efi_memory.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * EFI application memory management
  3. *
  4. * Copyright (c) 2016 Alexander Graf
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. /* #define DEBUG_EFI */
  9. #include <common.h>
  10. #include <efi_loader.h>
  11. #include <malloc.h>
  12. #include <asm/global_data.h>
  13. #include <libfdt_env.h>
  14. #include <linux/list_sort.h>
  15. #include <inttypes.h>
  16. #include <watchdog.h>
  17. DECLARE_GLOBAL_DATA_PTR;
  18. struct efi_mem_list {
  19. struct list_head link;
  20. struct efi_mem_desc desc;
  21. };
  22. /* This list contains all memory map items */
  23. LIST_HEAD(efi_mem);
  24. /*
  25. * Sorts the memory list from highest address to lowest address
  26. *
  27. * When allocating memory we should always start from the highest
  28. * address chunk, so sort the memory list such that the first list
  29. * iterator gets the highest address and goes lower from there.
  30. */
  31. static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
  32. {
  33. struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
  34. struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
  35. if (mema->desc.physical_start == memb->desc.physical_start)
  36. return 0;
  37. else if (mema->desc.physical_start < memb->desc.physical_start)
  38. return 1;
  39. else
  40. return -1;
  41. }
  42. static void efi_mem_sort(void)
  43. {
  44. list_sort(NULL, &efi_mem, efi_mem_cmp);
  45. }
  46. /*
  47. * Unmaps all memory occupied by the carve_desc region from the
  48. * list entry pointed to by map.
  49. *
  50. * Returns 1 if carving was performed or 0 if the regions don't overlap.
  51. * Returns -1 if it would affect non-RAM regions but overlap_only_ram is set.
  52. * Carving is only guaranteed to complete when all regions return 0.
  53. */
  54. static int efi_mem_carve_out(struct efi_mem_list *map,
  55. struct efi_mem_desc *carve_desc,
  56. bool overlap_only_ram)
  57. {
  58. struct efi_mem_list *newmap;
  59. struct efi_mem_desc *map_desc = &map->desc;
  60. uint64_t map_start = map_desc->physical_start;
  61. uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
  62. uint64_t carve_start = carve_desc->physical_start;
  63. uint64_t carve_end = carve_start +
  64. (carve_desc->num_pages << EFI_PAGE_SHIFT);
  65. /* check whether we're overlapping */
  66. if ((carve_end <= map_start) || (carve_start >= map_end))
  67. return 0;
  68. /* We're overlapping with non-RAM, warn the caller if desired */
  69. if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
  70. return -1;
  71. /* Sanitize carve_start and carve_end to lie within our bounds */
  72. carve_start = max(carve_start, map_start);
  73. carve_end = min(carve_end, map_end);
  74. /* Carving at the beginning of our map? Just move it! */
  75. if (carve_start == map_start) {
  76. if (map_end == carve_end) {
  77. /* Full overlap, just remove map */
  78. list_del(&map->link);
  79. }
  80. map_desc->physical_start = carve_end;
  81. map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT;
  82. return 1;
  83. }
  84. /*
  85. * Overlapping maps, just split the list map at carve_start,
  86. * it will get moved or removed in the next iteration.
  87. *
  88. * [ map_desc |__carve_start__| newmap ]
  89. */
  90. /* Create a new map from [ carve_start ... map_end ] */
  91. newmap = calloc(1, sizeof(*newmap));
  92. newmap->desc = map->desc;
  93. newmap->desc.physical_start = carve_start;
  94. newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
  95. list_add_tail(&newmap->link, &efi_mem);
  96. /* Shrink the map to [ map_start ... carve_start ] */
  97. map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
  98. return 1;
  99. }
  100. uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
  101. bool overlap_only_ram)
  102. {
  103. struct list_head *lhandle;
  104. struct efi_mem_list *newlist;
  105. bool do_carving;
  106. if (!pages)
  107. return start;
  108. newlist = calloc(1, sizeof(*newlist));
  109. newlist->desc.type = memory_type;
  110. newlist->desc.physical_start = start;
  111. newlist->desc.virtual_start = start;
  112. newlist->desc.num_pages = pages;
  113. switch (memory_type) {
  114. case EFI_RUNTIME_SERVICES_CODE:
  115. case EFI_RUNTIME_SERVICES_DATA:
  116. newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
  117. (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
  118. break;
  119. case EFI_MMAP_IO:
  120. newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
  121. break;
  122. default:
  123. newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
  124. break;
  125. }
  126. /* Add our new map */
  127. do {
  128. do_carving = false;
  129. list_for_each(lhandle, &efi_mem) {
  130. struct efi_mem_list *lmem;
  131. int r;
  132. lmem = list_entry(lhandle, struct efi_mem_list, link);
  133. r = efi_mem_carve_out(lmem, &newlist->desc,
  134. overlap_only_ram);
  135. if (r < 0) {
  136. return 0;
  137. } else if (r) {
  138. do_carving = true;
  139. break;
  140. }
  141. }
  142. } while (do_carving);
  143. /* Add our new map */
  144. list_add_tail(&newlist->link, &efi_mem);
  145. /* And make sure memory is listed in descending order */
  146. efi_mem_sort();
  147. return start;
  148. }
  149. static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
  150. {
  151. struct list_head *lhandle;
  152. list_for_each(lhandle, &efi_mem) {
  153. struct efi_mem_list *lmem = list_entry(lhandle,
  154. struct efi_mem_list, link);
  155. struct efi_mem_desc *desc = &lmem->desc;
  156. uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
  157. uint64_t desc_end = desc->physical_start + desc_len;
  158. uint64_t curmax = min(max_addr, desc_end);
  159. uint64_t ret = curmax - len;
  160. /* We only take memory from free RAM */
  161. if (desc->type != EFI_CONVENTIONAL_MEMORY)
  162. continue;
  163. /* Out of bounds for max_addr */
  164. if ((ret + len) > max_addr)
  165. continue;
  166. /* Out of bounds for upper map limit */
  167. if ((ret + len) > desc_end)
  168. continue;
  169. /* Out of bounds for lower map limit */
  170. if (ret < desc->physical_start)
  171. continue;
  172. /* Return the highest address in this map within bounds */
  173. return ret;
  174. }
  175. return 0;
  176. }
  177. efi_status_t efi_allocate_pages(int type, int memory_type,
  178. unsigned long pages, uint64_t *memory)
  179. {
  180. u64 len = pages << EFI_PAGE_SHIFT;
  181. efi_status_t r = EFI_SUCCESS;
  182. uint64_t addr;
  183. switch (type) {
  184. case 0:
  185. /* Any page */
  186. addr = efi_find_free_memory(len, gd->start_addr_sp);
  187. if (!addr) {
  188. r = EFI_NOT_FOUND;
  189. break;
  190. }
  191. break;
  192. case 1:
  193. /* Max address */
  194. addr = efi_find_free_memory(len, *memory);
  195. if (!addr) {
  196. r = EFI_NOT_FOUND;
  197. break;
  198. }
  199. break;
  200. case 2:
  201. /* Exact address, reserve it. The addr is already in *memory. */
  202. addr = *memory;
  203. break;
  204. default:
  205. /* UEFI doesn't specify other allocation types */
  206. r = EFI_INVALID_PARAMETER;
  207. break;
  208. }
  209. if (r == EFI_SUCCESS) {
  210. uint64_t ret;
  211. /* Reserve that map in our memory maps */
  212. ret = efi_add_memory_map(addr, pages, memory_type, true);
  213. if (ret == addr) {
  214. *memory = addr;
  215. } else {
  216. /* Map would overlap, bail out */
  217. r = EFI_OUT_OF_RESOURCES;
  218. }
  219. }
  220. return r;
  221. }
  222. void *efi_alloc(uint64_t len, int memory_type)
  223. {
  224. uint64_t ret = 0;
  225. uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  226. efi_status_t r;
  227. r = efi_allocate_pages(0, memory_type, pages, &ret);
  228. if (r == EFI_SUCCESS)
  229. return (void*)(uintptr_t)ret;
  230. return NULL;
  231. }
  232. efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
  233. {
  234. /* We don't free, let's cross our fingers we have plenty RAM */
  235. return EFI_SUCCESS;
  236. }
  237. efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
  238. struct efi_mem_desc *memory_map,
  239. unsigned long *map_key,
  240. unsigned long *descriptor_size,
  241. uint32_t *descriptor_version)
  242. {
  243. ulong map_size = 0;
  244. int map_entries = 0;
  245. struct list_head *lhandle;
  246. list_for_each(lhandle, &efi_mem)
  247. map_entries++;
  248. map_size = map_entries * sizeof(struct efi_mem_desc);
  249. *memory_map_size = map_size;
  250. if (descriptor_size)
  251. *descriptor_size = sizeof(struct efi_mem_desc);
  252. if (*memory_map_size < map_size)
  253. return EFI_BUFFER_TOO_SMALL;
  254. /* Copy list into array */
  255. if (memory_map) {
  256. /* Return the list in ascending order */
  257. memory_map = &memory_map[map_entries - 1];
  258. list_for_each(lhandle, &efi_mem) {
  259. struct efi_mem_list *lmem;
  260. lmem = list_entry(lhandle, struct efi_mem_list, link);
  261. *memory_map = lmem->desc;
  262. memory_map--;
  263. }
  264. }
  265. return EFI_SUCCESS;
  266. }
  267. int efi_memory_init(void)
  268. {
  269. unsigned long runtime_start, runtime_end, runtime_pages;
  270. unsigned long uboot_start, uboot_pages;
  271. unsigned long uboot_stack_size = 16 * 1024 * 1024;
  272. int i;
  273. /* Add RAM */
  274. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  275. u64 ram_start = gd->bd->bi_dram[i].start;
  276. u64 ram_size = gd->bd->bi_dram[i].size;
  277. u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  278. u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  279. efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
  280. false);
  281. }
  282. /* Add U-Boot */
  283. uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
  284. uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
  285. efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
  286. /* Add Runtime Services */
  287. runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
  288. runtime_end = (ulong)&__efi_runtime_stop;
  289. runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  290. runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
  291. efi_add_memory_map(runtime_start, runtime_pages,
  292. EFI_RUNTIME_SERVICES_CODE, false);
  293. return 0;
  294. }