fsl_qspi.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. /*
  2. * Copyright 2013-2014 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include "fsl_qspi.h"
  14. #define RX_BUFFER_SIZE 0x80
  15. #define TX_BUFFER_SIZE 0x40
  16. #define OFFSET_BITS_MASK 0x00ffffff
  17. #define FLASH_STATUS_WEL 0x02
  18. /* SEQID */
  19. #define SEQID_WREN 1
  20. #define SEQID_FAST_READ 2
  21. #define SEQID_RDSR 3
  22. #define SEQID_SE 4
  23. #define SEQID_CHIP_ERASE 5
  24. #define SEQID_PP 6
  25. #define SEQID_RDID 7
  26. /* Flash opcodes */
  27. #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
  28. #define OPCODE_RDSR 0x05 /* Read status register */
  29. #define OPCODE_WREN 0x06 /* Write enable */
  30. #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
  31. #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  32. #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
  33. #define OPCODE_RDID 0x9f /* Read JEDEC ID */
  34. /* 4-byte address opcodes - used on Spansion and some Macronix flashes */
  35. #define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  36. #define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
  37. #define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  38. #ifdef CONFIG_SYS_FSL_QSPI_LE
  39. #define qspi_read32 in_le32
  40. #define qspi_write32 out_le32
  41. #elif defined(CONFIG_SYS_FSL_QSPI_BE)
  42. #define qspi_read32 in_be32
  43. #define qspi_write32 out_be32
  44. #endif
  45. static unsigned long spi_bases[] = {
  46. QSPI0_BASE_ADDR,
  47. };
  48. static unsigned long amba_bases[] = {
  49. QSPI0_AMBA_BASE,
  50. };
  51. struct fsl_qspi {
  52. struct spi_slave slave;
  53. unsigned long reg_base;
  54. unsigned long amba_base;
  55. u32 sf_addr;
  56. u8 cur_seqid;
  57. };
  58. /* QSPI support swapping the flash read/write data
  59. * in hardware for LS102xA, but not for VF610 */
  60. static inline u32 qspi_endian_xchg(u32 data)
  61. {
  62. #ifdef CONFIG_VF610
  63. return swab32(data);
  64. #else
  65. return data;
  66. #endif
  67. }
  68. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  69. {
  70. return container_of(slave, struct fsl_qspi, slave);
  71. }
  72. static void qspi_set_lut(struct fsl_qspi *qspi)
  73. {
  74. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  75. u32 lut_base;
  76. /* Unlock the LUT */
  77. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  78. qspi_write32(&regs->lckcr, QSPI_LCKCR_UNLOCK);
  79. /* Write Enable */
  80. lut_base = SEQID_WREN * 4;
  81. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_WREN) |
  82. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  83. qspi_write32(&regs->lut[lut_base + 1], 0);
  84. qspi_write32(&regs->lut[lut_base + 2], 0);
  85. qspi_write32(&regs->lut[lut_base + 3], 0);
  86. /* Fast Read */
  87. lut_base = SEQID_FAST_READ * 4;
  88. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  89. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_FAST_READ) |
  90. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  91. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  92. else
  93. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_FAST_READ_4B) |
  94. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  95. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  96. qspi_write32(&regs->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
  97. INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  98. INSTR1(LUT_READ));
  99. qspi_write32(&regs->lut[lut_base + 2], 0);
  100. qspi_write32(&regs->lut[lut_base + 3], 0);
  101. /* Read Status */
  102. lut_base = SEQID_RDSR * 4;
  103. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_RDSR) |
  104. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  105. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  106. qspi_write32(&regs->lut[lut_base + 1], 0);
  107. qspi_write32(&regs->lut[lut_base + 2], 0);
  108. qspi_write32(&regs->lut[lut_base + 3], 0);
  109. /* Erase a sector */
  110. lut_base = SEQID_SE * 4;
  111. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  112. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_SE) |
  113. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  114. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  115. else
  116. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_SE_4B) |
  117. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  118. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  119. qspi_write32(&regs->lut[lut_base + 1], 0);
  120. qspi_write32(&regs->lut[lut_base + 2], 0);
  121. qspi_write32(&regs->lut[lut_base + 3], 0);
  122. /* Erase the whole chip */
  123. lut_base = SEQID_CHIP_ERASE * 4;
  124. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_CHIP_ERASE) |
  125. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  126. qspi_write32(&regs->lut[lut_base + 1], 0);
  127. qspi_write32(&regs->lut[lut_base + 2], 0);
  128. qspi_write32(&regs->lut[lut_base + 3], 0);
  129. /* Page Program */
  130. lut_base = SEQID_PP * 4;
  131. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  132. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_PP) |
  133. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  134. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  135. else
  136. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_PP_4B) |
  137. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  138. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  139. qspi_write32(&regs->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
  140. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  141. qspi_write32(&regs->lut[lut_base + 2], 0);
  142. qspi_write32(&regs->lut[lut_base + 3], 0);
  143. /* READ ID */
  144. lut_base = SEQID_RDID * 4;
  145. qspi_write32(&regs->lut[lut_base], OPRND0(OPCODE_RDID) |
  146. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  147. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  148. qspi_write32(&regs->lut[lut_base + 1], 0);
  149. qspi_write32(&regs->lut[lut_base + 2], 0);
  150. qspi_write32(&regs->lut[lut_base + 3], 0);
  151. /* Lock the LUT */
  152. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  153. qspi_write32(&regs->lckcr, QSPI_LCKCR_LOCK);
  154. }
  155. void spi_init()
  156. {
  157. /* do nothing */
  158. }
  159. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  160. unsigned int max_hz, unsigned int mode)
  161. {
  162. struct fsl_qspi *qspi;
  163. struct fsl_qspi_regs *regs;
  164. u32 reg_val, smpr_val;
  165. u32 total_size, seq_id;
  166. if (bus >= ARRAY_SIZE(spi_bases))
  167. return NULL;
  168. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  169. if (!qspi)
  170. return NULL;
  171. qspi->reg_base = spi_bases[bus];
  172. qspi->amba_base = amba_bases[bus];
  173. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  174. regs = (struct fsl_qspi_regs *)qspi->reg_base;
  175. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
  176. smpr_val = qspi_read32(&regs->smpr);
  177. qspi_write32(&regs->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
  178. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
  179. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  180. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  181. qspi_write32(&regs->sfa1ad, FSL_QSPI_FLASH_SIZE | qspi->amba_base);
  182. qspi_write32(&regs->sfa2ad, FSL_QSPI_FLASH_SIZE | qspi->amba_base);
  183. qspi_write32(&regs->sfb1ad, total_size | qspi->amba_base);
  184. qspi_write32(&regs->sfb2ad, total_size | qspi->amba_base);
  185. qspi_set_lut(qspi);
  186. smpr_val = qspi_read32(&regs->smpr);
  187. smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
  188. qspi_write32(&regs->smpr, smpr_val);
  189. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  190. seq_id = 0;
  191. reg_val = qspi_read32(&regs->bfgencr);
  192. reg_val &= ~QSPI_BFGENCR_SEQID_MASK;
  193. reg_val |= (seq_id << QSPI_BFGENCR_SEQID_SHIFT);
  194. reg_val &= ~QSPI_BFGENCR_PAR_EN_MASK;
  195. qspi_write32(&regs->bfgencr, reg_val);
  196. return &qspi->slave;
  197. }
  198. void spi_free_slave(struct spi_slave *slave)
  199. {
  200. struct fsl_qspi *qspi = to_qspi_spi(slave);
  201. free(qspi);
  202. }
  203. int spi_claim_bus(struct spi_slave *slave)
  204. {
  205. return 0;
  206. }
  207. static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  208. {
  209. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  210. u32 mcr_reg, rbsr_reg, data;
  211. int i, size;
  212. mcr_reg = qspi_read32(&regs->mcr);
  213. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  214. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  215. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  216. qspi_write32(&regs->sfar, qspi->amba_base);
  217. qspi_write32(&regs->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  218. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  219. ;
  220. i = 0;
  221. size = len;
  222. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  223. rbsr_reg = qspi_read32(&regs->rbsr);
  224. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  225. data = qspi_read32(&regs->rbdr[i]);
  226. data = qspi_endian_xchg(data);
  227. memcpy(rxbuf, &data, 4);
  228. rxbuf++;
  229. size -= 4;
  230. i++;
  231. }
  232. }
  233. qspi_write32(&regs->mcr, mcr_reg);
  234. }
  235. static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  236. {
  237. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  238. u32 mcr_reg, data;
  239. int i, size;
  240. u32 to_or_from;
  241. mcr_reg = qspi_read32(&regs->mcr);
  242. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  243. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  244. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  245. to_or_from = qspi->sf_addr + qspi->amba_base;
  246. while (len > 0) {
  247. qspi_write32(&regs->sfar, to_or_from);
  248. size = (len > RX_BUFFER_SIZE) ?
  249. RX_BUFFER_SIZE : len;
  250. qspi_write32(&regs->ipcr,
  251. (SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
  252. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  253. ;
  254. to_or_from += size;
  255. len -= size;
  256. i = 0;
  257. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  258. data = qspi_read32(&regs->rbdr[i]);
  259. data = qspi_endian_xchg(data);
  260. memcpy(rxbuf, &data, 4);
  261. rxbuf++;
  262. size -= 4;
  263. i++;
  264. }
  265. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  266. QSPI_MCR_CLR_RXF_MASK);
  267. }
  268. qspi_write32(&regs->mcr, mcr_reg);
  269. }
  270. static void qspi_op_pp(struct fsl_qspi *qspi, u32 *txbuf, u32 len)
  271. {
  272. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  273. u32 mcr_reg, data, reg, status_reg;
  274. int i, size, tx_size;
  275. u32 to_or_from = 0;
  276. mcr_reg = qspi_read32(&regs->mcr);
  277. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  278. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  279. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  280. status_reg = 0;
  281. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  282. qspi_write32(&regs->ipcr,
  283. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  284. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  285. ;
  286. qspi_write32(&regs->ipcr,
  287. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  288. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  289. ;
  290. reg = qspi_read32(&regs->rbsr);
  291. if (reg & QSPI_RBSR_RDBFL_MASK) {
  292. status_reg = qspi_read32(&regs->rbdr[0]);
  293. status_reg = qspi_endian_xchg(status_reg);
  294. }
  295. qspi_write32(&regs->mcr,
  296. qspi_read32(&regs->mcr) | QSPI_MCR_CLR_RXF_MASK);
  297. }
  298. to_or_from = qspi->sf_addr + qspi->amba_base;
  299. qspi_write32(&regs->sfar, to_or_from);
  300. tx_size = (len > TX_BUFFER_SIZE) ?
  301. TX_BUFFER_SIZE : len;
  302. size = (tx_size + 3) / 4;
  303. for (i = 0; i < size; i++) {
  304. data = qspi_endian_xchg(*txbuf);
  305. qspi_write32(&regs->tbdr, data);
  306. txbuf++;
  307. }
  308. qspi_write32(&regs->ipcr,
  309. (SEQID_PP << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  310. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  311. ;
  312. qspi_write32(&regs->mcr, mcr_reg);
  313. }
  314. static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
  315. {
  316. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  317. u32 mcr_reg, reg, data;
  318. mcr_reg = qspi_read32(&regs->mcr);
  319. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  320. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  321. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  322. qspi_write32(&regs->sfar, qspi->amba_base);
  323. qspi_write32(&regs->ipcr,
  324. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  325. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  326. ;
  327. while (1) {
  328. reg = qspi_read32(&regs->rbsr);
  329. if (reg & QSPI_RBSR_RDBFL_MASK) {
  330. data = qspi_read32(&regs->rbdr[0]);
  331. data = qspi_endian_xchg(data);
  332. memcpy(rxbuf, &data, 4);
  333. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  334. QSPI_MCR_CLR_RXF_MASK);
  335. break;
  336. }
  337. }
  338. qspi_write32(&regs->mcr, mcr_reg);
  339. }
  340. static void qspi_op_se(struct fsl_qspi *qspi)
  341. {
  342. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  343. u32 mcr_reg;
  344. u32 to_or_from = 0;
  345. mcr_reg = qspi_read32(&regs->mcr);
  346. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  347. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  348. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  349. to_or_from = qspi->sf_addr + qspi->amba_base;
  350. qspi_write32(&regs->sfar, to_or_from);
  351. qspi_write32(&regs->ipcr,
  352. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  353. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  354. ;
  355. qspi_write32(&regs->ipcr,
  356. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  357. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  358. ;
  359. qspi_write32(&regs->mcr, mcr_reg);
  360. }
  361. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  362. const void *dout, void *din, unsigned long flags)
  363. {
  364. struct fsl_qspi *qspi = to_qspi_spi(slave);
  365. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  366. static u32 pp_sfaddr;
  367. u32 txbuf;
  368. if (dout) {
  369. memcpy(&txbuf, dout, 4);
  370. qspi->cur_seqid = *(u8 *)dout;
  371. if (flags == SPI_XFER_END) {
  372. qspi->sf_addr = pp_sfaddr;
  373. qspi_op_pp(qspi, (u32 *)dout, bytes);
  374. return 0;
  375. }
  376. if (qspi->cur_seqid == OPCODE_FAST_READ) {
  377. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  378. } else if (qspi->cur_seqid == OPCODE_SE) {
  379. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  380. qspi_op_se(qspi);
  381. } else if (qspi->cur_seqid == OPCODE_PP) {
  382. pp_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  383. }
  384. }
  385. if (din) {
  386. if (qspi->cur_seqid == OPCODE_FAST_READ)
  387. qspi_op_read(qspi, din, bytes);
  388. else if (qspi->cur_seqid == OPCODE_RDID)
  389. qspi_op_rdid(qspi, din, bytes);
  390. else if (qspi->cur_seqid == OPCODE_RDSR)
  391. qspi_op_rdsr(qspi, din);
  392. }
  393. return 0;
  394. }
  395. void spi_release_bus(struct spi_slave *slave)
  396. {
  397. /* Nothing to do */
  398. }