main.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /*
  2. * Copyright 2008-2014 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. /*
  9. * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
  10. * Based on code from spd_sdram.c
  11. * Author: James Yang [at freescale.com]
  12. */
  13. #include <common.h>
  14. #include <i2c.h>
  15. #include <fsl_ddr_sdram.h>
  16. #include <fsl_ddr.h>
  17. /*
  18. * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
  19. * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
  20. * all Power SoCs. But it could be different for ARM SoCs. For example,
  21. * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
  22. * 0x00_8000_0000 ~ 0x00_ffff_ffff
  23. * 0x80_8000_0000 ~ 0xff_ffff_ffff
  24. */
  25. #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
  26. #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
  27. #endif
  28. #ifdef CONFIG_PPC
  29. #include <asm/fsl_law.h>
  30. void fsl_ddr_set_lawbar(
  31. const common_timing_params_t *memctl_common_params,
  32. unsigned int memctl_interleaved,
  33. unsigned int ctrl_num);
  34. #endif
  35. void fsl_ddr_set_intl3r(const unsigned int granule_size);
  36. #if defined(SPD_EEPROM_ADDRESS) || \
  37. defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
  38. defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
  39. #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  40. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  41. [0][0] = SPD_EEPROM_ADDRESS,
  42. };
  43. #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  44. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  45. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  46. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  47. };
  48. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  49. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  50. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  51. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  52. };
  53. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  54. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  55. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  56. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  57. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  58. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  59. };
  60. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  61. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  62. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  63. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  64. [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
  65. };
  66. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  67. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  68. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  69. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  70. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  71. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  72. [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
  73. [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
  74. };
  75. #endif
  76. #define SPD_SPA0_ADDRESS 0x36
  77. #define SPD_SPA1_ADDRESS 0x37
  78. static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
  79. {
  80. int ret;
  81. #ifdef CONFIG_SYS_FSL_DDR4
  82. uint8_t dummy = 0;
  83. #endif
  84. i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
  85. #ifdef CONFIG_SYS_FSL_DDR4
  86. /*
  87. * DDR4 SPD has 384 to 512 bytes
  88. * To access the lower 256 bytes, we need to set EE page address to 0
  89. * To access the upper 256 bytes, we need to set EE page address to 1
  90. * See Jedec standar No. 21-C for detail
  91. */
  92. i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
  93. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
  94. if (!ret) {
  95. i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
  96. ret = i2c_read(i2c_address, 0, 1,
  97. (uchar *)((ulong)spd + 256),
  98. min(256,
  99. (int)sizeof(generic_spd_eeprom_t) - 256));
  100. }
  101. #else
  102. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
  103. sizeof(generic_spd_eeprom_t));
  104. #endif
  105. if (ret) {
  106. if (i2c_address ==
  107. #ifdef SPD_EEPROM_ADDRESS
  108. SPD_EEPROM_ADDRESS
  109. #elif defined(SPD_EEPROM_ADDRESS1)
  110. SPD_EEPROM_ADDRESS1
  111. #endif
  112. ) {
  113. printf("DDR: failed to read SPD from address %u\n",
  114. i2c_address);
  115. } else {
  116. debug("DDR: failed to read SPD from address %u\n",
  117. i2c_address);
  118. }
  119. memset(spd, 0, sizeof(generic_spd_eeprom_t));
  120. }
  121. }
  122. __attribute__((weak, alias("__get_spd")))
  123. void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
  124. /* This function allows boards to update SPD address */
  125. __weak void update_spd_address(unsigned int ctrl_num,
  126. unsigned int slot,
  127. unsigned int *addr)
  128. {
  129. }
  130. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  131. unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
  132. {
  133. unsigned int i;
  134. unsigned int i2c_address = 0;
  135. if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
  136. printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
  137. return;
  138. }
  139. for (i = 0; i < dimm_slots_per_ctrl; i++) {
  140. i2c_address = spd_i2c_addr[ctrl_num][i];
  141. update_spd_address(ctrl_num, i, &i2c_address);
  142. get_spd(&(ctrl_dimms_spd[i]), i2c_address);
  143. }
  144. }
  145. #else
  146. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  147. unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
  148. {
  149. }
  150. #endif /* SPD_EEPROM_ADDRESSx */
  151. /*
  152. * ASSUMPTIONS:
  153. * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
  154. * - Same memory data bus width on all controllers
  155. *
  156. * NOTES:
  157. *
  158. * The memory controller and associated documentation use confusing
  159. * terminology when referring to the orgranization of DRAM.
  160. *
  161. * Here is a terminology translation table:
  162. *
  163. * memory controller/documention |industry |this code |signals
  164. * -------------------------------|-----------|-----------|-----------------
  165. * physical bank/bank |rank |rank |chip select (CS)
  166. * logical bank/sub-bank |bank |bank |bank address (BA)
  167. * page/row |row |page |row address
  168. * ??? |column |column |column address
  169. *
  170. * The naming confusion is further exacerbated by the descriptions of the
  171. * memory controller interleaving feature, where accesses are interleaved
  172. * _BETWEEN_ two seperate memory controllers. This is configured only in
  173. * CS0_CONFIG[INTLV_CTL] of each memory controller.
  174. *
  175. * memory controller documentation | number of chip selects
  176. * | per memory controller supported
  177. * --------------------------------|-----------------------------------------
  178. * cache line interleaving | 1 (CS0 only)
  179. * page interleaving | 1 (CS0 only)
  180. * bank interleaving | 1 (CS0 only)
  181. * superbank interleraving | depends on bank (chip select)
  182. * | interleraving [rank interleaving]
  183. * | mode used on every memory controller
  184. *
  185. * Even further confusing is the existence of the interleaving feature
  186. * _WITHIN_ each memory controller. The feature is referred to in
  187. * documentation as chip select interleaving or bank interleaving,
  188. * although it is configured in the DDR_SDRAM_CFG field.
  189. *
  190. * Name of field | documentation name | this code
  191. * -----------------------------|-----------------------|------------------
  192. * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
  193. * | interleaving
  194. */
  195. const char *step_string_tbl[] = {
  196. "STEP_GET_SPD",
  197. "STEP_COMPUTE_DIMM_PARMS",
  198. "STEP_COMPUTE_COMMON_PARMS",
  199. "STEP_GATHER_OPTS",
  200. "STEP_ASSIGN_ADDRESSES",
  201. "STEP_COMPUTE_REGS",
  202. "STEP_PROGRAM_REGS",
  203. "STEP_ALL"
  204. };
  205. const char * step_to_string(unsigned int step) {
  206. unsigned int s = __ilog2(step);
  207. if ((1 << s) != step)
  208. return step_string_tbl[7];
  209. if (s >= ARRAY_SIZE(step_string_tbl)) {
  210. printf("Error for the step in %s\n", __func__);
  211. s = 0;
  212. }
  213. return step_string_tbl[s];
  214. }
  215. static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
  216. unsigned int dbw_cap_adj[])
  217. {
  218. unsigned int i, j;
  219. unsigned long long total_mem, current_mem_base, total_ctlr_mem;
  220. unsigned long long rank_density, ctlr_density = 0;
  221. unsigned int first_ctrl = pinfo->first_ctrl;
  222. unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  223. /*
  224. * If a reduced data width is requested, but the SPD
  225. * specifies a physically wider device, adjust the
  226. * computed dimm capacities accordingly before
  227. * assigning addresses.
  228. */
  229. for (i = first_ctrl; i <= last_ctrl; i++) {
  230. unsigned int found = 0;
  231. switch (pinfo->memctl_opts[i].data_bus_width) {
  232. case 2:
  233. /* 16-bit */
  234. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  235. unsigned int dw;
  236. if (!pinfo->dimm_params[i][j].n_ranks)
  237. continue;
  238. dw = pinfo->dimm_params[i][j].primary_sdram_width;
  239. if ((dw == 72 || dw == 64)) {
  240. dbw_cap_adj[i] = 2;
  241. break;
  242. } else if ((dw == 40 || dw == 32)) {
  243. dbw_cap_adj[i] = 1;
  244. break;
  245. }
  246. }
  247. break;
  248. case 1:
  249. /* 32-bit */
  250. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  251. unsigned int dw;
  252. dw = pinfo->dimm_params[i][j].data_width;
  253. if (pinfo->dimm_params[i][j].n_ranks
  254. && (dw == 72 || dw == 64)) {
  255. /*
  256. * FIXME: can't really do it
  257. * like this because this just
  258. * further reduces the memory
  259. */
  260. found = 1;
  261. break;
  262. }
  263. }
  264. if (found) {
  265. dbw_cap_adj[i] = 1;
  266. }
  267. break;
  268. case 0:
  269. /* 64-bit */
  270. break;
  271. default:
  272. printf("unexpected data bus width "
  273. "specified controller %u\n", i);
  274. return 1;
  275. }
  276. debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
  277. }
  278. current_mem_base = pinfo->mem_base;
  279. total_mem = 0;
  280. if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
  281. rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
  282. dbw_cap_adj[first_ctrl];
  283. switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
  284. FSL_DDR_CS0_CS1_CS2_CS3) {
  285. case FSL_DDR_CS0_CS1_CS2_CS3:
  286. ctlr_density = 4 * rank_density;
  287. break;
  288. case FSL_DDR_CS0_CS1:
  289. case FSL_DDR_CS0_CS1_AND_CS2_CS3:
  290. ctlr_density = 2 * rank_density;
  291. break;
  292. case FSL_DDR_CS2_CS3:
  293. default:
  294. ctlr_density = rank_density;
  295. break;
  296. }
  297. debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
  298. rank_density, ctlr_density);
  299. for (i = first_ctrl; i <= last_ctrl; i++) {
  300. if (pinfo->memctl_opts[i].memctl_interleaving) {
  301. switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
  302. case FSL_DDR_256B_INTERLEAVING:
  303. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  304. case FSL_DDR_PAGE_INTERLEAVING:
  305. case FSL_DDR_BANK_INTERLEAVING:
  306. case FSL_DDR_SUPERBANK_INTERLEAVING:
  307. total_ctlr_mem = 2 * ctlr_density;
  308. break;
  309. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  310. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  311. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  312. total_ctlr_mem = 3 * ctlr_density;
  313. break;
  314. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  315. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  316. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  317. total_ctlr_mem = 4 * ctlr_density;
  318. break;
  319. default:
  320. panic("Unknown interleaving mode");
  321. }
  322. pinfo->common_timing_params[i].base_address =
  323. current_mem_base;
  324. pinfo->common_timing_params[i].total_mem =
  325. total_ctlr_mem;
  326. total_mem = current_mem_base + total_ctlr_mem;
  327. debug("ctrl %d base 0x%llx\n", i, current_mem_base);
  328. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  329. } else {
  330. /* when 3rd controller not interleaved */
  331. current_mem_base = total_mem;
  332. total_ctlr_mem = 0;
  333. pinfo->common_timing_params[i].base_address =
  334. current_mem_base;
  335. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  336. unsigned long long cap =
  337. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  338. pinfo->dimm_params[i][j].base_address =
  339. current_mem_base;
  340. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  341. current_mem_base += cap;
  342. total_ctlr_mem += cap;
  343. }
  344. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  345. pinfo->common_timing_params[i].total_mem =
  346. total_ctlr_mem;
  347. total_mem += total_ctlr_mem;
  348. }
  349. }
  350. } else {
  351. /*
  352. * Simple linear assignment if memory
  353. * controllers are not interleaved.
  354. */
  355. for (i = first_ctrl; i <= last_ctrl; i++) {
  356. total_ctlr_mem = 0;
  357. pinfo->common_timing_params[i].base_address =
  358. current_mem_base;
  359. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  360. /* Compute DIMM base addresses. */
  361. unsigned long long cap =
  362. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  363. pinfo->dimm_params[i][j].base_address =
  364. current_mem_base;
  365. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  366. current_mem_base += cap;
  367. total_ctlr_mem += cap;
  368. }
  369. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  370. pinfo->common_timing_params[i].total_mem =
  371. total_ctlr_mem;
  372. total_mem += total_ctlr_mem;
  373. }
  374. }
  375. debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
  376. return total_mem;
  377. }
  378. /* Use weak function to allow board file to override the address assignment */
  379. __attribute__((weak, alias("__step_assign_addresses")))
  380. unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
  381. unsigned int dbw_cap_adj[]);
  382. unsigned long long
  383. fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
  384. unsigned int size_only)
  385. {
  386. unsigned int i, j;
  387. unsigned long long total_mem = 0;
  388. int assert_reset = 0;
  389. unsigned int first_ctrl = pinfo->first_ctrl;
  390. unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  391. __maybe_unused int retval;
  392. __maybe_unused bool goodspd = false;
  393. __maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
  394. fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
  395. common_timing_params_t *timing_params = pinfo->common_timing_params;
  396. if (pinfo->board_need_mem_reset)
  397. assert_reset = pinfo->board_need_mem_reset();
  398. /* data bus width capacity adjust shift amount */
  399. unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
  400. for (i = first_ctrl; i <= last_ctrl; i++)
  401. dbw_capacity_adjust[i] = 0;
  402. debug("starting at step %u (%s)\n",
  403. start_step, step_to_string(start_step));
  404. switch (start_step) {
  405. case STEP_GET_SPD:
  406. #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
  407. /* STEP 1: Gather all DIMM SPD data */
  408. for (i = first_ctrl; i <= last_ctrl; i++) {
  409. fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
  410. dimm_slots_per_ctrl);
  411. }
  412. case STEP_COMPUTE_DIMM_PARMS:
  413. /* STEP 2: Compute DIMM parameters from SPD data */
  414. for (i = first_ctrl; i <= last_ctrl; i++) {
  415. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  416. generic_spd_eeprom_t *spd =
  417. &(pinfo->spd_installed_dimms[i][j]);
  418. dimm_params_t *pdimm =
  419. &(pinfo->dimm_params[i][j]);
  420. retval = compute_dimm_parameters(
  421. i, spd, pdimm, j);
  422. #ifdef CONFIG_SYS_DDR_RAW_TIMING
  423. if (!j && retval) {
  424. printf("SPD error on controller %d! "
  425. "Trying fallback to raw timing "
  426. "calculation\n", i);
  427. retval = fsl_ddr_get_dimm_params(pdimm,
  428. i, j);
  429. }
  430. #else
  431. if (retval == 2) {
  432. printf("Error: compute_dimm_parameters"
  433. " non-zero returned FATAL value "
  434. "for memctl=%u dimm=%u\n", i, j);
  435. return 0;
  436. }
  437. #endif
  438. if (retval) {
  439. debug("Warning: compute_dimm_parameters"
  440. " non-zero return value for memctl=%u "
  441. "dimm=%u\n", i, j);
  442. } else {
  443. goodspd = true;
  444. }
  445. }
  446. }
  447. if (!goodspd) {
  448. /*
  449. * No valid SPD found
  450. * Throw an error if this is for main memory, i.e.
  451. * first_ctrl == 0. Otherwise, siliently return 0
  452. * as the memory size.
  453. */
  454. if (first_ctrl == 0)
  455. printf("Error: No valid SPD detected.\n");
  456. return 0;
  457. }
  458. #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
  459. case STEP_COMPUTE_DIMM_PARMS:
  460. for (i = first_ctrl; i <= last_ctrl; i++) {
  461. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  462. dimm_params_t *pdimm =
  463. &(pinfo->dimm_params[i][j]);
  464. fsl_ddr_get_dimm_params(pdimm, i, j);
  465. }
  466. }
  467. debug("Filling dimm parameters from board specific file\n");
  468. #endif
  469. case STEP_COMPUTE_COMMON_PARMS:
  470. /*
  471. * STEP 3: Compute a common set of timing parameters
  472. * suitable for all of the DIMMs on each memory controller
  473. */
  474. for (i = first_ctrl; i <= last_ctrl; i++) {
  475. debug("Computing lowest common DIMM"
  476. " parameters for memctl=%u\n", i);
  477. compute_lowest_common_dimm_parameters
  478. (i,
  479. pinfo->dimm_params[i],
  480. &timing_params[i],
  481. CONFIG_DIMM_SLOTS_PER_CTLR);
  482. }
  483. case STEP_GATHER_OPTS:
  484. /* STEP 4: Gather configuration requirements from user */
  485. for (i = first_ctrl; i <= last_ctrl; i++) {
  486. debug("Reloading memory controller "
  487. "configuration options for memctl=%u\n", i);
  488. /*
  489. * This "reloads" the memory controller options
  490. * to defaults. If the user "edits" an option,
  491. * next_step points to the step after this,
  492. * which is currently STEP_ASSIGN_ADDRESSES.
  493. */
  494. populate_memctl_options(
  495. &timing_params[i],
  496. &pinfo->memctl_opts[i],
  497. pinfo->dimm_params[i], i);
  498. /*
  499. * For RDIMMs, JEDEC spec requires clocks to be stable
  500. * before reset signal is deasserted. For the boards
  501. * using fixed parameters, this function should be
  502. * be called from board init file.
  503. */
  504. if (timing_params[i].all_dimms_registered)
  505. assert_reset = 1;
  506. }
  507. if (assert_reset && !size_only) {
  508. if (pinfo->board_mem_reset) {
  509. debug("Asserting mem reset\n");
  510. pinfo->board_mem_reset();
  511. } else {
  512. debug("Asserting mem reset missing\n");
  513. }
  514. }
  515. case STEP_ASSIGN_ADDRESSES:
  516. /* STEP 5: Assign addresses to chip selects */
  517. check_interleaving_options(pinfo);
  518. total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
  519. debug("Total mem %llu assigned\n", total_mem);
  520. case STEP_COMPUTE_REGS:
  521. /* STEP 6: compute controller register values */
  522. debug("FSL Memory ctrl register computation\n");
  523. for (i = first_ctrl; i <= last_ctrl; i++) {
  524. if (timing_params[i].ndimms_present == 0) {
  525. memset(&ddr_reg[i], 0,
  526. sizeof(fsl_ddr_cfg_regs_t));
  527. continue;
  528. }
  529. compute_fsl_memctl_config_regs
  530. (i,
  531. &pinfo->memctl_opts[i],
  532. &ddr_reg[i], &timing_params[i],
  533. pinfo->dimm_params[i],
  534. dbw_capacity_adjust[i],
  535. size_only);
  536. }
  537. default:
  538. break;
  539. }
  540. {
  541. /*
  542. * Compute the amount of memory available just by
  543. * looking for the highest valid CSn_BNDS value.
  544. * This allows us to also experiment with using
  545. * only CS0 when using dual-rank DIMMs.
  546. */
  547. unsigned int max_end = 0;
  548. for (i = first_ctrl; i <= last_ctrl; i++) {
  549. for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
  550. fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
  551. if (reg->cs[j].config & 0x80000000) {
  552. unsigned int end;
  553. /*
  554. * 0xfffffff is a special value we put
  555. * for unused bnds
  556. */
  557. if (reg->cs[j].bnds == 0xffffffff)
  558. continue;
  559. end = reg->cs[j].bnds & 0xffff;
  560. if (end > max_end) {
  561. max_end = end;
  562. }
  563. }
  564. }
  565. }
  566. total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
  567. 0xFFFFFFULL) - pinfo->mem_base;
  568. }
  569. return total_mem;
  570. }
  571. phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
  572. {
  573. unsigned int i, first_ctrl, last_ctrl;
  574. #ifdef CONFIG_PPC
  575. unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
  576. #endif
  577. unsigned long long total_memory;
  578. int deassert_reset = 0;
  579. first_ctrl = pinfo->first_ctrl;
  580. last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  581. /* Compute it once normally. */
  582. #ifdef CONFIG_FSL_DDR_INTERACTIVE
  583. if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
  584. total_memory = fsl_ddr_interactive(pinfo, 0);
  585. } else if (fsl_ddr_interactive_env_var_exists()) {
  586. total_memory = fsl_ddr_interactive(pinfo, 1);
  587. } else
  588. #endif
  589. total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
  590. /* setup 3-way interleaving before enabling DDRC */
  591. switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
  592. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  593. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  594. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  595. fsl_ddr_set_intl3r(
  596. pinfo->memctl_opts[first_ctrl].
  597. memctl_interleaving_mode);
  598. break;
  599. default:
  600. break;
  601. }
  602. /*
  603. * Program configuration registers.
  604. * JEDEC specs requires clocks to be stable before deasserting reset
  605. * for RDIMMs. Clocks start after chip select is enabled and clock
  606. * control register is set. During step 1, all controllers have their
  607. * registers set but not enabled. Step 2 proceeds after deasserting
  608. * reset through board FPGA or GPIO.
  609. * For non-registered DIMMs, initialization can go through but it is
  610. * also OK to follow the same flow.
  611. */
  612. if (pinfo->board_need_mem_reset)
  613. deassert_reset = pinfo->board_need_mem_reset();
  614. for (i = first_ctrl; i <= last_ctrl; i++) {
  615. if (pinfo->common_timing_params[i].all_dimms_registered)
  616. deassert_reset = 1;
  617. }
  618. for (i = first_ctrl; i <= last_ctrl; i++) {
  619. debug("Programming controller %u\n", i);
  620. if (pinfo->common_timing_params[i].ndimms_present == 0) {
  621. debug("No dimms present on controller %u; "
  622. "skipping programming\n", i);
  623. continue;
  624. }
  625. /*
  626. * The following call with step = 1 returns before enabling
  627. * the controller. It has to finish with step = 2 later.
  628. */
  629. fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
  630. deassert_reset ? 1 : 0);
  631. }
  632. if (deassert_reset) {
  633. /* Use board FPGA or GPIO to deassert reset signal */
  634. if (pinfo->board_mem_de_reset) {
  635. debug("Deasserting mem reset\n");
  636. pinfo->board_mem_de_reset();
  637. } else {
  638. debug("Deasserting mem reset missing\n");
  639. }
  640. for (i = first_ctrl; i <= last_ctrl; i++) {
  641. /* Call with step = 2 to continue initialization */
  642. fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
  643. i, 2);
  644. }
  645. }
  646. #ifdef CONFIG_FSL_DDR_SYNC_REFRESH
  647. fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
  648. #endif
  649. #ifdef CONFIG_PPC
  650. /* program LAWs */
  651. for (i = first_ctrl; i <= last_ctrl; i++) {
  652. if (pinfo->memctl_opts[i].memctl_interleaving) {
  653. switch (pinfo->memctl_opts[i].
  654. memctl_interleaving_mode) {
  655. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  656. case FSL_DDR_PAGE_INTERLEAVING:
  657. case FSL_DDR_BANK_INTERLEAVING:
  658. case FSL_DDR_SUPERBANK_INTERLEAVING:
  659. if (i % 2)
  660. break;
  661. if (i == 0) {
  662. law_memctl = LAW_TRGT_IF_DDR_INTRLV;
  663. fsl_ddr_set_lawbar(
  664. &pinfo->common_timing_params[i],
  665. law_memctl, i);
  666. }
  667. #if CONFIG_NUM_DDR_CONTROLLERS > 3
  668. else if (i == 2) {
  669. law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
  670. fsl_ddr_set_lawbar(
  671. &pinfo->common_timing_params[i],
  672. law_memctl, i);
  673. }
  674. #endif
  675. break;
  676. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  677. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  678. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  679. law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
  680. if (i == 0) {
  681. fsl_ddr_set_lawbar(
  682. &pinfo->common_timing_params[i],
  683. law_memctl, i);
  684. }
  685. break;
  686. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  687. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  688. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  689. law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
  690. if (i == 0)
  691. fsl_ddr_set_lawbar(
  692. &pinfo->common_timing_params[i],
  693. law_memctl, i);
  694. /* place holder for future 4-way interleaving */
  695. break;
  696. default:
  697. break;
  698. }
  699. } else {
  700. switch (i) {
  701. case 0:
  702. law_memctl = LAW_TRGT_IF_DDR_1;
  703. break;
  704. case 1:
  705. law_memctl = LAW_TRGT_IF_DDR_2;
  706. break;
  707. case 2:
  708. law_memctl = LAW_TRGT_IF_DDR_3;
  709. break;
  710. case 3:
  711. law_memctl = LAW_TRGT_IF_DDR_4;
  712. break;
  713. default:
  714. break;
  715. }
  716. fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
  717. law_memctl, i);
  718. }
  719. }
  720. #endif
  721. debug("total_memory by %s = %llu\n", __func__, total_memory);
  722. #if !defined(CONFIG_PHYS_64BIT)
  723. /* Check for 4G or more. Bad. */
  724. if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
  725. puts("Detected ");
  726. print_size(total_memory, " of memory\n");
  727. printf(" This U-Boot only supports < 4G of DDR\n");
  728. printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
  729. printf(" "); /* re-align to match init_func_ram print */
  730. total_memory = CONFIG_MAX_MEM_MAPPED;
  731. }
  732. #endif
  733. return total_memory;
  734. }
  735. /*
  736. * fsl_ddr_sdram(void) -- this is the main function to be
  737. * called by initdram() in the board file.
  738. *
  739. * It returns amount of memory configured in bytes.
  740. */
  741. phys_size_t fsl_ddr_sdram(void)
  742. {
  743. fsl_ddr_info_t info;
  744. /* Reset info structure. */
  745. memset(&info, 0, sizeof(fsl_ddr_info_t));
  746. info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  747. info.first_ctrl = 0;
  748. info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
  749. info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
  750. info.board_need_mem_reset = board_need_mem_reset;
  751. info.board_mem_reset = board_assert_mem_reset;
  752. info.board_mem_de_reset = board_deassert_mem_reset;
  753. remove_unused_controllers(&info);
  754. return __fsl_ddr_sdram(&info);
  755. }
  756. #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
  757. phys_size_t fsl_other_ddr_sdram(unsigned long long base,
  758. unsigned int first_ctrl,
  759. unsigned int num_ctrls,
  760. unsigned int dimm_slots_per_ctrl,
  761. int (*board_need_reset)(void),
  762. void (*board_reset)(void),
  763. void (*board_de_reset)(void))
  764. {
  765. fsl_ddr_info_t info;
  766. /* Reset info structure. */
  767. memset(&info, 0, sizeof(fsl_ddr_info_t));
  768. info.mem_base = base;
  769. info.first_ctrl = first_ctrl;
  770. info.num_ctrls = num_ctrls;
  771. info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
  772. info.board_need_mem_reset = board_need_reset;
  773. info.board_mem_reset = board_reset;
  774. info.board_mem_de_reset = board_de_reset;
  775. return __fsl_ddr_sdram(&info);
  776. }
  777. #endif
  778. /*
  779. * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
  780. * size of the total memory without setting ddr control registers.
  781. */
  782. phys_size_t
  783. fsl_ddr_sdram_size(void)
  784. {
  785. fsl_ddr_info_t info;
  786. unsigned long long total_memory = 0;
  787. memset(&info, 0 , sizeof(fsl_ddr_info_t));
  788. info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  789. info.first_ctrl = 0;
  790. info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
  791. info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
  792. info.board_need_mem_reset = NULL;
  793. /* Compute it once normally. */
  794. total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
  795. return total_memory;
  796. }