efi_memory.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * EFI application memory management
  3. *
  4. * Copyright (c) 2016 Alexander Graf
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. /* #define DEBUG_EFI */
  9. #include <common.h>
  10. #include <efi_loader.h>
  11. #include <malloc.h>
  12. #include <asm/global_data.h>
  13. #include <libfdt_env.h>
  14. #include <inttypes.h>
  15. #include <watchdog.h>
  16. DECLARE_GLOBAL_DATA_PTR;
  17. struct efi_mem_list {
  18. struct list_head link;
  19. struct efi_mem_desc desc;
  20. };
  21. /* This list contains all memory map items */
  22. LIST_HEAD(efi_mem);
  23. /*
  24. * Unmaps all memory occupied by the carve_desc region from the
  25. * list entry pointed to by map.
  26. *
  27. * Returns 1 if carving was performed or 0 if the regions don't overlap.
  28. * Returns -1 if it would affect non-RAM regions but overlap_only_ram is set.
  29. * Carving is only guaranteed to complete when all regions return 0.
  30. */
  31. static int efi_mem_carve_out(struct efi_mem_list *map,
  32. struct efi_mem_desc *carve_desc,
  33. bool overlap_only_ram)
  34. {
  35. struct efi_mem_list *newmap;
  36. struct efi_mem_desc *map_desc = &map->desc;
  37. uint64_t map_start = map_desc->physical_start;
  38. uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
  39. uint64_t carve_start = carve_desc->physical_start;
  40. uint64_t carve_end = carve_start +
  41. (carve_desc->num_pages << EFI_PAGE_SHIFT);
  42. /* check whether we're overlapping */
  43. if ((carve_end <= map_start) || (carve_start >= map_end))
  44. return 0;
  45. /* We're overlapping with non-RAM, warn the caller if desired */
  46. if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
  47. return -1;
  48. /* Sanitize carve_start and carve_end to lie within our bounds */
  49. carve_start = max(carve_start, map_start);
  50. carve_end = min(carve_end, map_end);
  51. /* Carving at the beginning of our map? Just move it! */
  52. if (carve_start == map_start) {
  53. if (map_end == carve_end) {
  54. /* Full overlap, just remove map */
  55. list_del(&map->link);
  56. }
  57. map_desc->physical_start = carve_end;
  58. map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT;
  59. return 1;
  60. }
  61. /*
  62. * Overlapping maps, just split the list map at carve_start,
  63. * it will get moved or removed in the next iteration.
  64. *
  65. * [ map_desc |__carve_start__| newmap ]
  66. */
  67. /* Create a new map from [ carve_start ... map_end ] */
  68. newmap = calloc(1, sizeof(*newmap));
  69. newmap->desc = map->desc;
  70. newmap->desc.physical_start = carve_start;
  71. newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
  72. list_add_tail(&newmap->link, &efi_mem);
  73. /* Shrink the map to [ map_start ... carve_start ] */
  74. map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
  75. return 1;
  76. }
  77. uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
  78. bool overlap_only_ram)
  79. {
  80. struct list_head *lhandle;
  81. struct efi_mem_list *newlist;
  82. bool do_carving;
  83. if (!pages)
  84. return start;
  85. newlist = calloc(1, sizeof(*newlist));
  86. newlist->desc.type = memory_type;
  87. newlist->desc.physical_start = start;
  88. newlist->desc.virtual_start = start;
  89. newlist->desc.num_pages = pages;
  90. switch (memory_type) {
  91. case EFI_RUNTIME_SERVICES_CODE:
  92. case EFI_RUNTIME_SERVICES_DATA:
  93. newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
  94. (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
  95. break;
  96. case EFI_MMAP_IO:
  97. newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
  98. break;
  99. default:
  100. newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
  101. break;
  102. }
  103. /* Add our new map */
  104. do {
  105. do_carving = false;
  106. list_for_each(lhandle, &efi_mem) {
  107. struct efi_mem_list *lmem;
  108. int r;
  109. lmem = list_entry(lhandle, struct efi_mem_list, link);
  110. r = efi_mem_carve_out(lmem, &newlist->desc,
  111. overlap_only_ram);
  112. if (r < 0) {
  113. return 0;
  114. } else if (r) {
  115. do_carving = true;
  116. break;
  117. }
  118. }
  119. } while (do_carving);
  120. /* Add our new map */
  121. list_add_tail(&newlist->link, &efi_mem);
  122. return start;
  123. }
  124. static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
  125. {
  126. struct list_head *lhandle;
  127. list_for_each(lhandle, &efi_mem) {
  128. struct efi_mem_list *lmem = list_entry(lhandle,
  129. struct efi_mem_list, link);
  130. struct efi_mem_desc *desc = &lmem->desc;
  131. uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
  132. uint64_t desc_end = desc->physical_start + desc_len;
  133. uint64_t curmax = min(max_addr, desc_end);
  134. uint64_t ret = curmax - len;
  135. /* We only take memory from free RAM */
  136. if (desc->type != EFI_CONVENTIONAL_MEMORY)
  137. continue;
  138. /* Out of bounds for max_addr */
  139. if ((ret + len) > max_addr)
  140. continue;
  141. /* Out of bounds for upper map limit */
  142. if ((ret + len) > desc_end)
  143. continue;
  144. /* Out of bounds for lower map limit */
  145. if (ret < desc->physical_start)
  146. continue;
  147. /* Return the highest address in this map within bounds */
  148. return ret;
  149. }
  150. return 0;
  151. }
  152. efi_status_t efi_allocate_pages(int type, int memory_type,
  153. unsigned long pages, uint64_t *memory)
  154. {
  155. u64 len = pages << EFI_PAGE_SHIFT;
  156. efi_status_t r = EFI_SUCCESS;
  157. uint64_t addr;
  158. switch (type) {
  159. case 0:
  160. /* Any page */
  161. addr = efi_find_free_memory(len, gd->ram_top);
  162. if (!addr) {
  163. r = EFI_NOT_FOUND;
  164. break;
  165. }
  166. break;
  167. case 1:
  168. /* Max address */
  169. addr = efi_find_free_memory(len, *memory);
  170. if (!addr) {
  171. r = EFI_NOT_FOUND;
  172. break;
  173. }
  174. break;
  175. case 2:
  176. /* Exact address, reserve it. The addr is already in *memory. */
  177. addr = *memory;
  178. break;
  179. default:
  180. /* UEFI doesn't specify other allocation types */
  181. r = EFI_INVALID_PARAMETER;
  182. break;
  183. }
  184. if (r == EFI_SUCCESS) {
  185. uint64_t ret;
  186. /* Reserve that map in our memory maps */
  187. ret = efi_add_memory_map(addr, pages, memory_type, true);
  188. if (ret == addr) {
  189. *memory = addr;
  190. } else {
  191. /* Map would overlap, bail out */
  192. r = EFI_OUT_OF_RESOURCES;
  193. }
  194. }
  195. return r;
  196. }
  197. void *efi_alloc(uint64_t len, int memory_type)
  198. {
  199. uint64_t ret = 0;
  200. uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  201. efi_status_t r;
  202. r = efi_allocate_pages(0, memory_type, pages, &ret);
  203. if (r == EFI_SUCCESS)
  204. return (void*)(uintptr_t)ret;
  205. return NULL;
  206. }
  207. efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
  208. {
  209. /* We don't free, let's cross our fingers we have plenty RAM */
  210. return EFI_SUCCESS;
  211. }
  212. efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
  213. struct efi_mem_desc *memory_map,
  214. unsigned long *map_key,
  215. unsigned long *descriptor_size,
  216. uint32_t *descriptor_version)
  217. {
  218. ulong map_size = 0;
  219. struct list_head *lhandle;
  220. list_for_each(lhandle, &efi_mem)
  221. map_size += sizeof(struct efi_mem_desc);
  222. *memory_map_size = map_size;
  223. if (descriptor_size)
  224. *descriptor_size = sizeof(struct efi_mem_desc);
  225. if (*memory_map_size < map_size)
  226. return EFI_BUFFER_TOO_SMALL;
  227. /* Copy list into array */
  228. if (memory_map) {
  229. list_for_each(lhandle, &efi_mem) {
  230. struct efi_mem_list *lmem;
  231. lmem = list_entry(lhandle, struct efi_mem_list, link);
  232. *memory_map = lmem->desc;
  233. memory_map++;
  234. }
  235. }
  236. return EFI_SUCCESS;
  237. }
  238. int efi_memory_init(void)
  239. {
  240. uint64_t runtime_start, runtime_end, runtime_pages;
  241. uint64_t uboot_start, uboot_pages;
  242. uint64_t uboot_stack_size = 16 * 1024 * 1024;
  243. int i;
  244. /* Add RAM */
  245. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  246. u64 ram_start = gd->bd->bi_dram[i].start;
  247. u64 ram_size = gd->bd->bi_dram[i].size;
  248. u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  249. u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  250. efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
  251. false);
  252. }
  253. /* Add U-Boot */
  254. uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
  255. uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
  256. efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
  257. /* Add Runtime Services */
  258. runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
  259. runtime_end = (ulong)&__efi_runtime_stop;
  260. runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  261. runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
  262. efi_add_memory_map(runtime_start, runtime_pages,
  263. EFI_RUNTIME_SERVICES_CODE, false);
  264. return 0;
  265. }