mxc_spi.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * Copyright (C) 2008, Guennadi Liakhovetski <lg@denx.de>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <malloc.h>
  8. #include <spi.h>
  9. #include <asm/errno.h>
  10. #include <asm/io.h>
  11. #include <asm/gpio.h>
  12. #include <asm/arch/imx-regs.h>
  13. #include <asm/arch/clock.h>
  14. #ifdef CONFIG_MX27
  15. /* i.MX27 has a completely wrong register layout and register definitions in the
  16. * datasheet, the correct one is in the Freescale's Linux driver */
  17. #error "i.MX27 CSPI not supported due to drastic differences in register definitions" \
  18. "See linux mxc_spi driver from Freescale for details."
  19. #endif
  20. static unsigned long spi_bases[] = {
  21. MXC_SPI_BASE_ADDRESSES
  22. };
  23. #define OUT MXC_GPIO_DIRECTION_OUT
  24. #define reg_read readl
  25. #define reg_write(a, v) writel(v, a)
  26. struct mxc_spi_slave {
  27. struct spi_slave slave;
  28. unsigned long base;
  29. u32 ctrl_reg;
  30. #if defined(MXC_ECSPI)
  31. u32 cfg_reg;
  32. #endif
  33. int gpio;
  34. int ss_pol;
  35. };
  36. static inline struct mxc_spi_slave *to_mxc_spi_slave(struct spi_slave *slave)
  37. {
  38. return container_of(slave, struct mxc_spi_slave, slave);
  39. }
  40. void spi_cs_activate(struct spi_slave *slave)
  41. {
  42. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  43. if (mxcs->gpio > 0)
  44. gpio_set_value(mxcs->gpio, mxcs->ss_pol);
  45. }
  46. void spi_cs_deactivate(struct spi_slave *slave)
  47. {
  48. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  49. if (mxcs->gpio > 0)
  50. gpio_set_value(mxcs->gpio,
  51. !(mxcs->ss_pol));
  52. }
  53. u32 get_cspi_div(u32 div)
  54. {
  55. int i;
  56. for (i = 0; i < 8; i++) {
  57. if (div <= (4 << i))
  58. return i;
  59. }
  60. return i;
  61. }
  62. #ifdef MXC_CSPI
  63. static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs,
  64. unsigned int max_hz, unsigned int mode)
  65. {
  66. unsigned int ctrl_reg;
  67. u32 clk_src;
  68. u32 div;
  69. clk_src = mxc_get_clock(MXC_CSPI_CLK);
  70. div = DIV_ROUND_UP(clk_src, max_hz);
  71. div = get_cspi_div(div);
  72. debug("clk %d Hz, div %d, real clk %d Hz\n",
  73. max_hz, div, clk_src / (4 << div));
  74. ctrl_reg = MXC_CSPICTRL_CHIPSELECT(cs) |
  75. MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS) |
  76. MXC_CSPICTRL_DATARATE(div) |
  77. MXC_CSPICTRL_EN |
  78. #ifdef CONFIG_MX35
  79. MXC_CSPICTRL_SSCTL |
  80. #endif
  81. MXC_CSPICTRL_MODE;
  82. if (mode & SPI_CPHA)
  83. ctrl_reg |= MXC_CSPICTRL_PHA;
  84. if (mode & SPI_CPOL)
  85. ctrl_reg |= MXC_CSPICTRL_POL;
  86. if (mode & SPI_CS_HIGH)
  87. ctrl_reg |= MXC_CSPICTRL_SSPOL;
  88. mxcs->ctrl_reg = ctrl_reg;
  89. return 0;
  90. }
  91. #endif
  92. #ifdef MXC_ECSPI
  93. static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs,
  94. unsigned int max_hz, unsigned int mode)
  95. {
  96. u32 clk_src = mxc_get_clock(MXC_CSPI_CLK);
  97. s32 reg_ctrl, reg_config;
  98. u32 ss_pol = 0, sclkpol = 0, sclkpha = 0, pre_div = 0, post_div = 0;
  99. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  100. if (max_hz == 0) {
  101. printf("Error: desired clock is 0\n");
  102. return -1;
  103. }
  104. /*
  105. * Reset SPI and set all CSs to master mode, if toggling
  106. * between slave and master mode we might see a glitch
  107. * on the clock line
  108. */
  109. reg_ctrl = MXC_CSPICTRL_MODE_MASK;
  110. reg_write(&regs->ctrl, reg_ctrl);
  111. reg_ctrl |= MXC_CSPICTRL_EN;
  112. reg_write(&regs->ctrl, reg_ctrl);
  113. if (clk_src > max_hz) {
  114. pre_div = (clk_src - 1) / max_hz;
  115. /* fls(1) = 1, fls(0x80000000) = 32, fls(16) = 5 */
  116. post_div = fls(pre_div);
  117. if (post_div > 4) {
  118. post_div -= 4;
  119. if (post_div >= 16) {
  120. printf("Error: no divider for the freq: %d\n",
  121. max_hz);
  122. return -1;
  123. }
  124. pre_div >>= post_div;
  125. } else {
  126. post_div = 0;
  127. }
  128. }
  129. debug("pre_div = %d, post_div=%d\n", pre_div, post_div);
  130. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_SELCHAN(3)) |
  131. MXC_CSPICTRL_SELCHAN(cs);
  132. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_PREDIV(0x0F)) |
  133. MXC_CSPICTRL_PREDIV(pre_div);
  134. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_POSTDIV(0x0F)) |
  135. MXC_CSPICTRL_POSTDIV(post_div);
  136. /* We need to disable SPI before changing registers */
  137. reg_ctrl &= ~MXC_CSPICTRL_EN;
  138. if (mode & SPI_CS_HIGH)
  139. ss_pol = 1;
  140. if (mode & SPI_CPOL)
  141. sclkpol = 1;
  142. if (mode & SPI_CPHA)
  143. sclkpha = 1;
  144. reg_config = reg_read(&regs->cfg);
  145. /*
  146. * Configuration register setup
  147. * The MX51 supports different setup for each SS
  148. */
  149. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_SSPOL))) |
  150. (ss_pol << (cs + MXC_CSPICON_SSPOL));
  151. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_POL))) |
  152. (sclkpol << (cs + MXC_CSPICON_POL));
  153. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_PHA))) |
  154. (sclkpha << (cs + MXC_CSPICON_PHA));
  155. debug("reg_ctrl = 0x%x\n", reg_ctrl);
  156. reg_write(&regs->ctrl, reg_ctrl);
  157. debug("reg_config = 0x%x\n", reg_config);
  158. reg_write(&regs->cfg, reg_config);
  159. /* save config register and control register */
  160. mxcs->ctrl_reg = reg_ctrl;
  161. mxcs->cfg_reg = reg_config;
  162. /* clear interrupt reg */
  163. reg_write(&regs->intr, 0);
  164. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  165. return 0;
  166. }
  167. #endif
  168. int spi_xchg_single(struct spi_slave *slave, unsigned int bitlen,
  169. const u8 *dout, u8 *din, unsigned long flags)
  170. {
  171. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  172. int nbytes = DIV_ROUND_UP(bitlen, 8);
  173. u32 data, cnt, i;
  174. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  175. debug("%s: bitlen %d dout 0x%x din 0x%x\n",
  176. __func__, bitlen, (u32)dout, (u32)din);
  177. mxcs->ctrl_reg = (mxcs->ctrl_reg &
  178. ~MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS)) |
  179. MXC_CSPICTRL_BITCOUNT(bitlen - 1);
  180. reg_write(&regs->ctrl, mxcs->ctrl_reg | MXC_CSPICTRL_EN);
  181. #ifdef MXC_ECSPI
  182. reg_write(&regs->cfg, mxcs->cfg_reg);
  183. #endif
  184. /* Clear interrupt register */
  185. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  186. /*
  187. * The SPI controller works only with words,
  188. * check if less than a word is sent.
  189. * Access to the FIFO is only 32 bit
  190. */
  191. if (bitlen % 32) {
  192. data = 0;
  193. cnt = (bitlen % 32) / 8;
  194. if (dout) {
  195. for (i = 0; i < cnt; i++) {
  196. data = (data << 8) | (*dout++ & 0xFF);
  197. }
  198. }
  199. debug("Sending SPI 0x%x\n", data);
  200. reg_write(&regs->txdata, data);
  201. nbytes -= cnt;
  202. }
  203. data = 0;
  204. while (nbytes > 0) {
  205. data = 0;
  206. if (dout) {
  207. /* Buffer is not 32-bit aligned */
  208. if ((unsigned long)dout & 0x03) {
  209. data = 0;
  210. for (i = 0; i < 4; i++)
  211. data = (data << 8) | (*dout++ & 0xFF);
  212. } else {
  213. data = *(u32 *)dout;
  214. data = cpu_to_be32(data);
  215. dout += 4;
  216. }
  217. }
  218. debug("Sending SPI 0x%x\n", data);
  219. reg_write(&regs->txdata, data);
  220. nbytes -= 4;
  221. }
  222. /* FIFO is written, now starts the transfer setting the XCH bit */
  223. reg_write(&regs->ctrl, mxcs->ctrl_reg |
  224. MXC_CSPICTRL_EN | MXC_CSPICTRL_XCH);
  225. /* Wait until the TC (Transfer completed) bit is set */
  226. while ((reg_read(&regs->stat) & MXC_CSPICTRL_TC) == 0)
  227. ;
  228. /* Transfer completed, clear any pending request */
  229. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  230. nbytes = DIV_ROUND_UP(bitlen, 8);
  231. cnt = nbytes % 32;
  232. if (bitlen % 32) {
  233. data = reg_read(&regs->rxdata);
  234. cnt = (bitlen % 32) / 8;
  235. data = cpu_to_be32(data) >> ((sizeof(data) - cnt) * 8);
  236. debug("SPI Rx unaligned: 0x%x\n", data);
  237. if (din) {
  238. memcpy(din, &data, cnt);
  239. din += cnt;
  240. }
  241. nbytes -= cnt;
  242. }
  243. while (nbytes > 0) {
  244. u32 tmp;
  245. tmp = reg_read(&regs->rxdata);
  246. data = cpu_to_be32(tmp);
  247. debug("SPI Rx: 0x%x 0x%x\n", tmp, data);
  248. cnt = min(nbytes, sizeof(data));
  249. if (din) {
  250. memcpy(din, &data, cnt);
  251. din += cnt;
  252. }
  253. nbytes -= cnt;
  254. }
  255. return 0;
  256. }
  257. int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
  258. void *din, unsigned long flags)
  259. {
  260. int n_bytes = DIV_ROUND_UP(bitlen, 8);
  261. int n_bits;
  262. int ret;
  263. u32 blk_size;
  264. u8 *p_outbuf = (u8 *)dout;
  265. u8 *p_inbuf = (u8 *)din;
  266. if (!slave)
  267. return -1;
  268. if (flags & SPI_XFER_BEGIN)
  269. spi_cs_activate(slave);
  270. while (n_bytes > 0) {
  271. if (n_bytes < MAX_SPI_BYTES)
  272. blk_size = n_bytes;
  273. else
  274. blk_size = MAX_SPI_BYTES;
  275. n_bits = blk_size * 8;
  276. ret = spi_xchg_single(slave, n_bits, p_outbuf, p_inbuf, 0);
  277. if (ret)
  278. return ret;
  279. if (dout)
  280. p_outbuf += blk_size;
  281. if (din)
  282. p_inbuf += blk_size;
  283. n_bytes -= blk_size;
  284. }
  285. if (flags & SPI_XFER_END) {
  286. spi_cs_deactivate(slave);
  287. }
  288. return 0;
  289. }
  290. void spi_init(void)
  291. {
  292. }
  293. static int decode_cs(struct mxc_spi_slave *mxcs, unsigned int cs)
  294. {
  295. int ret;
  296. /*
  297. * Some SPI devices require active chip-select over multiple
  298. * transactions, we achieve this using a GPIO. Still, the SPI
  299. * controller has to be configured to use one of its own chipselects.
  300. * To use this feature you have to call spi_setup_slave() with
  301. * cs = internal_cs | (gpio << 8), and you have to use some unused
  302. * on this SPI controller cs between 0 and 3.
  303. */
  304. if (cs > 3) {
  305. mxcs->gpio = cs >> 8;
  306. cs &= 3;
  307. ret = gpio_direction_output(mxcs->gpio, !(mxcs->ss_pol));
  308. if (ret) {
  309. printf("mxc_spi: cannot setup gpio %d\n", mxcs->gpio);
  310. return -EINVAL;
  311. }
  312. } else {
  313. mxcs->gpio = -1;
  314. }
  315. return cs;
  316. }
  317. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  318. unsigned int max_hz, unsigned int mode)
  319. {
  320. struct mxc_spi_slave *mxcs;
  321. int ret;
  322. if (bus >= ARRAY_SIZE(spi_bases))
  323. return NULL;
  324. mxcs = spi_alloc_slave(struct mxc_spi_slave, bus, cs);
  325. if (!mxcs) {
  326. puts("mxc_spi: SPI Slave not allocated !\n");
  327. return NULL;
  328. }
  329. mxcs->ss_pol = (mode & SPI_CS_HIGH) ? 1 : 0;
  330. ret = decode_cs(mxcs, cs);
  331. if (ret < 0) {
  332. free(mxcs);
  333. return NULL;
  334. }
  335. cs = ret;
  336. mxcs->base = spi_bases[bus];
  337. ret = spi_cfg_mxc(mxcs, cs, max_hz, mode);
  338. if (ret) {
  339. printf("mxc_spi: cannot setup SPI controller\n");
  340. free(mxcs);
  341. return NULL;
  342. }
  343. return &mxcs->slave;
  344. }
  345. void spi_free_slave(struct spi_slave *slave)
  346. {
  347. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  348. free(mxcs);
  349. }
  350. int spi_claim_bus(struct spi_slave *slave)
  351. {
  352. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  353. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  354. reg_write(&regs->rxdata, 1);
  355. udelay(1);
  356. reg_write(&regs->ctrl, mxcs->ctrl_reg);
  357. reg_write(&regs->period, MXC_CSPIPERIOD_32KHZ);
  358. reg_write(&regs->intr, 0);
  359. return 0;
  360. }
  361. void spi_release_bus(struct spi_slave *slave)
  362. {
  363. /* TODO: Shut the controller down */
  364. }