clk_stm32f.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. /*
  2. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  3. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <stm32_rcc.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include <asm/arch/stm32_pwr.h>
  14. #include <dt-bindings/mfd/stm32f7-rcc.h>
  15. #define RCC_CR_HSION BIT(0)
  16. #define RCC_CR_HSEON BIT(16)
  17. #define RCC_CR_HSERDY BIT(17)
  18. #define RCC_CR_HSEBYP BIT(18)
  19. #define RCC_CR_CSSON BIT(19)
  20. #define RCC_CR_PLLON BIT(24)
  21. #define RCC_CR_PLLRDY BIT(25)
  22. #define RCC_CR_PLLSAION BIT(28)
  23. #define RCC_CR_PLLSAIRDY BIT(29)
  24. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  25. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  26. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  27. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  28. #define RCC_PLLCFGR_PLLSRC BIT(22)
  29. #define RCC_PLLCFGR_PLLM_SHIFT 0
  30. #define RCC_PLLCFGR_PLLN_SHIFT 6
  31. #define RCC_PLLCFGR_PLLP_SHIFT 16
  32. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  33. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  34. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  35. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  36. #define RCC_CFGR_SW0 BIT(0)
  37. #define RCC_CFGR_SW1 BIT(1)
  38. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  39. #define RCC_CFGR_SW_HSI 0
  40. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  41. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  42. #define RCC_CFGR_SWS0 BIT(2)
  43. #define RCC_CFGR_SWS1 BIT(3)
  44. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  45. #define RCC_CFGR_SWS_HSI 0
  46. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  47. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  48. #define RCC_CFGR_HPRE_SHIFT 4
  49. #define RCC_CFGR_PPRE1_SHIFT 10
  50. #define RCC_CFGR_PPRE2_SHIFT 13
  51. #define RCC_PLLCFGR_PLLSAIN_MASK GENMASK(14, 6)
  52. #define RCC_PLLCFGR_PLLSAIP_MASK GENMASK(17, 16)
  53. #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
  54. #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
  55. #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
  56. #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
  57. #define RCC_PLLSAICFGR_PLLSAIR_2 BIT(29)
  58. #define RCC_DCKCFGRX_TIMPRE BIT(24)
  59. #define RCC_DCKCFGRX_CK48MSEL BIT(27)
  60. #define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
  61. #define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
  62. /*
  63. * RCC AHB1ENR specific definitions
  64. */
  65. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  66. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  67. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  68. /*
  69. * RCC APB1ENR specific definitions
  70. */
  71. #define RCC_APB1ENR_TIM2EN BIT(0)
  72. #define RCC_APB1ENR_PWREN BIT(28)
  73. /*
  74. * RCC APB2ENR specific definitions
  75. */
  76. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  77. #define RCC_APB2ENR_SAI1EN BIT(22)
  78. enum periph_clock {
  79. TIMER2_CLOCK_CFG,
  80. };
  81. static const struct stm32_clk_info stm32f4_clk_info = {
  82. /* 180 MHz */
  83. .sys_pll_psc = {
  84. .pll_n = 360,
  85. .pll_p = 2,
  86. .pll_q = 8,
  87. .ahb_psc = AHB_PSC_1,
  88. .apb1_psc = APB_PSC_4,
  89. .apb2_psc = APB_PSC_2,
  90. },
  91. .has_overdrive = false,
  92. .v2 = false,
  93. };
  94. static const struct stm32_clk_info stm32f7_clk_info = {
  95. /* 200 MHz */
  96. .sys_pll_psc = {
  97. .pll_n = 400,
  98. .pll_p = 2,
  99. .pll_q = 8,
  100. .ahb_psc = AHB_PSC_1,
  101. .apb1_psc = APB_PSC_4,
  102. .apb2_psc = APB_PSC_2,
  103. },
  104. .has_overdrive = true,
  105. .v2 = true,
  106. };
  107. struct stm32_clk {
  108. struct stm32_rcc_regs *base;
  109. struct stm32_pwr_regs *pwr_regs;
  110. struct stm32_clk_info info;
  111. unsigned long hse_rate;
  112. };
  113. static int configure_clocks(struct udevice *dev)
  114. {
  115. struct stm32_clk *priv = dev_get_priv(dev);
  116. struct stm32_rcc_regs *regs = priv->base;
  117. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  118. struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
  119. u32 pllsaicfgr = 0;
  120. /* Reset RCC configuration */
  121. setbits_le32(&regs->cr, RCC_CR_HSION);
  122. writel(0, &regs->cfgr); /* Reset CFGR */
  123. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  124. | RCC_CR_PLLON | RCC_CR_PLLSAION));
  125. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  126. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  127. writel(0, &regs->cir); /* Disable all interrupts */
  128. /* Configure for HSE+PLL operation */
  129. setbits_le32(&regs->cr, RCC_CR_HSEON);
  130. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  131. ;
  132. setbits_le32(&regs->cfgr, ((
  133. sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
  134. | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  135. | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  136. /* Configure the main PLL */
  137. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  138. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  139. sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  140. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  141. sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  142. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  143. ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  144. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  145. sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  146. /* Configure the SAI PLL to get a 48 MHz source */
  147. pllsaicfgr = RCC_PLLSAICFGR_PLLSAIR_2 | RCC_PLLSAICFGR_PLLSAIQ_4 |
  148. RCC_PLLSAICFGR_PLLSAIP_4;
  149. pllsaicfgr |= 192 << RCC_PLLSAICFGR_PLLSAIN_SHIFT;
  150. writel(pllsaicfgr, &regs->pllsaicfgr);
  151. /* Enable the main PLL */
  152. setbits_le32(&regs->cr, RCC_CR_PLLON);
  153. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  154. ;
  155. if (priv->info.v2) { /*stm32f7 case */
  156. /* select PLLSAI as 48MHz clock source */
  157. setbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  158. /* select 48MHz as SDMMC1 clock source */
  159. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
  160. /* select 48MHz as SDMMC2 clock source */
  161. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
  162. } else { /* stm32f4 case */
  163. /* select PLLSAI as 48MHz clock source */
  164. setbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  165. /* select 48MHz as SDMMC1 clock source */
  166. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
  167. }
  168. /* Enable the SAI PLL */
  169. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  170. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  171. ;
  172. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  173. if (priv->info.has_overdrive) {
  174. /*
  175. * Enable high performance mode
  176. * System frequency up to 200 MHz
  177. */
  178. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  179. /* Infinite wait! */
  180. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  181. ;
  182. /* Enable the Over-drive switch */
  183. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  184. /* Infinite wait! */
  185. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  186. ;
  187. }
  188. stm32_flash_latency_cfg(5);
  189. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  190. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  191. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  192. RCC_CFGR_SWS_PLL)
  193. ;
  194. /* gate the SAI clock, needed for MMC 1&2 clocks */
  195. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SAI1EN);
  196. #ifdef CONFIG_ETH_DESIGNWARE
  197. /* gate the SYSCFG clock, needed to set RMII ethernet interface */
  198. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
  199. #endif
  200. return 0;
  201. }
  202. static unsigned long stm32_clk_pll48clk_rate(struct stm32_clk *priv,
  203. u32 sysclk)
  204. {
  205. struct stm32_rcc_regs *regs = priv->base;
  206. u16 pllq, pllm, pllsain, pllsaip;
  207. bool pllsai;
  208. pllq = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
  209. >> RCC_PLLCFGR_PLLQ_SHIFT;
  210. if (priv->info.v2) /*stm32f7 case */
  211. pllsai = readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
  212. else
  213. pllsai = readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
  214. if (pllsai) {
  215. /* PLL48CLK is selected from PLLSAI, get PLLSAI value */
  216. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  217. pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIN_MASK)
  218. >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  219. pllsaip = ((((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIP_MASK)
  220. >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
  221. return ((priv->hse_rate / pllm) * pllsain) / pllsaip;
  222. }
  223. /* PLL48CLK is selected from PLLQ */
  224. return sysclk / pllq;
  225. }
  226. static bool stm32_get_timpre(struct stm32_clk *priv)
  227. {
  228. struct stm32_rcc_regs *regs = priv->base;
  229. u32 val;
  230. if (priv->info.v2) /*stm32f7 case */
  231. val = readl(&regs->dckcfgr2);
  232. else
  233. val = readl(&regs->dckcfgr);
  234. /* get timer prescaler */
  235. return !!(val & RCC_DCKCFGRX_TIMPRE);
  236. }
  237. static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
  238. {
  239. u8 shift;
  240. /* Prescaler table lookups for clock computation */
  241. u8 ahb_psc_table[16] = {
  242. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  243. };
  244. shift = ahb_psc_table[(
  245. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  246. >> RCC_CFGR_HPRE_SHIFT)];
  247. return sysclk >> shift;
  248. };
  249. static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
  250. {
  251. /* Prescaler table lookups for clock computation */
  252. u8 apb_psc_table[8] = {
  253. 0, 0, 0, 0, 1, 2, 3, 4
  254. };
  255. if (apb == APB1)
  256. return apb_psc_table[(
  257. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  258. >> RCC_CFGR_PPRE1_SHIFT)];
  259. else /* APB2 */
  260. return apb_psc_table[(
  261. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  262. >> RCC_CFGR_PPRE2_SHIFT)];
  263. };
  264. static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
  265. enum apb apb)
  266. {
  267. struct stm32_rcc_regs *regs = priv->base;
  268. u8 shift = stm32_get_apb_shift(regs, apb);
  269. if (stm32_get_timpre(priv))
  270. /*
  271. * if APB prescaler is configured to a
  272. * division factor of 1, 2 or 4
  273. */
  274. switch (shift) {
  275. case 0:
  276. case 1:
  277. case 2:
  278. return stm32_get_hclk_rate(regs, sysclk);
  279. default:
  280. return (sysclk >> shift) * 4;
  281. }
  282. else
  283. /*
  284. * if APB prescaler is configured to a
  285. * division factor of 1
  286. */
  287. if (shift == 0)
  288. return sysclk;
  289. else
  290. return (sysclk >> shift) * 2;
  291. };
  292. static ulong stm32_clk_get_rate(struct clk *clk)
  293. {
  294. struct stm32_clk *priv = dev_get_priv(clk->dev);
  295. struct stm32_rcc_regs *regs = priv->base;
  296. u32 sysclk = 0;
  297. u16 pllm, plln, pllp;
  298. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  299. RCC_CFGR_SWS_PLL) {
  300. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  301. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  302. >> RCC_PLLCFGR_PLLN_SHIFT);
  303. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  304. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  305. sysclk = ((priv->hse_rate / pllm) * plln) / pllp;
  306. } else {
  307. return -EINVAL;
  308. }
  309. switch (clk->id) {
  310. /*
  311. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  312. * AHB1, AHB2 and AHB3
  313. */
  314. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  315. return stm32_get_hclk_rate(regs, sysclk);
  316. /* APB1 CLOCK */
  317. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  318. /* For timer clock, an additionnal prescaler is used*/
  319. switch (clk->id) {
  320. case STM32F7_APB1_CLOCK(TIM2):
  321. case STM32F7_APB1_CLOCK(TIM3):
  322. case STM32F7_APB1_CLOCK(TIM4):
  323. case STM32F7_APB1_CLOCK(TIM5):
  324. case STM32F7_APB1_CLOCK(TIM6):
  325. case STM32F7_APB1_CLOCK(TIM7):
  326. case STM32F7_APB1_CLOCK(TIM12):
  327. case STM32F7_APB1_CLOCK(TIM13):
  328. case STM32F7_APB1_CLOCK(TIM14):
  329. return stm32_get_timer_rate(priv, sysclk, APB1);
  330. }
  331. return (sysclk >> stm32_get_apb_shift(regs, APB1));
  332. /* APB2 CLOCK */
  333. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
  334. /*
  335. * particular case for SDMMC1 and SDMMC2 :
  336. * 48Mhz source clock can be from main PLL or from
  337. * SAI PLL
  338. */
  339. switch (clk->id) {
  340. case STM32F7_APB2_CLOCK(SDMMC1):
  341. if (readl(&regs->dckcfgr2) & RCC_DCKCFGRX_SDMMC1SEL)
  342. /* System clock is selected as SDMMC1 clock */
  343. return sysclk;
  344. else
  345. return stm32_clk_pll48clk_rate(priv, sysclk);
  346. break;
  347. case STM32F7_APB2_CLOCK(SDMMC2):
  348. if (readl(&regs->dckcfgr2) & RCC_DCKCFGR2_SDMMC2SEL)
  349. /* System clock is selected as SDMMC2 clock */
  350. return sysclk;
  351. else
  352. return stm32_clk_pll48clk_rate(priv, sysclk);
  353. break;
  354. /* For timer clock, an additionnal prescaler is used*/
  355. case STM32F7_APB2_CLOCK(TIM1):
  356. case STM32F7_APB2_CLOCK(TIM8):
  357. case STM32F7_APB2_CLOCK(TIM9):
  358. case STM32F7_APB2_CLOCK(TIM10):
  359. case STM32F7_APB2_CLOCK(TIM11):
  360. return stm32_get_timer_rate(priv, sysclk, APB2);
  361. break;
  362. }
  363. return (sysclk >> stm32_get_apb_shift(regs, APB2));
  364. default:
  365. pr_err("clock index %ld out of range\n", clk->id);
  366. return -EINVAL;
  367. }
  368. }
  369. static ulong stm32_set_rate(struct clk *clk, ulong rate)
  370. {
  371. return 0;
  372. }
  373. static int stm32_clk_enable(struct clk *clk)
  374. {
  375. struct stm32_clk *priv = dev_get_priv(clk->dev);
  376. struct stm32_rcc_regs *regs = priv->base;
  377. u32 offset = clk->id / 32;
  378. u32 bit_index = clk->id % 32;
  379. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  380. __func__, clk->id, offset, bit_index);
  381. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  382. return 0;
  383. }
  384. void clock_setup(int peripheral)
  385. {
  386. switch (peripheral) {
  387. case TIMER2_CLOCK_CFG:
  388. setbits_le32(&STM32_RCC->apb1enr, RCC_APB1ENR_TIM2EN);
  389. break;
  390. default:
  391. break;
  392. }
  393. }
  394. static int stm32_clk_probe(struct udevice *dev)
  395. {
  396. struct ofnode_phandle_args args;
  397. struct udevice *fixed_clock_dev = NULL;
  398. struct clk clk;
  399. int err;
  400. debug("%s\n", __func__);
  401. struct stm32_clk *priv = dev_get_priv(dev);
  402. fdt_addr_t addr;
  403. addr = dev_read_addr(dev);
  404. if (addr == FDT_ADDR_T_NONE)
  405. return -EINVAL;
  406. priv->base = (struct stm32_rcc_regs *)addr;
  407. switch (dev_get_driver_data(dev)) {
  408. case STM32F4:
  409. memcpy(&priv->info, &stm32f4_clk_info,
  410. sizeof(struct stm32_clk_info));
  411. break;
  412. case STM32F7:
  413. memcpy(&priv->info, &stm32f7_clk_info,
  414. sizeof(struct stm32_clk_info));
  415. break;
  416. default:
  417. return -EINVAL;
  418. }
  419. /* retrieve HSE frequency (external oscillator) */
  420. err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
  421. &fixed_clock_dev);
  422. if (err) {
  423. pr_err("Can't find fixed clock (%d)", err);
  424. return err;
  425. }
  426. err = clk_request(fixed_clock_dev, &clk);
  427. if (err) {
  428. pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
  429. err);
  430. return err;
  431. }
  432. /*
  433. * set pllm factor accordingly to the external oscillator
  434. * frequency (HSE). For STM32F4 and STM32F7, we want VCO
  435. * freq at 1MHz
  436. * if input PLL frequency is 25Mhz, divide it by 25
  437. */
  438. clk.id = 0;
  439. priv->hse_rate = clk_get_rate(&clk);
  440. if (priv->hse_rate < 1000000) {
  441. pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
  442. priv->hse_rate);
  443. return -EINVAL;
  444. }
  445. priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
  446. if (priv->info.has_overdrive) {
  447. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  448. &args);
  449. if (err) {
  450. debug("%s: can't find syscon device (%d)\n", __func__,
  451. err);
  452. return err;
  453. }
  454. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  455. }
  456. configure_clocks(dev);
  457. return 0;
  458. }
  459. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  460. {
  461. debug("%s(clk=%p)\n", __func__, clk);
  462. if (args->args_count != 2) {
  463. debug("Invaild args_count: %d\n", args->args_count);
  464. return -EINVAL;
  465. }
  466. if (args->args_count)
  467. clk->id = args->args[1];
  468. else
  469. clk->id = 0;
  470. return 0;
  471. }
  472. static struct clk_ops stm32_clk_ops = {
  473. .of_xlate = stm32_clk_of_xlate,
  474. .enable = stm32_clk_enable,
  475. .get_rate = stm32_clk_get_rate,
  476. .set_rate = stm32_set_rate,
  477. };
  478. U_BOOT_DRIVER(stm32fx_clk) = {
  479. .name = "stm32fx_rcc_clock",
  480. .id = UCLASS_CLK,
  481. .ops = &stm32_clk_ops,
  482. .probe = stm32_clk_probe,
  483. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  484. .flags = DM_FLAG_PRE_RELOC,
  485. };