part_efi.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
  1. /*
  2. * Copyright (C) 2008 RuggedCom, Inc.
  3. * Richard Retanubun <RichardRetanubun@RuggedCom.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. /*
  8. * NOTE:
  9. * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
  10. * limits the maximum size of addressable storage to < 2 Terra Bytes
  11. */
  12. #include <asm/unaligned.h>
  13. #include <common.h>
  14. #include <command.h>
  15. #include <fdtdec.h>
  16. #include <ide.h>
  17. #include <inttypes.h>
  18. #include <malloc.h>
  19. #include <memalign.h>
  20. #include <part_efi.h>
  21. #include <linux/compiler.h>
  22. #include <linux/ctype.h>
  23. DECLARE_GLOBAL_DATA_PTR;
  24. #ifdef HAVE_BLOCK_DEVICE
  25. /**
  26. * efi_crc32() - EFI version of crc32 function
  27. * @buf: buffer to calculate crc32 of
  28. * @len - length of buf
  29. *
  30. * Description: Returns EFI-style CRC32 value for @buf
  31. */
  32. static inline u32 efi_crc32(const void *buf, u32 len)
  33. {
  34. return crc32(0, buf, len);
  35. }
  36. /*
  37. * Private function prototypes
  38. */
  39. static int pmbr_part_valid(struct partition *part);
  40. static int is_pmbr_valid(legacy_mbr * mbr);
  41. static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
  42. gpt_header *pgpt_head, gpt_entry **pgpt_pte);
  43. static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
  44. gpt_header *pgpt_head);
  45. static int is_pte_valid(gpt_entry * pte);
  46. static char *print_efiname(gpt_entry *pte)
  47. {
  48. static char name[PARTNAME_SZ + 1];
  49. int i;
  50. for (i = 0; i < PARTNAME_SZ; i++) {
  51. u8 c;
  52. c = pte->partition_name[i] & 0xff;
  53. c = (c && !isprint(c)) ? '.' : c;
  54. name[i] = c;
  55. }
  56. name[PARTNAME_SZ] = 0;
  57. return name;
  58. }
  59. static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
  60. static inline int is_bootable(gpt_entry *p)
  61. {
  62. return p->attributes.fields.legacy_bios_bootable ||
  63. !memcmp(&(p->partition_type_guid), &system_guid,
  64. sizeof(efi_guid_t));
  65. }
  66. static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
  67. lbaint_t lastlba)
  68. {
  69. uint32_t crc32_backup = 0;
  70. uint32_t calc_crc32;
  71. /* Check the GPT header signature */
  72. if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
  73. printf("%s signature is wrong: 0x%llX != 0x%llX\n",
  74. "GUID Partition Table Header",
  75. le64_to_cpu(gpt_h->signature),
  76. GPT_HEADER_SIGNATURE);
  77. return -1;
  78. }
  79. /* Check the GUID Partition Table CRC */
  80. memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
  81. memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
  82. calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
  83. le32_to_cpu(gpt_h->header_size));
  84. memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
  85. if (calc_crc32 != le32_to_cpu(crc32_backup)) {
  86. printf("%s CRC is wrong: 0x%x != 0x%x\n",
  87. "GUID Partition Table Header",
  88. le32_to_cpu(crc32_backup), calc_crc32);
  89. return -1;
  90. }
  91. /*
  92. * Check that the my_lba entry points to the LBA that contains the GPT
  93. */
  94. if (le64_to_cpu(gpt_h->my_lba) != lba) {
  95. printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
  96. le64_to_cpu(gpt_h->my_lba),
  97. lba);
  98. return -1;
  99. }
  100. /*
  101. * Check that the first_usable_lba and that the last_usable_lba are
  102. * within the disk.
  103. */
  104. if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
  105. printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
  106. le64_to_cpu(gpt_h->first_usable_lba), lastlba);
  107. return -1;
  108. }
  109. if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
  110. printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
  111. le64_to_cpu(gpt_h->last_usable_lba), lastlba);
  112. return -1;
  113. }
  114. debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
  115. LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
  116. le64_to_cpu(gpt_h->last_usable_lba), lastlba);
  117. return 0;
  118. }
  119. static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
  120. {
  121. uint32_t calc_crc32;
  122. /* Check the GUID Partition Table Entry Array CRC */
  123. calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
  124. le32_to_cpu(gpt_h->num_partition_entries) *
  125. le32_to_cpu(gpt_h->sizeof_partition_entry));
  126. if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
  127. printf("%s: 0x%x != 0x%x\n",
  128. "GUID Partition Table Entry Array CRC is wrong",
  129. le32_to_cpu(gpt_h->partition_entry_array_crc32),
  130. calc_crc32);
  131. return -1;
  132. }
  133. return 0;
  134. }
  135. static void prepare_backup_gpt_header(gpt_header *gpt_h)
  136. {
  137. uint32_t calc_crc32;
  138. uint64_t val;
  139. /* recalculate the values for the Backup GPT Header */
  140. val = le64_to_cpu(gpt_h->my_lba);
  141. gpt_h->my_lba = gpt_h->alternate_lba;
  142. gpt_h->alternate_lba = cpu_to_le64(val);
  143. gpt_h->partition_entry_lba =
  144. cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
  145. gpt_h->header_crc32 = 0;
  146. calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
  147. le32_to_cpu(gpt_h->header_size));
  148. gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
  149. }
  150. #if CONFIG_IS_ENABLED(EFI_PARTITION)
  151. /*
  152. * Public Functions (include/part.h)
  153. */
  154. void part_print_efi(struct blk_desc *dev_desc)
  155. {
  156. ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
  157. gpt_entry *gpt_pte = NULL;
  158. int i = 0;
  159. char uuid[37];
  160. unsigned char *uuid_bin;
  161. /* This function validates AND fills in the GPT header and PTE */
  162. if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
  163. gpt_head, &gpt_pte) != 1) {
  164. printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
  165. if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
  166. gpt_head, &gpt_pte) != 1) {
  167. printf("%s: *** ERROR: Invalid Backup GPT ***\n",
  168. __func__);
  169. return;
  170. } else {
  171. printf("%s: *** Using Backup GPT ***\n",
  172. __func__);
  173. }
  174. }
  175. debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
  176. printf("Part\tStart LBA\tEnd LBA\t\tName\n");
  177. printf("\tAttributes\n");
  178. printf("\tType GUID\n");
  179. printf("\tPartition GUID\n");
  180. for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
  181. /* Stop at the first non valid PTE */
  182. if (!is_pte_valid(&gpt_pte[i]))
  183. break;
  184. printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
  185. le64_to_cpu(gpt_pte[i].starting_lba),
  186. le64_to_cpu(gpt_pte[i].ending_lba),
  187. print_efiname(&gpt_pte[i]));
  188. printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
  189. uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
  190. uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
  191. printf("\ttype:\t%s\n", uuid);
  192. #ifdef CONFIG_PARTITION_TYPE_GUID
  193. if (!uuid_guid_get_str(uuid_bin, uuid))
  194. printf("\ttype:\t%s\n", uuid);
  195. #endif
  196. uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
  197. uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
  198. printf("\tguid:\t%s\n", uuid);
  199. }
  200. /* Remember to free pte */
  201. free(gpt_pte);
  202. return;
  203. }
  204. int part_get_info_efi(struct blk_desc *dev_desc, int part,
  205. disk_partition_t *info)
  206. {
  207. ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
  208. gpt_entry *gpt_pte = NULL;
  209. /* "part" argument must be at least 1 */
  210. if (part < 1) {
  211. printf("%s: Invalid Argument(s)\n", __func__);
  212. return -1;
  213. }
  214. /* This function validates AND fills in the GPT header and PTE */
  215. if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
  216. gpt_head, &gpt_pte) != 1) {
  217. printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
  218. if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
  219. gpt_head, &gpt_pte) != 1) {
  220. printf("%s: *** ERROR: Invalid Backup GPT ***\n",
  221. __func__);
  222. return -1;
  223. } else {
  224. printf("%s: *** Using Backup GPT ***\n",
  225. __func__);
  226. }
  227. }
  228. if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
  229. !is_pte_valid(&gpt_pte[part - 1])) {
  230. debug("%s: *** ERROR: Invalid partition number %d ***\n",
  231. __func__, part);
  232. free(gpt_pte);
  233. return -1;
  234. }
  235. /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
  236. info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
  237. /* The ending LBA is inclusive, to calculate size, add 1 to it */
  238. info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
  239. - info->start;
  240. info->blksz = dev_desc->blksz;
  241. sprintf((char *)info->name, "%s",
  242. print_efiname(&gpt_pte[part - 1]));
  243. strcpy((char *)info->type, "U-Boot");
  244. info->bootable = is_bootable(&gpt_pte[part - 1]);
  245. #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
  246. uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
  247. UUID_STR_FORMAT_GUID);
  248. #endif
  249. #ifdef CONFIG_PARTITION_TYPE_GUID
  250. uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
  251. info->type_guid, UUID_STR_FORMAT_GUID);
  252. #endif
  253. debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
  254. info->start, info->size, info->name);
  255. /* Remember to free pte */
  256. free(gpt_pte);
  257. return 0;
  258. }
  259. static int part_test_efi(struct blk_desc *dev_desc)
  260. {
  261. ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
  262. /* Read legacy MBR from block 0 and validate it */
  263. if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
  264. || (is_pmbr_valid(legacymbr) != 1)) {
  265. return -1;
  266. }
  267. return 0;
  268. }
  269. /**
  270. * set_protective_mbr(): Set the EFI protective MBR
  271. * @param dev_desc - block device descriptor
  272. *
  273. * @return - zero on success, otherwise error
  274. */
  275. static int set_protective_mbr(struct blk_desc *dev_desc)
  276. {
  277. /* Setup the Protective MBR */
  278. ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
  279. memset(p_mbr, 0, sizeof(*p_mbr));
  280. if (p_mbr == NULL) {
  281. printf("%s: calloc failed!\n", __func__);
  282. return -1;
  283. }
  284. /* Read MBR to backup boot code if it exists */
  285. if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
  286. error("** Can't read from device %d **\n", dev_desc->devnum);
  287. return -1;
  288. }
  289. /* Append signature */
  290. p_mbr->signature = MSDOS_MBR_SIGNATURE;
  291. p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
  292. p_mbr->partition_record[0].start_sect = 1;
  293. p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
  294. /* Write MBR sector to the MMC device */
  295. if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
  296. printf("** Can't write to device %d **\n",
  297. dev_desc->devnum);
  298. return -1;
  299. }
  300. return 0;
  301. }
  302. int write_gpt_table(struct blk_desc *dev_desc,
  303. gpt_header *gpt_h, gpt_entry *gpt_e)
  304. {
  305. const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
  306. * sizeof(gpt_entry)), dev_desc);
  307. u32 calc_crc32;
  308. debug("max lba: %x\n", (u32) dev_desc->lba);
  309. /* Setup the Protective MBR */
  310. if (set_protective_mbr(dev_desc) < 0)
  311. goto err;
  312. /* Generate CRC for the Primary GPT Header */
  313. calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
  314. le32_to_cpu(gpt_h->num_partition_entries) *
  315. le32_to_cpu(gpt_h->sizeof_partition_entry));
  316. gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
  317. calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
  318. le32_to_cpu(gpt_h->header_size));
  319. gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
  320. /* Write the First GPT to the block right after the Legacy MBR */
  321. if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
  322. goto err;
  323. if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
  324. pte_blk_cnt, gpt_e) != pte_blk_cnt)
  325. goto err;
  326. prepare_backup_gpt_header(gpt_h);
  327. if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
  328. + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
  329. goto err;
  330. if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
  331. gpt_h) != 1)
  332. goto err;
  333. debug("GPT successfully written to block device!\n");
  334. return 0;
  335. err:
  336. printf("** Can't write to device %d **\n", dev_desc->devnum);
  337. return -1;
  338. }
  339. int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
  340. disk_partition_t *partitions, int parts)
  341. {
  342. lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
  343. lbaint_t start;
  344. lbaint_t last_usable_lba = (lbaint_t)
  345. le64_to_cpu(gpt_h->last_usable_lba);
  346. int i, k;
  347. size_t efiname_len, dosname_len;
  348. #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
  349. char *str_uuid;
  350. unsigned char *bin_uuid;
  351. #endif
  352. #ifdef CONFIG_PARTITION_TYPE_GUID
  353. char *str_type_guid;
  354. unsigned char *bin_type_guid;
  355. #endif
  356. for (i = 0; i < parts; i++) {
  357. /* partition starting lba */
  358. start = partitions[i].start;
  359. if (start && (start < offset)) {
  360. printf("Partition overlap\n");
  361. return -1;
  362. }
  363. if (start) {
  364. gpt_e[i].starting_lba = cpu_to_le64(start);
  365. offset = start + partitions[i].size;
  366. } else {
  367. gpt_e[i].starting_lba = cpu_to_le64(offset);
  368. offset += partitions[i].size;
  369. }
  370. if (offset > (last_usable_lba + 1)) {
  371. printf("Partitions layout exceds disk size\n");
  372. return -1;
  373. }
  374. /* partition ending lba */
  375. if ((i == parts - 1) && (partitions[i].size == 0))
  376. /* extend the last partition to maximuim */
  377. gpt_e[i].ending_lba = gpt_h->last_usable_lba;
  378. else
  379. gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
  380. #ifdef CONFIG_PARTITION_TYPE_GUID
  381. str_type_guid = partitions[i].type_guid;
  382. bin_type_guid = gpt_e[i].partition_type_guid.b;
  383. if (strlen(str_type_guid)) {
  384. if (uuid_str_to_bin(str_type_guid, bin_type_guid,
  385. UUID_STR_FORMAT_GUID)) {
  386. printf("Partition no. %d: invalid type guid: %s\n",
  387. i, str_type_guid);
  388. return -1;
  389. }
  390. } else {
  391. /* default partition type GUID */
  392. memcpy(bin_type_guid,
  393. &PARTITION_BASIC_DATA_GUID, 16);
  394. }
  395. #else
  396. /* partition type GUID */
  397. memcpy(gpt_e[i].partition_type_guid.b,
  398. &PARTITION_BASIC_DATA_GUID, 16);
  399. #endif
  400. #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
  401. str_uuid = partitions[i].uuid;
  402. bin_uuid = gpt_e[i].unique_partition_guid.b;
  403. if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
  404. printf("Partition no. %d: invalid guid: %s\n",
  405. i, str_uuid);
  406. return -1;
  407. }
  408. #endif
  409. /* partition attributes */
  410. memset(&gpt_e[i].attributes, 0,
  411. sizeof(gpt_entry_attributes));
  412. if (partitions[i].bootable)
  413. gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
  414. /* partition name */
  415. efiname_len = sizeof(gpt_e[i].partition_name)
  416. / sizeof(efi_char16_t);
  417. dosname_len = sizeof(partitions[i].name);
  418. memset(gpt_e[i].partition_name, 0,
  419. sizeof(gpt_e[i].partition_name));
  420. for (k = 0; k < min(dosname_len, efiname_len); k++)
  421. gpt_e[i].partition_name[k] =
  422. (efi_char16_t)(partitions[i].name[k]);
  423. debug("%s: name: %s offset[%d]: 0x" LBAF
  424. " size[%d]: 0x" LBAF "\n",
  425. __func__, partitions[i].name, i,
  426. offset, i, partitions[i].size);
  427. }
  428. return 0;
  429. }
  430. static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
  431. {
  432. uint32_t offset_blks = 2;
  433. int __maybe_unused config_offset;
  434. #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
  435. /*
  436. * Some architectures require their SPL loader at a fixed
  437. * address within the first 16KB of the disk. To avoid an
  438. * overlap with the partition entries of the EFI partition
  439. * table, the first safe offset (in bytes, from the start of
  440. * the disk) for the entries can be set in
  441. * CONFIG_EFI_PARTITION_ENTRIES_OFF.
  442. */
  443. offset_blks =
  444. PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
  445. #endif
  446. #if defined(CONFIG_OF_CONTROL)
  447. /*
  448. * Allow the offset of the first partition entires (in bytes
  449. * from the start of the device) to be specified as a property
  450. * of the device tree '/config' node.
  451. */
  452. config_offset = fdtdec_get_config_int(gd->fdt_blob,
  453. "u-boot,efi-partition-entries-offset",
  454. -EINVAL);
  455. if (config_offset != -EINVAL)
  456. offset_blks = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
  457. #endif
  458. debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
  459. /*
  460. * The earliest LBA this can be at is LBA#2 (i.e. right behind
  461. * the (protective) MBR and the GPT header.
  462. */
  463. if (offset_blks < 2)
  464. offset_blks = 2;
  465. return offset_blks;
  466. }
  467. int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
  468. char *str_guid, int parts_count)
  469. {
  470. gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
  471. gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
  472. gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
  473. gpt_h->my_lba = cpu_to_le64(1);
  474. gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
  475. gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
  476. gpt_h->partition_entry_lba =
  477. cpu_to_le64(partition_entries_offset(dev_desc));
  478. gpt_h->first_usable_lba =
  479. cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
  480. gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
  481. gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
  482. gpt_h->header_crc32 = 0;
  483. gpt_h->partition_entry_array_crc32 = 0;
  484. if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
  485. return -1;
  486. return 0;
  487. }
  488. int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
  489. disk_partition_t *partitions, int parts_count)
  490. {
  491. int ret;
  492. gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
  493. dev_desc));
  494. gpt_entry *gpt_e;
  495. if (gpt_h == NULL) {
  496. printf("%s: calloc failed!\n", __func__);
  497. return -1;
  498. }
  499. gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
  500. * sizeof(gpt_entry),
  501. dev_desc));
  502. if (gpt_e == NULL) {
  503. printf("%s: calloc failed!\n", __func__);
  504. free(gpt_h);
  505. return -1;
  506. }
  507. /* Generate Primary GPT header (LBA1) */
  508. ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
  509. if (ret)
  510. goto err;
  511. /* Generate partition entries */
  512. ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
  513. if (ret)
  514. goto err;
  515. /* Write GPT partition table */
  516. ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
  517. err:
  518. free(gpt_e);
  519. free(gpt_h);
  520. return ret;
  521. }
  522. static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
  523. {
  524. char *ess = (char *)es;
  525. int i, j;
  526. memset(s, '\0', n);
  527. for (i = 0, j = 0; j < n; i += 2, j++) {
  528. s[j] = ess[i];
  529. if (!ess[i])
  530. return;
  531. }
  532. }
  533. int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
  534. gpt_entry **gpt_pte)
  535. {
  536. /*
  537. * This function validates AND
  538. * fills in the GPT header and PTE
  539. */
  540. if (is_gpt_valid(dev_desc,
  541. GPT_PRIMARY_PARTITION_TABLE_LBA,
  542. gpt_head, gpt_pte) != 1) {
  543. printf("%s: *** ERROR: Invalid GPT ***\n",
  544. __func__);
  545. return -1;
  546. }
  547. if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
  548. gpt_head, gpt_pte) != 1) {
  549. printf("%s: *** ERROR: Invalid Backup GPT ***\n",
  550. __func__);
  551. return -1;
  552. }
  553. return 0;
  554. }
  555. int gpt_verify_partitions(struct blk_desc *dev_desc,
  556. disk_partition_t *partitions, int parts,
  557. gpt_header *gpt_head, gpt_entry **gpt_pte)
  558. {
  559. char efi_str[PARTNAME_SZ + 1];
  560. u64 gpt_part_size;
  561. gpt_entry *gpt_e;
  562. int ret, i;
  563. ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
  564. if (ret)
  565. return ret;
  566. gpt_e = *gpt_pte;
  567. for (i = 0; i < parts; i++) {
  568. if (i == gpt_head->num_partition_entries) {
  569. error("More partitions than allowed!\n");
  570. return -1;
  571. }
  572. /* Check if GPT and ENV partition names match */
  573. gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
  574. PARTNAME_SZ + 1);
  575. debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
  576. __func__, i, efi_str, partitions[i].name);
  577. if (strncmp(efi_str, (char *)partitions[i].name,
  578. sizeof(partitions->name))) {
  579. error("Partition name: %s does not match %s!\n",
  580. efi_str, (char *)partitions[i].name);
  581. return -1;
  582. }
  583. /* Check if GPT and ENV sizes match */
  584. gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
  585. le64_to_cpu(gpt_e[i].starting_lba) + 1;
  586. debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
  587. (unsigned long long)gpt_part_size,
  588. (unsigned long long)partitions[i].size);
  589. if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
  590. /* We do not check the extend partition size */
  591. if ((i == parts - 1) && (partitions[i].size == 0))
  592. continue;
  593. error("Partition %s size: %llu does not match %llu!\n",
  594. efi_str, (unsigned long long)gpt_part_size,
  595. (unsigned long long)partitions[i].size);
  596. return -1;
  597. }
  598. /*
  599. * Start address is optional - check only if provided
  600. * in '$partition' variable
  601. */
  602. if (!partitions[i].start) {
  603. debug("\n");
  604. continue;
  605. }
  606. /* Check if GPT and ENV start LBAs match */
  607. debug("start LBA - GPT: %8llu, ENV: %8llu\n",
  608. le64_to_cpu(gpt_e[i].starting_lba),
  609. (unsigned long long)partitions[i].start);
  610. if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
  611. error("Partition %s start: %llu does not match %llu!\n",
  612. efi_str, le64_to_cpu(gpt_e[i].starting_lba),
  613. (unsigned long long)partitions[i].start);
  614. return -1;
  615. }
  616. }
  617. return 0;
  618. }
  619. int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
  620. {
  621. gpt_header *gpt_h;
  622. gpt_entry *gpt_e;
  623. /* determine start of GPT Header in the buffer */
  624. gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
  625. dev_desc->blksz);
  626. if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
  627. dev_desc->lba))
  628. return -1;
  629. /* determine start of GPT Entries in the buffer */
  630. gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
  631. dev_desc->blksz);
  632. if (validate_gpt_entries(gpt_h, gpt_e))
  633. return -1;
  634. return 0;
  635. }
  636. int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
  637. {
  638. gpt_header *gpt_h;
  639. gpt_entry *gpt_e;
  640. int gpt_e_blk_cnt;
  641. lbaint_t lba;
  642. int cnt;
  643. if (is_valid_gpt_buf(dev_desc, buf))
  644. return -1;
  645. /* determine start of GPT Header in the buffer */
  646. gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
  647. dev_desc->blksz);
  648. /* determine start of GPT Entries in the buffer */
  649. gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
  650. dev_desc->blksz);
  651. gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
  652. le32_to_cpu(gpt_h->sizeof_partition_entry)),
  653. dev_desc);
  654. /* write MBR */
  655. lba = 0; /* MBR is always at 0 */
  656. cnt = 1; /* MBR (1 block) */
  657. if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
  658. printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
  659. __func__, "MBR", cnt, lba);
  660. return 1;
  661. }
  662. /* write Primary GPT */
  663. lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
  664. cnt = 1; /* GPT Header (1 block) */
  665. if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
  666. printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
  667. __func__, "Primary GPT Header", cnt, lba);
  668. return 1;
  669. }
  670. lba = le64_to_cpu(gpt_h->partition_entry_lba);
  671. cnt = gpt_e_blk_cnt;
  672. if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
  673. printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
  674. __func__, "Primary GPT Entries", cnt, lba);
  675. return 1;
  676. }
  677. prepare_backup_gpt_header(gpt_h);
  678. /* write Backup GPT */
  679. lba = le64_to_cpu(gpt_h->partition_entry_lba);
  680. cnt = gpt_e_blk_cnt;
  681. if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
  682. printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
  683. __func__, "Backup GPT Entries", cnt, lba);
  684. return 1;
  685. }
  686. lba = le64_to_cpu(gpt_h->my_lba);
  687. cnt = 1; /* GPT Header (1 block) */
  688. if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
  689. printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
  690. __func__, "Backup GPT Header", cnt, lba);
  691. return 1;
  692. }
  693. return 0;
  694. }
  695. #endif
  696. /*
  697. * Private functions
  698. */
  699. /*
  700. * pmbr_part_valid(): Check for EFI partition signature
  701. *
  702. * Returns: 1 if EFI GPT partition type is found.
  703. */
  704. static int pmbr_part_valid(struct partition *part)
  705. {
  706. if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
  707. get_unaligned_le32(&part->start_sect) == 1UL) {
  708. return 1;
  709. }
  710. return 0;
  711. }
  712. /*
  713. * is_pmbr_valid(): test Protective MBR for validity
  714. *
  715. * Returns: 1 if PMBR is valid, 0 otherwise.
  716. * Validity depends on two things:
  717. * 1) MSDOS signature is in the last two bytes of the MBR
  718. * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
  719. */
  720. static int is_pmbr_valid(legacy_mbr * mbr)
  721. {
  722. int i = 0;
  723. if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
  724. return 0;
  725. for (i = 0; i < 4; i++) {
  726. if (pmbr_part_valid(&mbr->partition_record[i])) {
  727. return 1;
  728. }
  729. }
  730. return 0;
  731. }
  732. /**
  733. * is_gpt_valid() - tests one GPT header and PTEs for validity
  734. *
  735. * lba is the logical block address of the GPT header to test
  736. * gpt is a GPT header ptr, filled on return.
  737. * ptes is a PTEs ptr, filled on return.
  738. *
  739. * Description: returns 1 if valid, 0 on error.
  740. * If valid, returns pointers to PTEs.
  741. */
  742. static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
  743. gpt_header *pgpt_head, gpt_entry **pgpt_pte)
  744. {
  745. if (!dev_desc || !pgpt_head) {
  746. printf("%s: Invalid Argument(s)\n", __func__);
  747. return 0;
  748. }
  749. /* Read GPT Header from device */
  750. if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
  751. printf("*** ERROR: Can't read GPT header ***\n");
  752. return 0;
  753. }
  754. if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
  755. return 0;
  756. /* Read and allocate Partition Table Entries */
  757. *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
  758. if (*pgpt_pte == NULL) {
  759. printf("GPT: Failed to allocate memory for PTE\n");
  760. return 0;
  761. }
  762. if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
  763. free(*pgpt_pte);
  764. return 0;
  765. }
  766. /* We're done, all's well */
  767. return 1;
  768. }
  769. /**
  770. * alloc_read_gpt_entries(): reads partition entries from disk
  771. * @dev_desc
  772. * @gpt - GPT header
  773. *
  774. * Description: Returns ptes on success, NULL on error.
  775. * Allocates space for PTEs based on information found in @gpt.
  776. * Notes: remember to free pte when you're done!
  777. */
  778. static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
  779. gpt_header *pgpt_head)
  780. {
  781. size_t count = 0, blk_cnt;
  782. lbaint_t blk;
  783. gpt_entry *pte = NULL;
  784. if (!dev_desc || !pgpt_head) {
  785. printf("%s: Invalid Argument(s)\n", __func__);
  786. return NULL;
  787. }
  788. count = le32_to_cpu(pgpt_head->num_partition_entries) *
  789. le32_to_cpu(pgpt_head->sizeof_partition_entry);
  790. debug("%s: count = %u * %u = %lu\n", __func__,
  791. (u32) le32_to_cpu(pgpt_head->num_partition_entries),
  792. (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
  793. (ulong)count);
  794. /* Allocate memory for PTE, remember to FREE */
  795. if (count != 0) {
  796. pte = memalign(ARCH_DMA_MINALIGN,
  797. PAD_TO_BLOCKSIZE(count, dev_desc));
  798. }
  799. if (count == 0 || pte == NULL) {
  800. printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
  801. __func__, (ulong)count);
  802. return NULL;
  803. }
  804. /* Read GPT Entries from device */
  805. blk = le64_to_cpu(pgpt_head->partition_entry_lba);
  806. blk_cnt = BLOCK_CNT(count, dev_desc);
  807. if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
  808. printf("*** ERROR: Can't read GPT Entries ***\n");
  809. free(pte);
  810. return NULL;
  811. }
  812. return pte;
  813. }
  814. /**
  815. * is_pte_valid(): validates a single Partition Table Entry
  816. * @gpt_entry - Pointer to a single Partition Table Entry
  817. *
  818. * Description: returns 1 if valid, 0 on error.
  819. */
  820. static int is_pte_valid(gpt_entry * pte)
  821. {
  822. efi_guid_t unused_guid;
  823. if (!pte) {
  824. printf("%s: Invalid Argument(s)\n", __func__);
  825. return 0;
  826. }
  827. /* Only one validation for now:
  828. * The GUID Partition Type != Unused Entry (ALL-ZERO)
  829. */
  830. memset(unused_guid.b, 0, sizeof(unused_guid.b));
  831. if (memcmp(pte->partition_type_guid.b, unused_guid.b,
  832. sizeof(unused_guid.b)) == 0) {
  833. debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
  834. (unsigned int)(uintptr_t)pte);
  835. return 0;
  836. } else {
  837. return 1;
  838. }
  839. }
  840. /*
  841. * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
  842. * check EFI first, since a DOS partition is often used as a 'protective MBR'
  843. * with EFI.
  844. */
  845. U_BOOT_PART_TYPE(a_efi) = {
  846. .name = "EFI",
  847. .part_type = PART_TYPE_EFI,
  848. .max_entries = GPT_ENTRY_NUMBERS,
  849. .get_info = part_get_info_ptr(part_get_info_efi),
  850. .print = part_print_ptr(part_print_efi),
  851. .test = part_test_efi,
  852. };
  853. #endif