omap_hsmmc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /*
  2. * (C) Copyright 2008
  3. * Texas Instruments, <www.ti.com>
  4. * Sukumar Ghorai <s-ghorai@ti.com>
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation's version 2 of
  12. * the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <config.h>
  25. #include <common.h>
  26. #include <malloc.h>
  27. #include <mmc.h>
  28. #include <part.h>
  29. #include <i2c.h>
  30. #include <twl4030.h>
  31. #include <twl6030.h>
  32. #include <palmas.h>
  33. #include <asm/gpio.h>
  34. #include <asm/io.h>
  35. #include <asm/arch/mmc_host_def.h>
  36. #include <asm/arch/sys_proto.h>
  37. /* simplify defines to OMAP_HSMMC_USE_GPIO */
  38. #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
  39. (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
  40. #define OMAP_HSMMC_USE_GPIO
  41. #else
  42. #undef OMAP_HSMMC_USE_GPIO
  43. #endif
  44. /* common definitions for all OMAPs */
  45. #define SYSCTL_SRC (1 << 25)
  46. #define SYSCTL_SRD (1 << 26)
  47. struct omap_hsmmc_data {
  48. struct hsmmc *base_addr;
  49. struct mmc_config cfg;
  50. #ifdef OMAP_HSMMC_USE_GPIO
  51. int cd_gpio;
  52. int wp_gpio;
  53. #endif
  54. };
  55. /* If we fail after 1 second wait, something is really bad */
  56. #define MAX_RETRY_MS 1000
  57. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
  58. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  59. unsigned int siz);
  60. #ifdef OMAP_HSMMC_USE_GPIO
  61. static int omap_mmc_setup_gpio_in(int gpio, const char *label)
  62. {
  63. int ret;
  64. #ifndef CONFIG_DM_GPIO
  65. if (!gpio_is_valid(gpio))
  66. return -1;
  67. #endif
  68. ret = gpio_request(gpio, label);
  69. if (ret)
  70. return ret;
  71. ret = gpio_direction_input(gpio);
  72. if (ret)
  73. return ret;
  74. return gpio;
  75. }
  76. #endif
  77. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  78. static void omap4_vmmc_pbias_config(struct mmc *mmc)
  79. {
  80. u32 value = 0;
  81. value = readl((*ctrl)->control_pbiaslite);
  82. value &= ~(MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ);
  83. writel(value, (*ctrl)->control_pbiaslite);
  84. /* set VMMC to 3V */
  85. twl6030_power_mmc_init();
  86. value = readl((*ctrl)->control_pbiaslite);
  87. value |= MMC1_PBIASLITE_VMODE | MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ;
  88. writel(value, (*ctrl)->control_pbiaslite);
  89. }
  90. #endif
  91. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  92. static void omap5_pbias_config(struct mmc *mmc)
  93. {
  94. u32 value = 0;
  95. value = readl((*ctrl)->control_pbias);
  96. value &= ~SDCARD_PWRDNZ;
  97. writel(value, (*ctrl)->control_pbias);
  98. udelay(10); /* wait 10 us */
  99. value &= ~SDCARD_BIAS_PWRDNZ;
  100. writel(value, (*ctrl)->control_pbias);
  101. palmas_mmc1_poweron_ldo();
  102. value = readl((*ctrl)->control_pbias);
  103. value |= SDCARD_BIAS_PWRDNZ;
  104. writel(value, (*ctrl)->control_pbias);
  105. udelay(150); /* wait 150 us */
  106. value |= SDCARD_PWRDNZ;
  107. writel(value, (*ctrl)->control_pbias);
  108. udelay(150); /* wait 150 us */
  109. }
  110. #endif
  111. static unsigned char mmc_board_init(struct mmc *mmc)
  112. {
  113. #if defined(CONFIG_OMAP34XX)
  114. t2_t *t2_base = (t2_t *)T2_BASE;
  115. struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
  116. u32 pbias_lite;
  117. pbias_lite = readl(&t2_base->pbias_lite);
  118. pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
  119. #ifdef CONFIG_TARGET_OMAP3_CAIRO
  120. /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
  121. pbias_lite &= ~PBIASLITEVMODE0;
  122. #endif
  123. writel(pbias_lite, &t2_base->pbias_lite);
  124. writel(pbias_lite | PBIASLITEPWRDNZ1 |
  125. PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
  126. &t2_base->pbias_lite);
  127. writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
  128. &t2_base->devconf0);
  129. writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
  130. &t2_base->devconf1);
  131. /* Change from default of 52MHz to 26MHz if necessary */
  132. if (!(mmc->cfg->host_caps & MMC_MODE_HS_52MHz))
  133. writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
  134. &t2_base->ctl_prog_io1);
  135. writel(readl(&prcm_base->fclken1_core) |
  136. EN_MMC1 | EN_MMC2 | EN_MMC3,
  137. &prcm_base->fclken1_core);
  138. writel(readl(&prcm_base->iclken1_core) |
  139. EN_MMC1 | EN_MMC2 | EN_MMC3,
  140. &prcm_base->iclken1_core);
  141. #endif
  142. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  143. /* PBIAS config needed for MMC1 only */
  144. if (mmc->block_dev.dev == 0)
  145. omap4_vmmc_pbias_config(mmc);
  146. #endif
  147. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  148. if (mmc->block_dev.dev == 0)
  149. omap5_pbias_config(mmc);
  150. #endif
  151. return 0;
  152. }
  153. void mmc_init_stream(struct hsmmc *mmc_base)
  154. {
  155. ulong start;
  156. writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
  157. writel(MMC_CMD0, &mmc_base->cmd);
  158. start = get_timer(0);
  159. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  160. if (get_timer(0) - start > MAX_RETRY_MS) {
  161. printf("%s: timedout waiting for cc!\n", __func__);
  162. return;
  163. }
  164. }
  165. writel(CC_MASK, &mmc_base->stat)
  166. ;
  167. writel(MMC_CMD0, &mmc_base->cmd)
  168. ;
  169. start = get_timer(0);
  170. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  171. if (get_timer(0) - start > MAX_RETRY_MS) {
  172. printf("%s: timedout waiting for cc2!\n", __func__);
  173. return;
  174. }
  175. }
  176. writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
  177. }
  178. static int omap_hsmmc_init_setup(struct mmc *mmc)
  179. {
  180. struct hsmmc *mmc_base;
  181. unsigned int reg_val;
  182. unsigned int dsor;
  183. ulong start;
  184. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  185. mmc_board_init(mmc);
  186. writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
  187. &mmc_base->sysconfig);
  188. start = get_timer(0);
  189. while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
  190. if (get_timer(0) - start > MAX_RETRY_MS) {
  191. printf("%s: timedout waiting for cc2!\n", __func__);
  192. return TIMEOUT;
  193. }
  194. }
  195. writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
  196. start = get_timer(0);
  197. while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
  198. if (get_timer(0) - start > MAX_RETRY_MS) {
  199. printf("%s: timedout waiting for softresetall!\n",
  200. __func__);
  201. return TIMEOUT;
  202. }
  203. }
  204. writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
  205. writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
  206. &mmc_base->capa);
  207. reg_val = readl(&mmc_base->con) & RESERVED_MASK;
  208. writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
  209. MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
  210. HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
  211. dsor = 240;
  212. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  213. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  214. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  215. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  216. start = get_timer(0);
  217. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  218. if (get_timer(0) - start > MAX_RETRY_MS) {
  219. printf("%s: timedout waiting for ics!\n", __func__);
  220. return TIMEOUT;
  221. }
  222. }
  223. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  224. writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
  225. writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
  226. IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC,
  227. &mmc_base->ie);
  228. mmc_init_stream(mmc_base);
  229. return 0;
  230. }
  231. /*
  232. * MMC controller internal finite state machine reset
  233. *
  234. * Used to reset command or data internal state machines, using respectively
  235. * SRC or SRD bit of SYSCTL register
  236. */
  237. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
  238. {
  239. ulong start;
  240. mmc_reg_out(&mmc_base->sysctl, bit, bit);
  241. /*
  242. * CMD(DAT) lines reset procedures are slightly different
  243. * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
  244. * According to OMAP3 TRM:
  245. * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
  246. * returns to 0x0.
  247. * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
  248. * procedure steps must be as follows:
  249. * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
  250. * MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
  251. * 2. Poll the SRC(SRD) bit until it is set to 0x1.
  252. * 3. Wait until the SRC (SRD) bit returns to 0x0
  253. * (reset procedure is completed).
  254. */
  255. #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  256. defined(CONFIG_AM33XX)
  257. if (!(readl(&mmc_base->sysctl) & bit)) {
  258. start = get_timer(0);
  259. while (!(readl(&mmc_base->sysctl) & bit)) {
  260. if (get_timer(0) - start > MAX_RETRY_MS)
  261. return;
  262. }
  263. }
  264. #endif
  265. start = get_timer(0);
  266. while ((readl(&mmc_base->sysctl) & bit) != 0) {
  267. if (get_timer(0) - start > MAX_RETRY_MS) {
  268. printf("%s: timedout waiting for sysctl %x to clear\n",
  269. __func__, bit);
  270. return;
  271. }
  272. }
  273. }
  274. static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
  275. struct mmc_data *data)
  276. {
  277. struct hsmmc *mmc_base;
  278. unsigned int flags, mmc_stat;
  279. ulong start;
  280. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  281. start = get_timer(0);
  282. while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
  283. if (get_timer(0) - start > MAX_RETRY_MS) {
  284. printf("%s: timedout waiting on cmd inhibit to clear\n",
  285. __func__);
  286. return TIMEOUT;
  287. }
  288. }
  289. writel(0xFFFFFFFF, &mmc_base->stat);
  290. start = get_timer(0);
  291. while (readl(&mmc_base->stat)) {
  292. if (get_timer(0) - start > MAX_RETRY_MS) {
  293. printf("%s: timedout waiting for STAT (%x) to clear\n",
  294. __func__, readl(&mmc_base->stat));
  295. return TIMEOUT;
  296. }
  297. }
  298. /*
  299. * CMDREG
  300. * CMDIDX[13:8] : Command index
  301. * DATAPRNT[5] : Data Present Select
  302. * ENCMDIDX[4] : Command Index Check Enable
  303. * ENCMDCRC[3] : Command CRC Check Enable
  304. * RSPTYP[1:0]
  305. * 00 = No Response
  306. * 01 = Length 136
  307. * 10 = Length 48
  308. * 11 = Length 48 Check busy after response
  309. */
  310. /* Delay added before checking the status of frq change
  311. * retry not supported by mmc.c(core file)
  312. */
  313. if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
  314. udelay(50000); /* wait 50 ms */
  315. if (!(cmd->resp_type & MMC_RSP_PRESENT))
  316. flags = 0;
  317. else if (cmd->resp_type & MMC_RSP_136)
  318. flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
  319. else if (cmd->resp_type & MMC_RSP_BUSY)
  320. flags = RSP_TYPE_LGHT48B;
  321. else
  322. flags = RSP_TYPE_LGHT48;
  323. /* enable default flags */
  324. flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
  325. MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE);
  326. if (cmd->resp_type & MMC_RSP_CRC)
  327. flags |= CCCE_CHECK;
  328. if (cmd->resp_type & MMC_RSP_OPCODE)
  329. flags |= CICE_CHECK;
  330. if (data) {
  331. if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
  332. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
  333. flags |= (MSBS_MULTIBLK | BCE_ENABLE);
  334. data->blocksize = 512;
  335. writel(data->blocksize | (data->blocks << 16),
  336. &mmc_base->blk);
  337. } else
  338. writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
  339. if (data->flags & MMC_DATA_READ)
  340. flags |= (DP_DATA | DDIR_READ);
  341. else
  342. flags |= (DP_DATA | DDIR_WRITE);
  343. }
  344. writel(cmd->cmdarg, &mmc_base->arg);
  345. udelay(20); /* To fix "No status update" error on eMMC */
  346. writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
  347. start = get_timer(0);
  348. do {
  349. mmc_stat = readl(&mmc_base->stat);
  350. if (get_timer(0) - start > MAX_RETRY_MS) {
  351. printf("%s : timeout: No status update\n", __func__);
  352. return TIMEOUT;
  353. }
  354. } while (!mmc_stat);
  355. if ((mmc_stat & IE_CTO) != 0) {
  356. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  357. return TIMEOUT;
  358. } else if ((mmc_stat & ERRI_MASK) != 0)
  359. return -1;
  360. if (mmc_stat & CC_MASK) {
  361. writel(CC_MASK, &mmc_base->stat);
  362. if (cmd->resp_type & MMC_RSP_PRESENT) {
  363. if (cmd->resp_type & MMC_RSP_136) {
  364. /* response type 2 */
  365. cmd->response[3] = readl(&mmc_base->rsp10);
  366. cmd->response[2] = readl(&mmc_base->rsp32);
  367. cmd->response[1] = readl(&mmc_base->rsp54);
  368. cmd->response[0] = readl(&mmc_base->rsp76);
  369. } else
  370. /* response types 1, 1b, 3, 4, 5, 6 */
  371. cmd->response[0] = readl(&mmc_base->rsp10);
  372. }
  373. }
  374. if (data && (data->flags & MMC_DATA_READ)) {
  375. mmc_read_data(mmc_base, data->dest,
  376. data->blocksize * data->blocks);
  377. } else if (data && (data->flags & MMC_DATA_WRITE)) {
  378. mmc_write_data(mmc_base, data->src,
  379. data->blocksize * data->blocks);
  380. }
  381. return 0;
  382. }
  383. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
  384. {
  385. unsigned int *output_buf = (unsigned int *)buf;
  386. unsigned int mmc_stat;
  387. unsigned int count;
  388. /*
  389. * Start Polled Read
  390. */
  391. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  392. count /= 4;
  393. while (size) {
  394. ulong start = get_timer(0);
  395. do {
  396. mmc_stat = readl(&mmc_base->stat);
  397. if (get_timer(0) - start > MAX_RETRY_MS) {
  398. printf("%s: timedout waiting for status!\n",
  399. __func__);
  400. return TIMEOUT;
  401. }
  402. } while (mmc_stat == 0);
  403. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  404. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  405. if ((mmc_stat & ERRI_MASK) != 0)
  406. return 1;
  407. if (mmc_stat & BRR_MASK) {
  408. unsigned int k;
  409. writel(readl(&mmc_base->stat) | BRR_MASK,
  410. &mmc_base->stat);
  411. for (k = 0; k < count; k++) {
  412. *output_buf = readl(&mmc_base->data);
  413. output_buf++;
  414. }
  415. size -= (count*4);
  416. }
  417. if (mmc_stat & BWR_MASK)
  418. writel(readl(&mmc_base->stat) | BWR_MASK,
  419. &mmc_base->stat);
  420. if (mmc_stat & TC_MASK) {
  421. writel(readl(&mmc_base->stat) | TC_MASK,
  422. &mmc_base->stat);
  423. break;
  424. }
  425. }
  426. return 0;
  427. }
  428. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  429. unsigned int size)
  430. {
  431. unsigned int *input_buf = (unsigned int *)buf;
  432. unsigned int mmc_stat;
  433. unsigned int count;
  434. /*
  435. * Start Polled Write
  436. */
  437. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  438. count /= 4;
  439. while (size) {
  440. ulong start = get_timer(0);
  441. do {
  442. mmc_stat = readl(&mmc_base->stat);
  443. if (get_timer(0) - start > MAX_RETRY_MS) {
  444. printf("%s: timedout waiting for status!\n",
  445. __func__);
  446. return TIMEOUT;
  447. }
  448. } while (mmc_stat == 0);
  449. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  450. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  451. if ((mmc_stat & ERRI_MASK) != 0)
  452. return 1;
  453. if (mmc_stat & BWR_MASK) {
  454. unsigned int k;
  455. writel(readl(&mmc_base->stat) | BWR_MASK,
  456. &mmc_base->stat);
  457. for (k = 0; k < count; k++) {
  458. writel(*input_buf, &mmc_base->data);
  459. input_buf++;
  460. }
  461. size -= (count*4);
  462. }
  463. if (mmc_stat & BRR_MASK)
  464. writel(readl(&mmc_base->stat) | BRR_MASK,
  465. &mmc_base->stat);
  466. if (mmc_stat & TC_MASK) {
  467. writel(readl(&mmc_base->stat) | TC_MASK,
  468. &mmc_base->stat);
  469. break;
  470. }
  471. }
  472. return 0;
  473. }
  474. static void omap_hsmmc_set_ios(struct mmc *mmc)
  475. {
  476. struct hsmmc *mmc_base;
  477. unsigned int dsor = 0;
  478. ulong start;
  479. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  480. /* configue bus width */
  481. switch (mmc->bus_width) {
  482. case 8:
  483. writel(readl(&mmc_base->con) | DTW_8_BITMODE,
  484. &mmc_base->con);
  485. break;
  486. case 4:
  487. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  488. &mmc_base->con);
  489. writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
  490. &mmc_base->hctl);
  491. break;
  492. case 1:
  493. default:
  494. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  495. &mmc_base->con);
  496. writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
  497. &mmc_base->hctl);
  498. break;
  499. }
  500. /* configure clock with 96Mhz system clock.
  501. */
  502. if (mmc->clock != 0) {
  503. dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
  504. if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
  505. dsor++;
  506. }
  507. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  508. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  509. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  510. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  511. start = get_timer(0);
  512. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  513. if (get_timer(0) - start > MAX_RETRY_MS) {
  514. printf("%s: timedout waiting for ics!\n", __func__);
  515. return;
  516. }
  517. }
  518. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  519. }
  520. #ifdef OMAP_HSMMC_USE_GPIO
  521. static int omap_hsmmc_getcd(struct mmc *mmc)
  522. {
  523. struct omap_hsmmc_data *priv_data = mmc->priv;
  524. int cd_gpio;
  525. /* if no CD return as 1 */
  526. cd_gpio = priv_data->cd_gpio;
  527. if (cd_gpio < 0)
  528. return 1;
  529. /* NOTE: assumes card detect signal is active-low */
  530. return !gpio_get_value(cd_gpio);
  531. }
  532. static int omap_hsmmc_getwp(struct mmc *mmc)
  533. {
  534. struct omap_hsmmc_data *priv_data = mmc->priv;
  535. int wp_gpio;
  536. /* if no WP return as 0 */
  537. wp_gpio = priv_data->wp_gpio;
  538. if (wp_gpio < 0)
  539. return 0;
  540. /* NOTE: assumes write protect signal is active-high */
  541. return gpio_get_value(wp_gpio);
  542. }
  543. #endif
  544. static const struct mmc_ops omap_hsmmc_ops = {
  545. .send_cmd = omap_hsmmc_send_cmd,
  546. .set_ios = omap_hsmmc_set_ios,
  547. .init = omap_hsmmc_init_setup,
  548. #ifdef OMAP_HSMMC_USE_GPIO
  549. .getcd = omap_hsmmc_getcd,
  550. .getwp = omap_hsmmc_getwp,
  551. #endif
  552. };
  553. int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
  554. int wp_gpio)
  555. {
  556. struct mmc *mmc;
  557. struct omap_hsmmc_data *priv_data;
  558. struct mmc_config *cfg;
  559. uint host_caps_val;
  560. priv_data = malloc(sizeof(*priv_data));
  561. if (priv_data == NULL)
  562. return -1;
  563. host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
  564. switch (dev_index) {
  565. case 0:
  566. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  567. break;
  568. #ifdef OMAP_HSMMC2_BASE
  569. case 1:
  570. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
  571. #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  572. defined(CONFIG_DRA7XX) || defined(CONFIG_AM57XX)) && \
  573. defined(CONFIG_HSMMC2_8BIT)
  574. /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
  575. host_caps_val |= MMC_MODE_8BIT;
  576. #endif
  577. break;
  578. #endif
  579. #ifdef OMAP_HSMMC3_BASE
  580. case 2:
  581. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
  582. #if (defined(CONFIG_DRA7XX) || defined(CONFIG_AM57XX)) && defined(CONFIG_HSMMC3_8BIT)
  583. /* Enable 8-bit interface for eMMC on DRA7XX */
  584. host_caps_val |= MMC_MODE_8BIT;
  585. #endif
  586. break;
  587. #endif
  588. default:
  589. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  590. return 1;
  591. }
  592. #ifdef OMAP_HSMMC_USE_GPIO
  593. /* on error gpio values are set to -1, which is what we want */
  594. priv_data->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
  595. priv_data->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
  596. #endif
  597. cfg = &priv_data->cfg;
  598. cfg->name = "OMAP SD/MMC";
  599. cfg->ops = &omap_hsmmc_ops;
  600. cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  601. cfg->host_caps = host_caps_val & ~host_caps_mask;
  602. cfg->f_min = 400000;
  603. if (f_max != 0)
  604. cfg->f_max = f_max;
  605. else {
  606. if (cfg->host_caps & MMC_MODE_HS) {
  607. if (cfg->host_caps & MMC_MODE_HS_52MHz)
  608. cfg->f_max = 52000000;
  609. else
  610. cfg->f_max = 26000000;
  611. } else
  612. cfg->f_max = 20000000;
  613. }
  614. cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  615. #if defined(CONFIG_OMAP34XX)
  616. /*
  617. * Silicon revs 2.1 and older do not support multiblock transfers.
  618. */
  619. if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
  620. cfg->b_max = 1;
  621. #endif
  622. mmc = mmc_create(cfg, priv_data);
  623. if (mmc == NULL)
  624. return -1;
  625. return 0;
  626. }