lc_common_dimm_params.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * Copyright 2008-2012 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. #include <common.h>
  9. #include <asm/fsl_ddr_sdram.h>
  10. #include "ddr.h"
  11. #if defined(CONFIG_FSL_DDR3)
  12. static unsigned int
  13. compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
  14. common_timing_params_t *outpdimm,
  15. unsigned int number_of_dimms)
  16. {
  17. unsigned int i;
  18. unsigned int tAAmin_ps = 0;
  19. unsigned int tCKmin_X_ps = 0;
  20. unsigned int common_caslat;
  21. unsigned int caslat_actual;
  22. unsigned int retry = 16;
  23. unsigned int tmp;
  24. const unsigned int mclk_ps = get_memory_clk_period_ps();
  25. /* compute the common CAS latency supported between slots */
  26. tmp = dimm_params[0].caslat_X;
  27. for (i = 1; i < number_of_dimms; i++) {
  28. if (dimm_params[i].n_ranks)
  29. tmp &= dimm_params[i].caslat_X;
  30. }
  31. common_caslat = tmp;
  32. /* compute the max tAAmin tCKmin between slots */
  33. for (i = 0; i < number_of_dimms; i++) {
  34. tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
  35. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  36. }
  37. /* validate if the memory clk is in the range of dimms */
  38. if (mclk_ps < tCKmin_X_ps) {
  39. printf("DDR clock (MCLK cycle %u ps) is faster than "
  40. "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
  41. mclk_ps, tCKmin_X_ps);
  42. }
  43. /* determine the acutal cas latency */
  44. caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
  45. /* check if the dimms support the CAS latency */
  46. while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
  47. caslat_actual++;
  48. retry--;
  49. }
  50. /* once the caculation of caslat_actual is completed
  51. * we must verify that this CAS latency value does not
  52. * exceed tAAmax, which is 20 ns for all DDR3 speed grades
  53. */
  54. if (caslat_actual * mclk_ps > 20000) {
  55. printf("The choosen cas latency %d is too large\n",
  56. caslat_actual);
  57. }
  58. outpdimm->lowest_common_SPD_caslat = caslat_actual;
  59. return 0;
  60. }
  61. #endif
  62. /*
  63. * compute_lowest_common_dimm_parameters()
  64. *
  65. * Determine the worst-case DIMM timing parameters from the set of DIMMs
  66. * whose parameters have been computed into the array pointed to
  67. * by dimm_params.
  68. */
  69. unsigned int
  70. compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
  71. common_timing_params_t *outpdimm,
  72. const unsigned int number_of_dimms)
  73. {
  74. unsigned int i, j;
  75. unsigned int tCKmin_X_ps = 0;
  76. unsigned int tCKmax_ps = 0xFFFFFFFF;
  77. unsigned int tCKmax_max_ps = 0;
  78. unsigned int tRCD_ps = 0;
  79. unsigned int tRP_ps = 0;
  80. unsigned int tRAS_ps = 0;
  81. unsigned int tWR_ps = 0;
  82. unsigned int tWTR_ps = 0;
  83. unsigned int tRFC_ps = 0;
  84. unsigned int tRRD_ps = 0;
  85. unsigned int tRC_ps = 0;
  86. unsigned int refresh_rate_ps = 0;
  87. unsigned int tIS_ps = 0;
  88. unsigned int tIH_ps = 0;
  89. unsigned int tDS_ps = 0;
  90. unsigned int tDH_ps = 0;
  91. unsigned int tRTP_ps = 0;
  92. unsigned int tDQSQ_max_ps = 0;
  93. unsigned int tQHS_ps = 0;
  94. unsigned int temp1, temp2;
  95. unsigned int additive_latency = 0;
  96. #if !defined(CONFIG_FSL_DDR3)
  97. const unsigned int mclk_ps = get_memory_clk_period_ps();
  98. unsigned int lowest_good_caslat;
  99. unsigned int not_ok;
  100. debug("using mclk_ps = %u\n", mclk_ps);
  101. #endif
  102. temp1 = 0;
  103. for (i = 0; i < number_of_dimms; i++) {
  104. /*
  105. * If there are no ranks on this DIMM,
  106. * it probably doesn't exist, so skip it.
  107. */
  108. if (dimm_params[i].n_ranks == 0) {
  109. temp1++;
  110. continue;
  111. }
  112. if (dimm_params[i].n_ranks == 4 && i != 0) {
  113. printf("Found Quad-rank DIMM in wrong bank, ignored."
  114. " Software may not run as expected.\n");
  115. temp1++;
  116. continue;
  117. }
  118. /*
  119. * check if quad-rank DIMM is plugged if
  120. * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
  121. * Only the board with proper design is capable
  122. */
  123. #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
  124. if (dimm_params[i].n_ranks == 4 && \
  125. CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
  126. printf("Found Quad-rank DIMM, not able to support.");
  127. temp1++;
  128. continue;
  129. }
  130. #endif
  131. /*
  132. * Find minimum tCKmax_ps to find fastest slow speed,
  133. * i.e., this is the slowest the whole system can go.
  134. */
  135. tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
  136. /* Either find maximum value to determine slowest
  137. * speed, delay, time, period, etc */
  138. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  139. tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
  140. tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
  141. tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
  142. tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
  143. tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
  144. tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
  145. tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
  146. tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
  147. tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
  148. tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
  149. tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
  150. tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
  151. tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
  152. tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
  153. tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
  154. refresh_rate_ps = max(refresh_rate_ps,
  155. dimm_params[i].refresh_rate_ps);
  156. /*
  157. * Find maximum tDQSQ_max_ps to find slowest.
  158. *
  159. * FIXME: is finding the slowest value the correct
  160. * strategy for this parameter?
  161. */
  162. tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
  163. }
  164. outpdimm->ndimms_present = number_of_dimms - temp1;
  165. if (temp1 == number_of_dimms) {
  166. debug("no dimms this memory controller\n");
  167. return 0;
  168. }
  169. outpdimm->tCKmin_X_ps = tCKmin_X_ps;
  170. outpdimm->tCKmax_ps = tCKmax_ps;
  171. outpdimm->tCKmax_max_ps = tCKmax_max_ps;
  172. outpdimm->tRCD_ps = tRCD_ps;
  173. outpdimm->tRP_ps = tRP_ps;
  174. outpdimm->tRAS_ps = tRAS_ps;
  175. outpdimm->tWR_ps = tWR_ps;
  176. outpdimm->tWTR_ps = tWTR_ps;
  177. outpdimm->tRFC_ps = tRFC_ps;
  178. outpdimm->tRRD_ps = tRRD_ps;
  179. outpdimm->tRC_ps = tRC_ps;
  180. outpdimm->refresh_rate_ps = refresh_rate_ps;
  181. outpdimm->tIS_ps = tIS_ps;
  182. outpdimm->tIH_ps = tIH_ps;
  183. outpdimm->tDS_ps = tDS_ps;
  184. outpdimm->tDH_ps = tDH_ps;
  185. outpdimm->tRTP_ps = tRTP_ps;
  186. outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
  187. outpdimm->tQHS_ps = tQHS_ps;
  188. /* Determine common burst length for all DIMMs. */
  189. temp1 = 0xff;
  190. for (i = 0; i < number_of_dimms; i++) {
  191. if (dimm_params[i].n_ranks) {
  192. temp1 &= dimm_params[i].burst_lengths_bitmask;
  193. }
  194. }
  195. outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
  196. /* Determine if all DIMMs registered buffered. */
  197. temp1 = temp2 = 0;
  198. for (i = 0; i < number_of_dimms; i++) {
  199. if (dimm_params[i].n_ranks) {
  200. if (dimm_params[i].registered_dimm) {
  201. temp1 = 1;
  202. #ifndef CONFIG_SPL_BUILD
  203. printf("Detected RDIMM %s\n",
  204. dimm_params[i].mpart);
  205. #endif
  206. } else {
  207. temp2 = 1;
  208. #ifndef CONFIG_SPL_BUILD
  209. printf("Detected UDIMM %s\n",
  210. dimm_params[i].mpart);
  211. #endif
  212. }
  213. }
  214. }
  215. outpdimm->all_DIMMs_registered = 0;
  216. outpdimm->all_DIMMs_unbuffered = 0;
  217. if (temp1 && !temp2) {
  218. outpdimm->all_DIMMs_registered = 1;
  219. } else if (!temp1 && temp2) {
  220. outpdimm->all_DIMMs_unbuffered = 1;
  221. } else {
  222. printf("ERROR: Mix of registered buffered and unbuffered "
  223. "DIMMs detected!\n");
  224. }
  225. temp1 = 0;
  226. if (outpdimm->all_DIMMs_registered)
  227. for (j = 0; j < 16; j++) {
  228. outpdimm->rcw[j] = dimm_params[0].rcw[j];
  229. for (i = 1; i < number_of_dimms; i++) {
  230. if (!dimm_params[i].n_ranks)
  231. continue;
  232. if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
  233. temp1 = 1;
  234. break;
  235. }
  236. }
  237. }
  238. if (temp1 != 0)
  239. printf("ERROR: Mix different RDIMM detected!\n");
  240. #if defined(CONFIG_FSL_DDR3)
  241. if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
  242. return 1;
  243. #else
  244. /*
  245. * Compute a CAS latency suitable for all DIMMs
  246. *
  247. * Strategy for SPD-defined latencies: compute only
  248. * CAS latency defined by all DIMMs.
  249. */
  250. /*
  251. * Step 1: find CAS latency common to all DIMMs using bitwise
  252. * operation.
  253. */
  254. temp1 = 0xFF;
  255. for (i = 0; i < number_of_dimms; i++) {
  256. if (dimm_params[i].n_ranks) {
  257. temp2 = 0;
  258. temp2 |= 1 << dimm_params[i].caslat_X;
  259. temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
  260. temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
  261. /*
  262. * FIXME: If there was no entry for X-2 (X-1) in
  263. * the SPD, then caslat_X_minus_2
  264. * (caslat_X_minus_1) contains either 255 or
  265. * 0xFFFFFFFF because that's what the glorious
  266. * __ilog2 function returns for an input of 0.
  267. * On 32-bit PowerPC, left shift counts with bit
  268. * 26 set (that the value of 255 or 0xFFFFFFFF
  269. * will have), cause the destination register to
  270. * be 0. That is why this works.
  271. */
  272. temp1 &= temp2;
  273. }
  274. }
  275. /*
  276. * Step 2: check each common CAS latency against tCK of each
  277. * DIMM's SPD.
  278. */
  279. lowest_good_caslat = 0;
  280. temp2 = 0;
  281. while (temp1) {
  282. not_ok = 0;
  283. temp2 = __ilog2(temp1);
  284. debug("checking common caslat = %u\n", temp2);
  285. /* Check if this CAS latency will work on all DIMMs at tCK. */
  286. for (i = 0; i < number_of_dimms; i++) {
  287. if (!dimm_params[i].n_ranks) {
  288. continue;
  289. }
  290. if (dimm_params[i].caslat_X == temp2) {
  291. if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
  292. debug("CL = %u ok on DIMM %u at tCK=%u"
  293. " ps with its tCKmin_X_ps of %u\n",
  294. temp2, i, mclk_ps,
  295. dimm_params[i].tCKmin_X_ps);
  296. continue;
  297. } else {
  298. not_ok++;
  299. }
  300. }
  301. if (dimm_params[i].caslat_X_minus_1 == temp2) {
  302. unsigned int tCKmin_X_minus_1_ps
  303. = dimm_params[i].tCKmin_X_minus_1_ps;
  304. if (mclk_ps >= tCKmin_X_minus_1_ps) {
  305. debug("CL = %u ok on DIMM %u at "
  306. "tCK=%u ps with its "
  307. "tCKmin_X_minus_1_ps of %u\n",
  308. temp2, i, mclk_ps,
  309. tCKmin_X_minus_1_ps);
  310. continue;
  311. } else {
  312. not_ok++;
  313. }
  314. }
  315. if (dimm_params[i].caslat_X_minus_2 == temp2) {
  316. unsigned int tCKmin_X_minus_2_ps
  317. = dimm_params[i].tCKmin_X_minus_2_ps;
  318. if (mclk_ps >= tCKmin_X_minus_2_ps) {
  319. debug("CL = %u ok on DIMM %u at "
  320. "tCK=%u ps with its "
  321. "tCKmin_X_minus_2_ps of %u\n",
  322. temp2, i, mclk_ps,
  323. tCKmin_X_minus_2_ps);
  324. continue;
  325. } else {
  326. not_ok++;
  327. }
  328. }
  329. }
  330. if (!not_ok) {
  331. lowest_good_caslat = temp2;
  332. }
  333. temp1 &= ~(1 << temp2);
  334. }
  335. debug("lowest common SPD-defined CAS latency = %u\n",
  336. lowest_good_caslat);
  337. outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
  338. /*
  339. * Compute a common 'de-rated' CAS latency.
  340. *
  341. * The strategy here is to find the *highest* dereated cas latency
  342. * with the assumption that all of the DIMMs will support a dereated
  343. * CAS latency higher than or equal to their lowest dereated value.
  344. */
  345. temp1 = 0;
  346. for (i = 0; i < number_of_dimms; i++) {
  347. temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
  348. }
  349. outpdimm->highest_common_derated_caslat = temp1;
  350. debug("highest common dereated CAS latency = %u\n", temp1);
  351. #endif /* #if defined(CONFIG_FSL_DDR3) */
  352. /* Determine if all DIMMs ECC capable. */
  353. temp1 = 1;
  354. for (i = 0; i < number_of_dimms; i++) {
  355. if (dimm_params[i].n_ranks &&
  356. !(dimm_params[i].edc_config & EDC_ECC)) {
  357. temp1 = 0;
  358. break;
  359. }
  360. }
  361. if (temp1) {
  362. debug("all DIMMs ECC capable\n");
  363. } else {
  364. debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
  365. }
  366. outpdimm->all_DIMMs_ECC_capable = temp1;
  367. #ifndef CONFIG_FSL_DDR3
  368. /* FIXME: move to somewhere else to validate. */
  369. if (mclk_ps > tCKmax_max_ps) {
  370. printf("Warning: some of the installed DIMMs "
  371. "can not operate this slowly.\n");
  372. return 1;
  373. }
  374. #endif
  375. /*
  376. * Compute additive latency.
  377. *
  378. * For DDR1, additive latency should be 0.
  379. *
  380. * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
  381. * which comes from Trcd, and also note that:
  382. * add_lat + caslat must be >= 4
  383. *
  384. * For DDR3, we use the AL=0
  385. *
  386. * When to use additive latency for DDR2:
  387. *
  388. * I. Because you are using CL=3 and need to do ODT on writes and
  389. * want functionality.
  390. * 1. Are you going to use ODT? (Does your board not have
  391. * additional termination circuitry for DQ, DQS, DQS_,
  392. * DM, RDQS, RDQS_ for x4/x8 configs?)
  393. * 2. If so, is your lowest supported CL going to be 3?
  394. * 3. If so, then you must set AL=1 because
  395. *
  396. * WL >= 3 for ODT on writes
  397. * RL = AL + CL
  398. * WL = RL - 1
  399. * ->
  400. * WL = AL + CL - 1
  401. * AL + CL - 1 >= 3
  402. * AL + CL >= 4
  403. * QED
  404. *
  405. * RL >= 3 for ODT on reads
  406. * RL = AL + CL
  407. *
  408. * Since CL aren't usually less than 2, AL=0 is a minimum,
  409. * so the WL-derived AL should be the -- FIXME?
  410. *
  411. * II. Because you are using auto-precharge globally and want to
  412. * use additive latency (posted CAS) to get more bandwidth.
  413. * 1. Are you going to use auto-precharge mode globally?
  414. *
  415. * Use addtivie latency and compute AL to be 1 cycle less than
  416. * tRCD, i.e. the READ or WRITE command is in the cycle
  417. * immediately following the ACTIVATE command..
  418. *
  419. * III. Because you feel like it or want to do some sort of
  420. * degraded-performance experiment.
  421. * 1. Do you just want to use additive latency because you feel
  422. * like it?
  423. *
  424. * Validation: AL is less than tRCD, and within the other
  425. * read-to-precharge constraints.
  426. */
  427. additive_latency = 0;
  428. #if defined(CONFIG_FSL_DDR2)
  429. if (lowest_good_caslat < 4) {
  430. additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
  431. ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
  432. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  433. additive_latency = picos_to_mclk(tRCD_ps);
  434. debug("setting additive_latency to %u because it was "
  435. " greater than tRCD_ps\n", additive_latency);
  436. }
  437. }
  438. #elif defined(CONFIG_FSL_DDR3)
  439. /*
  440. * The system will not use the global auto-precharge mode.
  441. * However, it uses the page mode, so we set AL=0
  442. */
  443. additive_latency = 0;
  444. #endif
  445. /*
  446. * Validate additive latency
  447. * FIXME: move to somewhere else to validate
  448. *
  449. * AL <= tRCD(min)
  450. */
  451. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  452. printf("Error: invalid additive latency exceeds tRCD(min).\n");
  453. return 1;
  454. }
  455. /*
  456. * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
  457. * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
  458. * ADD_LAT (the register) must be set to a value less
  459. * than ACTTORW if WL = 1, then AL must be set to 1
  460. * RD_TO_PRE (the register) must be set to a minimum
  461. * tRTP + AL if AL is nonzero
  462. */
  463. /*
  464. * Additive latency will be applied only if the memctl option to
  465. * use it.
  466. */
  467. outpdimm->additive_latency = additive_latency;
  468. debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
  469. debug("tRCD_ps = %u\n", outpdimm->tRCD_ps);
  470. debug("tRP_ps = %u\n", outpdimm->tRP_ps);
  471. debug("tRAS_ps = %u\n", outpdimm->tRAS_ps);
  472. debug("tWR_ps = %u\n", outpdimm->tWR_ps);
  473. debug("tWTR_ps = %u\n", outpdimm->tWTR_ps);
  474. debug("tRFC_ps = %u\n", outpdimm->tRFC_ps);
  475. debug("tRRD_ps = %u\n", outpdimm->tRRD_ps);
  476. debug("tRC_ps = %u\n", outpdimm->tRC_ps);
  477. return 0;
  478. }