = 0;
  90. return -EINVAL;
  91. }
  92. return 0;
  93. }
  94. static int prepare_mrc_cache(struct pei_data *pei_data)
  95. {
  96. struct mrc_data_container *mrc_cache;
  97. struct mrc_region entry;
  98. int ret;
  99. ret = read_seed_from_cmos(pei_data);
  100. if (ret)
  101. return ret;
  102. ret = mrccache_get_region(NULL, &entry);
  103. if (ret)
  104. return ret;
  105. mrc_cache = mrccache_find_current(&entry);
  106. if (!mrc_cache)
  107. return -ENOENT;
  108. pei_data->mrc_input = mrc_cache->data;
  109. pei_data->mrc_input_len = mrc_cache->data_size;
  110. debug("%s: at %p, size %x checksum %04x\n", __func__,
  111. pei_data->mrc_input, pei_data->mrc_input_len,
  112. mrc_cache->checksum);
  113. return 0;
  114. }
  115. static int write_seeds_to_cmos(struct pei_data *pei_data)
  116. {
  117. u16 c1, c2, checksum;
  118. struct udevice *dev;
  119. int ret = 0;
  120. ret = uclass_get_device(UCLASS_RTC, 0, &dev);
  121. if (ret) {
  122. debug("Cannot find RTC: err=%d\n", ret);
  123. return -ENODEV;
  124. }
  125. /* Save the MRC seed values to CMOS */
  126. rtc_write32(dev, CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
  127. debug("Save scrambler seed 0x%08x to CMOS 0x%02x\n",
  128. pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
  129. rtc_write32(dev, CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
  130. debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
  131. pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
  132. /* Save a simple checksum of the seed values */
  133. c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
  134. sizeof(u32));
  135. c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
  136. sizeof(u32));
  137. checksum = add_ip_checksums(sizeof(u32), c1, c2);
  138. rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
  139. rtc_write8(dev, CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
  140. return 0;
  141. }
  142. /* Use this hook to save our SDRAM parameters */
  143. int misc_init_r(void)
  144. {
  145. int ret;
  146. ret = mrccache_save();
  147. if (ret)
  148. printf("Unable to save MRC data: %d\n", ret);
  149. return 0;
  150. }
  151. static void post_system_agent_init(struct udevice *dev, struct udevice *me_dev,
  152. struct pei_data *pei_data)
  153. {
  154. uint16_t done;
  155. /*
  156. * Send ME init done for SandyBridge here. This is done inside the
  157. * SystemAgent binary on IvyBridge
  158. */
  159. dm_pci_read_config16(dev, PCI_DEVICE_ID, &done);
  160. done &= BASE_REV_MASK;
  161. if (BASE_REV_SNB == done)
  162. intel_early_me_init_done(dev, me_dev, ME_INIT_STATUS_SUCCESS);
  163. else
  164. intel_me_status(me_dev);
  165. /* If PCIe init is skipped, set the PEG clock gating */
  166. if (!pei_data->pcie_init)
  167. setbits_le32(MCHBAR_REG(0x7010), 1);
  168. }
  169. static int recovery_mode_enabled(void)
  170. {
  171. return false;
  172. }
  173. static int copy_spd(struct udevice *dev, struct pei_data *peid)
  174. {
  175. const void *data;
  176. int ret;
  177. ret = mrc_locate_spd(dev, sizeof(peid->spd_data[0]), &data);
  178. if (ret) {
  179. debug("%s: Could not locate SPD (ret=%d)\n", __func__, ret);
  180. return ret;
  181. }
  182. memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
  183. return 0;
  184. }
  185. /**
  186. * sdram_find() - Find available memory
  187. *
  188. * This is a bit complicated since on x86 there are system memory holes all
  189. * over the place. We create a list of available memory blocks
  190. *
  191. * @dev: Northbridge device
  192. */
  193. static int sdram_find(struct udevice *dev)
  194. {
  195. struct memory_info *info = &gd->arch.meminfo;
  196. uint32_t tseg_base, uma_size, tolud;
  197. uint64_t tom, me_base, touud;
  198. uint64_t uma_memory_base = 0;
  199. uint64_t uma_memory_size;
  200. unsigned long long tomk;
  201. uint16_t ggc;
  202. u32 val;
  203. /* Total Memory 2GB example:
  204. *
  205. * 00000000 0000MB-1992MB 1992MB RAM (writeback)
  206. * 7c800000 1992MB-2000MB 8MB TSEG (SMRR)
  207. * 7d000000 2000MB-2002MB 2MB GFX GTT (uncached)
  208. * 7d200000 2002MB-2034MB 32MB GFX UMA (uncached)
  209. * 7f200000 2034MB TOLUD
  210. * 7f800000 2040MB MEBASE
  211. * 7f800000 2040MB-2048MB 8MB ME UMA (uncached)
  212. * 80000000 2048MB TOM
  213. * 100000000 4096MB-4102MB 6MB RAM (writeback)
  214. *
  215. * Total Memory 4GB example:
  216. *
  217. * 00000000 0000MB-2768MB 2768MB RAM (writeback)
  218. * ad000000 2768MB-2776MB 8MB TSEG (SMRR)
  219. * ad800000 2776MB-2778MB 2MB GFX GTT (uncached)
  220. * ada00000 2778MB-2810MB 32MB GFX UMA (uncached)
  221. * afa00000 2810MB TOLUD
  222. * ff800000 4088MB MEBASE
  223. * ff800000 4088MB-4096MB 8MB ME UMA (uncached)
  224. * 100000000 4096MB TOM
  225. * 100000000 4096MB-5374MB 1278MB RAM (writeback)
  226. * 14fe00000 5368MB TOUUD
  227. */
  228. /* Top of Upper Usable DRAM, including remap */
  229. dm_pci_read_config32(dev, TOUUD + 4, &val);
  230. touud = (uint64_t)val << 32;
  231. dm_pci_read_config32(dev, TOUUD, &val);
  232. touud |= val;
  233. /* Top of Lower Usable DRAM */
  234. dm_pci_read_config32(dev, TOLUD, &tolud);
  235. /* Top of Memory - does not account for any UMA */
  236. dm_pci_read_config32(dev, 0xa4, &val);
  237. tom = (uint64_t)val << 32;
  238. dm_pci_read_config32(dev, 0xa0, &val);
  239. tom |= val;
  240. debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
  241. /* ME UMA needs excluding if total memory <4GB */
  242. dm_pci_read_config32(dev, 0x74, &val);
  243. me_base = (uint64_t)val << 32;
  244. dm_pci_read_config32(dev, 0x70, &val);
  245. me_base |= val;
  246. debug("MEBASE %llx\n", me_base);
  247. /* TODO: Get rid of all this shifting by 10 bits */
  248. tomk = tolud >> 10;
  249. if (me_base == tolud) {
  250. /* ME is from MEBASE-TOM */
  251. uma_size = (tom - me_base) >> 10;
  252. /* Increment TOLUD to account for ME as RAM */
  253. tolud += uma_size << 10;
  254. /* UMA starts at old TOLUD */
  255. uma_memory_base = tomk * 1024ULL;
  256. uma_memory_size = uma_size * 1024ULL;
  257. debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
  258. }
  259. /* Graphics memory comes next */
  260. dm_pci_read_config16(dev, GGC, &ggc);
  261. if (!(ggc & 2)) {
  262. debug("IGD decoded, subtracting ");
  263. /* Graphics memory */
  264. uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
  265. debug("%uM UMA", uma_size >> 10);
  266. tomk -= uma_size;
  267. uma_memory_base = tomk * 1024ULL;
  268. uma_memory_size += uma_size * 1024ULL;
  269. /* GTT Graphics Stolen Memory Size (GGMS) */
  270. uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
  271. tomk -= uma_size;
  272. uma_memory_base = tomk * 1024ULL;
  273. uma_memory_size += uma_size * 1024ULL;
  274. debug(" and %uM GTT\n", uma_size >> 10);
  275. }
  276. /* Calculate TSEG size from its base which must be below GTT */
  277. dm_pci_read_config32(dev, 0xb8, &tseg_base);
  278. uma_size = (uma_memory_base - tseg_base) >> 10;
  279. tomk -= uma_size;
  280. uma_memory_base = tomk * 1024ULL;
  281. uma_memory_size += uma_size * 1024ULL;
  282. debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
  283. debug("Available memory below 4GB: %lluM\n", tomk >> 10);
  284. /* Report the memory regions */
  285. mrc_add_memory_area(info, 1 << 20, 2 << 28);
  286. mrc_add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
  287. mrc_add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
  288. mrc_add_memory_area(info, 1ULL << 32, touud);
  289. /* Add MTRRs for memory */
  290. mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
  291. mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
  292. mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
  293. mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
  294. mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
  295. 32 << 20);
  296. /*
  297. * If >= 4GB installed then memory from TOLUD to 4GB
  298. * is remapped above TOM, TOUUD will account for both
  299. */
  300. if (touud > (1ULL << 32ULL)) {
  301. debug("Available memory above 4GB: %lluM\n",
  302. (touud >> 20) - 4096);
  303. }
  304. return 0;
  305. }
  306. static void rcba_config(void)
  307. {
  308. /*
  309. * GFX INTA -> PIRQA (MSI)
  310. * D28IP_P3IP WLAN INTA -> PIRQB
  311. * D29IP_E1P EHCI1 INTA -> PIRQD
  312. * D26IP_E2P EHCI2 INTA -> PIRQF
  313. * D31IP_SIP SATA INTA -> PIRQF (MSI)
  314. * D31IP_SMIP SMBUS INTB -> PIRQH
  315. * D31IP_TTIP THRT INTC -> PIRQA
  316. * D27IP_ZIP HDA INTA -> PIRQA (MSI)
  317. *
  318. * TRACKPAD -> PIRQE (Edge Triggered)
  319. * TOUCHSCREEN -> PIRQG (Edge Triggered)
  320. */
  321. /* Device interrupt pin register (board specific) */
  322. writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
  323. (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
  324. writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
  325. writel(INTA << D29IP_E1P, RCB_REG(D29IP));
  326. writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
  327. writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
  328. writel(INTA << D26IP_E2P, RCB_REG(D26IP));
  329. writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
  330. writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
  331. /* Device interrupt route registers */
  332. writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
  333. writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
  334. writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
  335. writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
  336. writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
  337. writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
  338. writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
  339. /* Enable IOAPIC (generic) */
  340. writew(0x0100, RCB_REG(OIC));
  341. /* PCH BWG says to read back the IOAPIC enable register */
  342. (void)readw(RCB_REG(OIC));
  343. /* Disable unused devices (board specific) */
  344. setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
  345. }
  346. int dram_init(void)
  347. {
  348. struct pei_data _pei_data __aligned(8) = {
  349. .pei_version = PEI_VERSION,
  350. .mchbar = MCH_BASE_ADDRESS,
  351. .dmibar = DEFAULT_DMIBAR,
  352. .epbar = DEFAULT_EPBAR,
  353. .pciexbar = CONFIG_PCIE_ECAM_BASE,
  354. .smbusbar = SMBUS_IO_BASE,
  355. .wdbbar = 0x4000000,
  356. .wdbsize = 0x1000,
  357. .hpet_address = CONFIG_HPET_ADDRESS,
  358. .rcba = DEFAULT_RCBABASE,
  359. .pmbase = DEFAULT_PMBASE,
  360. .gpiobase = DEFAULT_GPIOBASE,
  361. .thermalbase = 0xfed08000,
  362. .system_type = 0, /* 0 Mobile, 1 Desktop/Server */
  363. .tseg_size = CONFIG_SMM_TSEG_SIZE,
  364. .ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
  365. .ec_present = 1,
  366. .ddr3lv_support = 1,
  367. /*
  368. * 0 = leave channel enabled
  369. * 1 = disable dimm 0 on channel
  370. * 2 = disable dimm 1 on channel
  371. * 3 = disable dimm 0+1 on channel
  372. */
  373. .dimm_channel0_disabled = 2,
  374. .dimm_channel1_disabled = 2,
  375. .max_ddr3_freq = 1600,
  376. .usb_port_config = {
  377. /*
  378. * Empty and onboard Ports 0-7, set to un-used pin
  379. * OC3
  380. */
  381. { 0, 3, 0x0000 }, /* P0= Empty */
  382. { 1, 0, 0x0040 }, /* P1= Left USB 1 (OC0) */
  383. { 1, 1, 0x0040 }, /* P2= Left USB 2 (OC1) */
  384. { 1, 3, 0x0040 }, /* P3= SDCARD (no OC) */
  385. { 0, 3, 0x0000 }, /* P4= Empty */
  386. { 1, 3, 0x0040 }, /* P5= WWAN (no OC) */
  387. { 0, 3, 0x0000 }, /* P6= Empty */
  388. { 0, 3, 0x0000 }, /* P7= Empty */
  389. /*
  390. * Empty and onboard Ports 8-13, set to un-used pin
  391. * OC4
  392. */
  393. { 1, 4, 0x0040 }, /* P8= Camera (no OC) */
  394. { 1, 4, 0x0040 }, /* P9= Bluetooth (no OC) */
  395. { 0, 4, 0x0000 }, /* P10= Empty */
  396. { 0, 4, 0x0000 }, /* P11= Empty */
  397. { 0, 4, 0x0000 }, /* P12= Empty */
  398. { 0, 4, 0x0000 }, /* P13= Empty */
  399. },
  400. };
  401. struct pei_data *pei_data = &_pei_data;
  402. struct udevice *dev, *me_dev;
  403. int ret;
  404. /* We need the pinctrl set up early */
  405. ret = syscon_get_by_driver_data(X86_SYSCON_PINCONF, &dev);
  406. if (ret) {
  407. debug("%s: Could not get pinconf (ret=%d)\n", __func__, ret);
  408. return ret;
  409. }
  410. ret = uclass_first_device_err(UCLASS_NORTHBRIDGE, &dev);
  411. if (ret) {
  412. debug("%s: Could not get northbridge (ret=%d)\n", __func__,
  413. ret);
  414. return ret;
  415. }
  416. ret = syscon_get_by_driver_data(X86_SYSCON_ME, &me_dev);
  417. if (ret) {
  418. debug("%s: Could not get ME (ret=%d)\n", __func__, ret);
  419. return ret;
  420. }
  421. ret = copy_spd(dev, pei_data);
  422. if (ret) {
  423. debug("%s: Could not get SPD (ret=%d)\n", __func__, ret);
  424. return ret;
  425. }
  426. pei_data->boot_mode = gd->arch.pei_boot_mode;
  427. debug("Boot mode %d\n", gd->arch.pei_boot_mode);
  428. debug("mrc_input %p\n", pei_data->mrc_input);
  429. /*
  430. * Do not pass MRC data in for recovery mode boot,
  431. * Always pass it in for S3 resume.
  432. */
  433. if (!recovery_mode_enabled() ||
  434. pei_data->boot_mode == PEI_BOOT_RESUME) {
  435. ret = prepare_mrc_cache(pei_data);
  436. if (ret)
  437. debug("prepare_mrc_cache failed: %d\n", ret);
  438. }
  439. /* If MRC data is not found we cannot continue S3 resume. */
  440. if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
  441. debug("Giving up in sdram_initialize: No MRC data\n");
  442. reset_cpu(0);
  443. }
  444. /* Pass console handler in pei_data */
  445. pei_data->tx_byte = sdram_console_tx_byte;
  446. /* Wait for ME to be ready */
  447. ret = intel_early_me_init(me_dev);
  448. if (ret) {
  449. debug("%s: Could not init ME (ret=%d)\n", __func__, ret);
  450. return ret;
  451. }
  452. ret = intel_early_me_uma_size(me_dev);
  453. if (ret < 0) {
  454. debug("%s: Could not get UMA size (ret=%d)\n", __func__, ret);
  455. return ret;
  456. }
  457. ret = mrc_common_init(dev, pei_data, false);
  458. if (ret) {
  459. debug("%s: mrc_common_init() failed (ret=%d)\n", __func__, ret);
  460. return ret;
  461. }
  462. ret = sdram_find(dev);
  463. if (ret) {
  464. debug("%s: sdram_find() failed (ret=%d)\n", __func__, ret);
  465. return ret;
  466. }
  467. gd->ram_size = gd->arch.meminfo.total_32bit_memory;
  468. debug("MRC output data length %#x at %p\n", pei_data->mrc_output_len,
  469. pei_data->mrc_output);
  470. post_system_agent_init(dev, me_dev, pei_data);
  471. report_memory_config();
  472. /* S3 resume: don't save scrambler seed or MRC data */
  473. if (pei_data->boot_mode != PEI_BOOT_RESUME) {
  474. /*
  475. * This will be copied to SDRAM in reserve_arch(), then written
  476. * to SPI flash in mrccache_save()
  477. */
  478. gd->arch.mrc_output = (char *)pei_data->mrc_output;
  479. gd->arch.mrc_output_len = pei_data->mrc_output_len;
  480. ret = write_seeds_to_cmos(pei_data);
  481. if (ret)
  482. debug("Failed to write seeds to CMOS: %d\n", ret);
  483. }
  484. writew(0xCAFE, MCHBAR_REG(SSKPD));
  485. if (ret)
  486. return ret;
  487. rcba_config();
  488. return 0;
  489. }