mtdpart.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Simple MTD partitioning layer
  4. *
  5. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  6. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  7. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  8. *
  9. */
  10. #ifndef __UBOOT__
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/list.h>
  16. #include <linux/kmod.h>
  17. #endif
  18. #include <common.h>
  19. #include <malloc.h>
  20. #include <linux/errno.h>
  21. #include <linux/compat.h>
  22. #include <ubi_uboot.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/partitions.h>
  25. #include <linux/err.h>
  26. #include "mtdcore.h"
  27. /* Our partition linked list */
  28. static LIST_HEAD(mtd_partitions);
  29. #ifndef __UBOOT__
  30. static DEFINE_MUTEX(mtd_partitions_mutex);
  31. #else
  32. DEFINE_MUTEX(mtd_partitions_mutex);
  33. #endif
  34. /* Our partition node structure */
  35. struct mtd_part {
  36. struct mtd_info mtd;
  37. struct mtd_info *master;
  38. uint64_t offset;
  39. struct list_head list;
  40. };
  41. /*
  42. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  43. * the pointer to that structure with this macro.
  44. */
  45. #define PART(x) ((struct mtd_part *)(x))
  46. #ifdef __UBOOT__
  47. /* from mm/util.c */
  48. /**
  49. * kstrdup - allocate space for and copy an existing string
  50. * @s: the string to duplicate
  51. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  52. */
  53. char *kstrdup(const char *s, gfp_t gfp)
  54. {
  55. size_t len;
  56. char *buf;
  57. if (!s)
  58. return NULL;
  59. len = strlen(s) + 1;
  60. buf = kmalloc(len, gfp);
  61. if (buf)
  62. memcpy(buf, s, len);
  63. return buf;
  64. }
  65. #endif
  66. /*
  67. * MTD methods which simply translate the effective address and pass through
  68. * to the _real_ device.
  69. */
  70. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  71. size_t *retlen, u_char *buf)
  72. {
  73. struct mtd_part *part = PART(mtd);
  74. struct mtd_ecc_stats stats;
  75. int res;
  76. stats = part->master->ecc_stats;
  77. res = part->master->_read(part->master, from + part->offset, len,
  78. retlen, buf);
  79. if (unlikely(mtd_is_eccerr(res)))
  80. mtd->ecc_stats.failed +=
  81. part->master->ecc_stats.failed - stats.failed;
  82. else
  83. mtd->ecc_stats.corrected +=
  84. part->master->ecc_stats.corrected - stats.corrected;
  85. return res;
  86. }
  87. #ifndef __UBOOT__
  88. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  89. size_t *retlen, void **virt, resource_size_t *phys)
  90. {
  91. struct mtd_part *part = PART(mtd);
  92. return part->master->_point(part->master, from + part->offset, len,
  93. retlen, virt, phys);
  94. }
  95. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  96. {
  97. struct mtd_part *part = PART(mtd);
  98. return part->master->_unpoint(part->master, from + part->offset, len);
  99. }
  100. #endif
  101. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  102. unsigned long len,
  103. unsigned long offset,
  104. unsigned long flags)
  105. {
  106. struct mtd_part *part = PART(mtd);
  107. offset += part->offset;
  108. return part->master->_get_unmapped_area(part->master, len, offset,
  109. flags);
  110. }
  111. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  112. struct mtd_oob_ops *ops)
  113. {
  114. struct mtd_part *part = PART(mtd);
  115. int res;
  116. if (from >= mtd->size)
  117. return -EINVAL;
  118. if (ops->datbuf && from + ops->len > mtd->size)
  119. return -EINVAL;
  120. /*
  121. * If OOB is also requested, make sure that we do not read past the end
  122. * of this partition.
  123. */
  124. if (ops->oobbuf) {
  125. size_t len, pages;
  126. if (ops->mode == MTD_OPS_AUTO_OOB)
  127. len = mtd->oobavail;
  128. else
  129. len = mtd->oobsize;
  130. pages = mtd_div_by_ws(mtd->size, mtd);
  131. pages -= mtd_div_by_ws(from, mtd);
  132. if (ops->ooboffs + ops->ooblen > pages * len)
  133. return -EINVAL;
  134. }
  135. res = part->master->_read_oob(part->master, from + part->offset, ops);
  136. if (unlikely(res)) {
  137. if (mtd_is_bitflip(res))
  138. mtd->ecc_stats.corrected++;
  139. if (mtd_is_eccerr(res))
  140. mtd->ecc_stats.failed++;
  141. }
  142. return res;
  143. }
  144. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  145. size_t len, size_t *retlen, u_char *buf)
  146. {
  147. struct mtd_part *part = PART(mtd);
  148. return part->master->_read_user_prot_reg(part->master, from, len,
  149. retlen, buf);
  150. }
  151. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  152. size_t *retlen, struct otp_info *buf)
  153. {
  154. struct mtd_part *part = PART(mtd);
  155. return part->master->_get_user_prot_info(part->master, len, retlen,
  156. buf);
  157. }
  158. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  159. size_t len, size_t *retlen, u_char *buf)
  160. {
  161. struct mtd_part *part = PART(mtd);
  162. return part->master->_read_fact_prot_reg(part->master, from, len,
  163. retlen, buf);
  164. }
  165. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  166. size_t *retlen, struct otp_info *buf)
  167. {
  168. struct mtd_part *part = PART(mtd);
  169. return part->master->_get_fact_prot_info(part->master, len, retlen,
  170. buf);
  171. }
  172. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  173. size_t *retlen, const u_char *buf)
  174. {
  175. struct mtd_part *part = PART(mtd);
  176. return part->master->_write(part->master, to + part->offset, len,
  177. retlen, buf);
  178. }
  179. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  180. size_t *retlen, const u_char *buf)
  181. {
  182. struct mtd_part *part = PART(mtd);
  183. return part->master->_panic_write(part->master, to + part->offset, len,
  184. retlen, buf);
  185. }
  186. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  187. struct mtd_oob_ops *ops)
  188. {
  189. struct mtd_part *part = PART(mtd);
  190. if (to >= mtd->size)
  191. return -EINVAL;
  192. if (ops->datbuf && to + ops->len > mtd->size)
  193. return -EINVAL;
  194. return part->master->_write_oob(part->master, to + part->offset, ops);
  195. }
  196. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  197. size_t len, size_t *retlen, u_char *buf)
  198. {
  199. struct mtd_part *part = PART(mtd);
  200. return part->master->_write_user_prot_reg(part->master, from, len,
  201. retlen, buf);
  202. }
  203. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  204. size_t len)
  205. {
  206. struct mtd_part *part = PART(mtd);
  207. return part->master->_lock_user_prot_reg(part->master, from, len);
  208. }
  209. #ifndef __UBOOT__
  210. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  211. unsigned long count, loff_t to, size_t *retlen)
  212. {
  213. struct mtd_part *part = PART(mtd);
  214. return part->master->_writev(part->master, vecs, count,
  215. to + part->offset, retlen);
  216. }
  217. #endif
  218. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  219. {
  220. struct mtd_part *part = PART(mtd);
  221. int ret;
  222. instr->addr += part->offset;
  223. ret = part->master->_erase(part->master, instr);
  224. if (ret) {
  225. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  226. instr->fail_addr -= part->offset;
  227. instr->addr -= part->offset;
  228. }
  229. return ret;
  230. }
  231. void mtd_erase_callback(struct erase_info *instr)
  232. {
  233. if (instr->mtd->_erase == part_erase) {
  234. struct mtd_part *part = PART(instr->mtd);
  235. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  236. instr->fail_addr -= part->offset;
  237. instr->addr -= part->offset;
  238. }
  239. if (instr->callback)
  240. instr->callback(instr);
  241. }
  242. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  243. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  244. {
  245. struct mtd_part *part = PART(mtd);
  246. return part->master->_lock(part->master, ofs + part->offset, len);
  247. }
  248. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  249. {
  250. struct mtd_part *part = PART(mtd);
  251. return part->master->_unlock(part->master, ofs + part->offset, len);
  252. }
  253. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  254. {
  255. struct mtd_part *part = PART(mtd);
  256. return part->master->_is_locked(part->master, ofs + part->offset, len);
  257. }
  258. static void part_sync(struct mtd_info *mtd)
  259. {
  260. struct mtd_part *part = PART(mtd);
  261. part->master->_sync(part->master);
  262. }
  263. #ifndef __UBOOT__
  264. static int part_suspend(struct mtd_info *mtd)
  265. {
  266. struct mtd_part *part = PART(mtd);
  267. return part->master->_suspend(part->master);
  268. }
  269. static void part_resume(struct mtd_info *mtd)
  270. {
  271. struct mtd_part *part = PART(mtd);
  272. part->master->_resume(part->master);
  273. }
  274. #endif
  275. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  276. {
  277. struct mtd_part *part = PART(mtd);
  278. ofs += part->offset;
  279. return part->master->_block_isreserved(part->master, ofs);
  280. }
  281. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  282. {
  283. struct mtd_part *part = PART(mtd);
  284. ofs += part->offset;
  285. return part->master->_block_isbad(part->master, ofs);
  286. }
  287. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  288. {
  289. struct mtd_part *part = PART(mtd);
  290. int res;
  291. ofs += part->offset;
  292. res = part->master->_block_markbad(part->master, ofs);
  293. if (!res)
  294. mtd->ecc_stats.badblocks++;
  295. return res;
  296. }
  297. static inline void free_partition(struct mtd_part *p)
  298. {
  299. kfree(p->mtd.name);
  300. kfree(p);
  301. }
  302. /*
  303. * This function unregisters and destroy all slave MTD objects which are
  304. * attached to the given master MTD object.
  305. */
  306. int del_mtd_partitions(struct mtd_info *master)
  307. {
  308. struct mtd_part *slave, *next;
  309. int ret, err = 0;
  310. mutex_lock(&mtd_partitions_mutex);
  311. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  312. if (slave->master == master) {
  313. ret = del_mtd_device(&slave->mtd);
  314. if (ret < 0) {
  315. err = ret;
  316. continue;
  317. }
  318. list_del(&slave->list);
  319. free_partition(slave);
  320. }
  321. mutex_unlock(&mtd_partitions_mutex);
  322. return err;
  323. }
  324. static struct mtd_part *allocate_partition(struct mtd_info *master,
  325. const struct mtd_partition *part, int partno,
  326. uint64_t cur_offset)
  327. {
  328. struct mtd_part *slave;
  329. char *name;
  330. /* allocate the partition structure */
  331. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  332. name = kstrdup(part->name, GFP_KERNEL);
  333. if (!name || !slave) {
  334. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  335. master->name);
  336. kfree(name);
  337. kfree(slave);
  338. return ERR_PTR(-ENOMEM);
  339. }
  340. /* set up the MTD object for this partition */
  341. slave->mtd.type = master->type;
  342. slave->mtd.flags = master->flags & ~part->mask_flags;
  343. slave->mtd.size = part->size;
  344. slave->mtd.writesize = master->writesize;
  345. slave->mtd.writebufsize = master->writebufsize;
  346. slave->mtd.oobsize = master->oobsize;
  347. slave->mtd.oobavail = master->oobavail;
  348. slave->mtd.subpage_sft = master->subpage_sft;
  349. slave->mtd.name = name;
  350. slave->mtd.owner = master->owner;
  351. #ifndef __UBOOT__
  352. slave->mtd.backing_dev_info = master->backing_dev_info;
  353. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  354. * to have the same data be in two different partitions.
  355. */
  356. slave->mtd.dev.parent = master->dev.parent;
  357. #endif
  358. if (master->_read)
  359. slave->mtd._read = part_read;
  360. if (master->_write)
  361. slave->mtd._write = part_write;
  362. if (master->_panic_write)
  363. slave->mtd._panic_write = part_panic_write;
  364. #ifndef __UBOOT__
  365. if (master->_point && master->_unpoint) {
  366. slave->mtd._point = part_point;
  367. slave->mtd._unpoint = part_unpoint;
  368. }
  369. #endif
  370. if (master->_get_unmapped_area)
  371. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  372. if (master->_read_oob)
  373. slave->mtd._read_oob = part_read_oob;
  374. if (master->_write_oob)
  375. slave->mtd._write_oob = part_write_oob;
  376. if (master->_read_user_prot_reg)
  377. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  378. if (master->_read_fact_prot_reg)
  379. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  380. if (master->_write_user_prot_reg)
  381. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  382. if (master->_lock_user_prot_reg)
  383. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  384. if (master->_get_user_prot_info)
  385. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  386. if (master->_get_fact_prot_info)
  387. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  388. if (master->_sync)
  389. slave->mtd._sync = part_sync;
  390. #ifndef __UBOOT__
  391. if (!partno && !master->dev.class && master->_suspend &&
  392. master->_resume) {
  393. slave->mtd._suspend = part_suspend;
  394. slave->mtd._resume = part_resume;
  395. }
  396. if (master->_writev)
  397. slave->mtd._writev = part_writev;
  398. #endif
  399. if (master->_lock)
  400. slave->mtd._lock = part_lock;
  401. if (master->_unlock)
  402. slave->mtd._unlock = part_unlock;
  403. if (master->_is_locked)
  404. slave->mtd._is_locked = part_is_locked;
  405. if (master->_block_isreserved)
  406. slave->mtd._block_isreserved = part_block_isreserved;
  407. if (master->_block_isbad)
  408. slave->mtd._block_isbad = part_block_isbad;
  409. if (master->_block_markbad)
  410. slave->mtd._block_markbad = part_block_markbad;
  411. slave->mtd._erase = part_erase;
  412. slave->master = master;
  413. slave->offset = part->offset;
  414. if (slave->offset == MTDPART_OFS_APPEND)
  415. slave->offset = cur_offset;
  416. if (slave->offset == MTDPART_OFS_NXTBLK) {
  417. slave->offset = cur_offset;
  418. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  419. /* Round up to next erasesize */
  420. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  421. debug("Moving partition %d: "
  422. "0x%012llx -> 0x%012llx\n", partno,
  423. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  424. }
  425. }
  426. if (slave->offset == MTDPART_OFS_RETAIN) {
  427. slave->offset = cur_offset;
  428. if (master->size - slave->offset >= slave->mtd.size) {
  429. slave->mtd.size = master->size - slave->offset
  430. - slave->mtd.size;
  431. } else {
  432. debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  433. part->name, master->size - slave->offset,
  434. slave->mtd.size);
  435. /* register to preserve ordering */
  436. goto out_register;
  437. }
  438. }
  439. if (slave->mtd.size == MTDPART_SIZ_FULL)
  440. slave->mtd.size = master->size - slave->offset;
  441. debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  442. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  443. /* let's do some sanity checks */
  444. if (slave->offset >= master->size) {
  445. /* let's register it anyway to preserve ordering */
  446. slave->offset = 0;
  447. slave->mtd.size = 0;
  448. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  449. part->name);
  450. goto out_register;
  451. }
  452. if (slave->offset + slave->mtd.size > master->size) {
  453. slave->mtd.size = master->size - slave->offset;
  454. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  455. part->name, master->name, (unsigned long long)slave->mtd.size);
  456. }
  457. if (master->numeraseregions > 1) {
  458. /* Deal with variable erase size stuff */
  459. int i, max = master->numeraseregions;
  460. u64 end = slave->offset + slave->mtd.size;
  461. struct mtd_erase_region_info *regions = master->eraseregions;
  462. /* Find the first erase regions which is part of this
  463. * partition. */
  464. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  465. ;
  466. /* The loop searched for the region _behind_ the first one */
  467. if (i > 0)
  468. i--;
  469. /* Pick biggest erasesize */
  470. for (; i < max && regions[i].offset < end; i++) {
  471. if (slave->mtd.erasesize < regions[i].erasesize) {
  472. slave->mtd.erasesize = regions[i].erasesize;
  473. }
  474. }
  475. BUG_ON(slave->mtd.erasesize == 0);
  476. } else {
  477. /* Single erase size */
  478. slave->mtd.erasesize = master->erasesize;
  479. }
  480. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  481. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  482. /* Doesn't start on a boundary of major erase size */
  483. /* FIXME: Let it be writable if it is on a boundary of
  484. * _minor_ erase size though */
  485. slave->mtd.flags &= ~MTD_WRITEABLE;
  486. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  487. part->name);
  488. }
  489. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  490. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  491. slave->mtd.flags &= ~MTD_WRITEABLE;
  492. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  493. part->name);
  494. }
  495. slave->mtd.ecclayout = master->ecclayout;
  496. slave->mtd.ecc_step_size = master->ecc_step_size;
  497. slave->mtd.ecc_strength = master->ecc_strength;
  498. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  499. if (master->_block_isbad) {
  500. uint64_t offs = 0;
  501. while (offs < slave->mtd.size) {
  502. if (mtd_block_isbad(master, offs + slave->offset))
  503. slave->mtd.ecc_stats.badblocks++;
  504. offs += slave->mtd.erasesize;
  505. }
  506. }
  507. out_register:
  508. return slave;
  509. }
  510. #ifndef __UBOOT__
  511. int mtd_add_partition(struct mtd_info *master, const char *name,
  512. long long offset, long long length)
  513. {
  514. struct mtd_partition part;
  515. struct mtd_part *p, *new;
  516. uint64_t start, end;
  517. int ret = 0;
  518. /* the direct offset is expected */
  519. if (offset == MTDPART_OFS_APPEND ||
  520. offset == MTDPART_OFS_NXTBLK)
  521. return -EINVAL;
  522. if (length == MTDPART_SIZ_FULL)
  523. length = master->size - offset;
  524. if (length <= 0)
  525. return -EINVAL;
  526. part.name = name;
  527. part.size = length;
  528. part.offset = offset;
  529. part.mask_flags = 0;
  530. part.ecclayout = NULL;
  531. new = allocate_partition(master, &part, -1, offset);
  532. if (IS_ERR(new))
  533. return PTR_ERR(new);
  534. start = offset;
  535. end = offset + length;
  536. mutex_lock(&mtd_partitions_mutex);
  537. list_for_each_entry(p, &mtd_partitions, list)
  538. if (p->master == master) {
  539. if ((start >= p->offset) &&
  540. (start < (p->offset + p->mtd.size)))
  541. goto err_inv;
  542. if ((end >= p->offset) &&
  543. (end < (p->offset + p->mtd.size)))
  544. goto err_inv;
  545. }
  546. list_add(&new->list, &mtd_partitions);
  547. mutex_unlock(&mtd_partitions_mutex);
  548. add_mtd_device(&new->mtd);
  549. return ret;
  550. err_inv:
  551. mutex_unlock(&mtd_partitions_mutex);
  552. free_partition(new);
  553. return -EINVAL;
  554. }
  555. EXPORT_SYMBOL_GPL(mtd_add_partition);
  556. int mtd_del_partition(struct mtd_info *master, int partno)
  557. {
  558. struct mtd_part *slave, *next;
  559. int ret = -EINVAL;
  560. mutex_lock(&mtd_partitions_mutex);
  561. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  562. if ((slave->master == master) &&
  563. (slave->mtd.index == partno)) {
  564. ret = del_mtd_device(&slave->mtd);
  565. if (ret < 0)
  566. break;
  567. list_del(&slave->list);
  568. free_partition(slave);
  569. break;
  570. }
  571. mutex_unlock(&mtd_partitions_mutex);
  572. return ret;
  573. }
  574. EXPORT_SYMBOL_GPL(mtd_del_partition);
  575. #endif
  576. /*
  577. * This function, given a master MTD object and a partition table, creates
  578. * and registers slave MTD objects which are bound to the master according to
  579. * the partition definitions.
  580. *
  581. * We don't register the master, or expect the caller to have done so,
  582. * for reasons of data integrity.
  583. */
  584. int add_mtd_partitions(struct mtd_info *master,
  585. const struct mtd_partition *parts,
  586. int nbparts)
  587. {
  588. struct mtd_part *slave;
  589. uint64_t cur_offset = 0;
  590. int i;
  591. #ifdef __UBOOT__
  592. /*
  593. * Need to init the list here, since LIST_INIT() does not
  594. * work on platforms where relocation has problems (like MIPS
  595. * & PPC).
  596. */
  597. if (mtd_partitions.next == NULL)
  598. INIT_LIST_HEAD(&mtd_partitions);
  599. #endif
  600. debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  601. for (i = 0; i < nbparts; i++) {
  602. slave = allocate_partition(master, parts + i, i, cur_offset);
  603. if (IS_ERR(slave))
  604. return PTR_ERR(slave);
  605. mutex_lock(&mtd_partitions_mutex);
  606. list_add(&slave->list, &mtd_partitions);
  607. mutex_unlock(&mtd_partitions_mutex);
  608. add_mtd_device(&slave->mtd);
  609. cur_offset = slave->offset + slave->mtd.size;
  610. }
  611. return 0;
  612. }
  613. #ifndef __UBOOT__
  614. static DEFINE_SPINLOCK(part_parser_lock);
  615. static LIST_HEAD(part_parsers);
  616. static struct mtd_part_parser *get_partition_parser(const char *name)
  617. {
  618. struct mtd_part_parser *p, *ret = NULL;
  619. spin_lock(&part_parser_lock);
  620. list_for_each_entry(p, &part_parsers, list)
  621. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  622. ret = p;
  623. break;
  624. }
  625. spin_unlock(&part_parser_lock);
  626. return ret;
  627. }
  628. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  629. void register_mtd_parser(struct mtd_part_parser *p)
  630. {
  631. spin_lock(&part_parser_lock);
  632. list_add(&p->list, &part_parsers);
  633. spin_unlock(&part_parser_lock);
  634. }
  635. EXPORT_SYMBOL_GPL(register_mtd_parser);
  636. void deregister_mtd_parser(struct mtd_part_parser *p)
  637. {
  638. spin_lock(&part_parser_lock);
  639. list_del(&p->list);
  640. spin_unlock(&part_parser_lock);
  641. }
  642. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  643. /*
  644. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  645. * are changing this array!
  646. */
  647. static const char * const default_mtd_part_types[] = {
  648. "cmdlinepart",
  649. "ofpart",
  650. NULL
  651. };
  652. /**
  653. * parse_mtd_partitions - parse MTD partitions
  654. * @master: the master partition (describes whole MTD device)
  655. * @types: names of partition parsers to try or %NULL
  656. * @pparts: array of partitions found is returned here
  657. * @data: MTD partition parser-specific data
  658. *
  659. * This function tries to find partition on MTD device @master. It uses MTD
  660. * partition parsers, specified in @types. However, if @types is %NULL, then
  661. * the default list of parsers is used. The default list contains only the
  662. * "cmdlinepart" and "ofpart" parsers ATM.
  663. * Note: If there are more then one parser in @types, the kernel only takes the
  664. * partitions parsed out by the first parser.
  665. *
  666. * This function may return:
  667. * o a negative error code in case of failure
  668. * o zero if no partitions were found
  669. * o a positive number of found partitions, in which case on exit @pparts will
  670. * point to an array containing this number of &struct mtd_info objects.
  671. */
  672. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  673. struct mtd_partition **pparts,
  674. struct mtd_part_parser_data *data)
  675. {
  676. struct mtd_part_parser *parser;
  677. int ret = 0;
  678. if (!types)
  679. types = default_mtd_part_types;
  680. for ( ; ret <= 0 && *types; types++) {
  681. parser = get_partition_parser(*types);
  682. if (!parser && !request_module("%s", *types))
  683. parser = get_partition_parser(*types);
  684. if (!parser)
  685. continue;
  686. ret = (*parser->parse_fn)(master, pparts, data);
  687. put_partition_parser(parser);
  688. if (ret > 0) {
  689. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  690. ret, parser->name, master->name);
  691. break;
  692. }
  693. }
  694. return ret;
  695. }
  696. #endif
  697. int mtd_is_partition(const struct mtd_info *mtd)
  698. {
  699. struct mtd_part *part;
  700. int ispart = 0;
  701. mutex_lock(&mtd_partitions_mutex);
  702. list_for_each_entry(part, &mtd_partitions, list)
  703. if (&part->mtd == mtd) {
  704. ispart = 1;
  705. break;
  706. }
  707. mutex_unlock(&mtd_partitions_mutex);
  708. return ispart;
  709. }
  710. EXPORT_SYMBOL_GPL(mtd_is_partition);
  711. /* Returns the size of the entire flash chip */
  712. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  713. {
  714. if (!mtd_is_partition(mtd))
  715. return mtd->size;
  716. return PART(mtd)->master->size;
  717. }
  718. EXPORT_SYMBOL_GPL(mtd_get_device_size);