hashtable.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. * This implementation is based on code from uClibc-0.9.30.3 but was
  3. * modified and extended for use within U-Boot.
  4. *
  5. * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
  6. *
  7. * Original license header:
  8. *
  9. * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
  10. * This file is part of the GNU C Library.
  11. * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
  12. *
  13. * The GNU C Library is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU Lesser General Public
  15. * License as published by the Free Software Foundation; either
  16. * version 2.1 of the License, or (at your option) any later version.
  17. *
  18. * The GNU C Library is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * Lesser General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU Lesser General Public
  24. * License along with the GNU C Library; if not, write to the Free
  25. * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  26. * 02111-1307 USA.
  27. */
  28. #include <errno.h>
  29. #include <malloc.h>
  30. #ifdef USE_HOSTCC /* HOST build */
  31. # include <string.h>
  32. # include <assert.h>
  33. # ifndef debug
  34. # ifdef DEBUG
  35. # define debug(fmt,args...) printf(fmt ,##args)
  36. # else
  37. # define debug(fmt,args...)
  38. # endif
  39. # endif
  40. #else /* U-Boot build */
  41. # include <common.h>
  42. # include <linux/string.h>
  43. #endif
  44. #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
  45. #define CONFIG_ENV_MIN_ENTRIES 64
  46. #endif
  47. #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
  48. #define CONFIG_ENV_MAX_ENTRIES 512
  49. #endif
  50. #include "search.h"
  51. /*
  52. * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
  53. * [Knuth] The Art of Computer Programming, part 3 (6.4)
  54. */
  55. /*
  56. * The reentrant version has no static variables to maintain the state.
  57. * Instead the interface of all functions is extended to take an argument
  58. * which describes the current status.
  59. */
  60. typedef struct _ENTRY {
  61. unsigned int used;
  62. ENTRY entry;
  63. } _ENTRY;
  64. /*
  65. * hcreate()
  66. */
  67. /*
  68. * For the used double hash method the table size has to be a prime. To
  69. * correct the user given table size we need a prime test. This trivial
  70. * algorithm is adequate because
  71. * a) the code is (most probably) called a few times per program run and
  72. * b) the number is small because the table must fit in the core
  73. * */
  74. static int isprime(unsigned int number)
  75. {
  76. /* no even number will be passed */
  77. unsigned int div = 3;
  78. while (div * div < number && number % div != 0)
  79. div += 2;
  80. return number % div != 0;
  81. }
  82. /*
  83. * Before using the hash table we must allocate memory for it.
  84. * Test for an existing table are done. We allocate one element
  85. * more as the found prime number says. This is done for more effective
  86. * indexing as explained in the comment for the hsearch function.
  87. * The contents of the table is zeroed, especially the field used
  88. * becomes zero.
  89. */
  90. int hcreate_r(size_t nel, struct hsearch_data *htab)
  91. {
  92. /* Test for correct arguments. */
  93. if (htab == NULL) {
  94. __set_errno(EINVAL);
  95. return 0;
  96. }
  97. /* There is still another table active. Return with error. */
  98. if (htab->table != NULL)
  99. return 0;
  100. /* Change nel to the first prime number not smaller as nel. */
  101. nel |= 1; /* make odd */
  102. while (!isprime(nel))
  103. nel += 2;
  104. htab->size = nel;
  105. htab->filled = 0;
  106. /* allocate memory and zero out */
  107. htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
  108. if (htab->table == NULL)
  109. return 0;
  110. /* everything went alright */
  111. return 1;
  112. }
  113. /*
  114. * hdestroy()
  115. */
  116. /*
  117. * After using the hash table it has to be destroyed. The used memory can
  118. * be freed and the local static variable can be marked as not used.
  119. */
  120. void hdestroy_r(struct hsearch_data *htab)
  121. {
  122. int i;
  123. /* Test for correct arguments. */
  124. if (htab == NULL) {
  125. __set_errno(EINVAL);
  126. return;
  127. }
  128. /* free used memory */
  129. for (i = 1; i <= htab->size; ++i) {
  130. if (htab->table[i].used) {
  131. ENTRY *ep = &htab->table[i].entry;
  132. free(ep->key);
  133. free(ep->data);
  134. }
  135. }
  136. free(htab->table);
  137. /* the sign for an existing table is an value != NULL in htable */
  138. htab->table = NULL;
  139. }
  140. /*
  141. * hsearch()
  142. */
  143. /*
  144. * This is the search function. It uses double hashing with open addressing.
  145. * The argument item.key has to be a pointer to an zero terminated, most
  146. * probably strings of chars. The function for generating a number of the
  147. * strings is simple but fast. It can be replaced by a more complex function
  148. * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
  149. *
  150. * We use an trick to speed up the lookup. The table is created by hcreate
  151. * with one more element available. This enables us to use the index zero
  152. * special. This index will never be used because we store the first hash
  153. * index in the field used where zero means not used. Every other value
  154. * means used. The used field can be used as a first fast comparison for
  155. * equality of the stored and the parameter value. This helps to prevent
  156. * unnecessary expensive calls of strcmp.
  157. *
  158. * This implementation differs from the standard library version of
  159. * this function in a number of ways:
  160. *
  161. * - While the standard version does not make any assumptions about
  162. * the type of the stored data objects at all, this implementation
  163. * works with NUL terminated strings only.
  164. * - Instead of storing just pointers to the original objects, we
  165. * create local copies so the caller does not need to care about the
  166. * data any more.
  167. * - The standard implementation does not provide a way to update an
  168. * existing entry. This version will create a new entry or update an
  169. * existing one when both "action == ENTER" and "item.data != NULL".
  170. * - Instead of returning 1 on success, we return the index into the
  171. * internal hash table, which is also guaranteed to be positive.
  172. * This allows us direct access to the found hash table slot for
  173. * example for functions like hdelete().
  174. */
  175. int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
  176. struct hsearch_data *htab)
  177. {
  178. unsigned int idx;
  179. size_t key_len = strlen(match);
  180. for (idx = last_idx + 1; idx < htab->size; ++idx) {
  181. if (!htab->table[idx].used)
  182. continue;
  183. if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
  184. *retval = &htab->table[idx].entry;
  185. return idx;
  186. }
  187. }
  188. __set_errno(ESRCH);
  189. *retval = NULL;
  190. return 0;
  191. }
  192. int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
  193. struct hsearch_data *htab)
  194. {
  195. unsigned int hval;
  196. unsigned int count;
  197. unsigned int len = strlen(item.key);
  198. unsigned int idx;
  199. /* Compute an value for the given string. Perhaps use a better method. */
  200. hval = len;
  201. count = len;
  202. while (count-- > 0) {
  203. hval <<= 4;
  204. hval += item.key[count];
  205. }
  206. /*
  207. * First hash function:
  208. * simply take the modul but prevent zero.
  209. */
  210. hval %= htab->size;
  211. if (hval == 0)
  212. ++hval;
  213. /* The first index tried. */
  214. idx = hval;
  215. if (htab->table[idx].used) {
  216. /*
  217. * Further action might be required according to the
  218. * action value.
  219. */
  220. unsigned hval2;
  221. if (htab->table[idx].used == hval
  222. && strcmp(item.key, htab->table[idx].entry.key) == 0) {
  223. /* Overwrite existing value? */
  224. if ((action == ENTER) && (item.data != NULL)) {
  225. free(htab->table[idx].entry.data);
  226. htab->table[idx].entry.data =
  227. strdup(item.data);
  228. if (!htab->table[idx].entry.data) {
  229. __set_errno(ENOMEM);
  230. *retval = NULL;
  231. return 0;
  232. }
  233. }
  234. /* return found entry */
  235. *retval = &htab->table[idx].entry;
  236. return idx;
  237. }
  238. /*
  239. * Second hash function:
  240. * as suggested in [Knuth]
  241. */
  242. hval2 = 1 + hval % (htab->size - 2);
  243. do {
  244. /*
  245. * Because SIZE is prime this guarantees to
  246. * step through all available indices.
  247. */
  248. if (idx <= hval2)
  249. idx = htab->size + idx - hval2;
  250. else
  251. idx -= hval2;
  252. /*
  253. * If we visited all entries leave the loop
  254. * unsuccessfully.
  255. */
  256. if (idx == hval)
  257. break;
  258. /* If entry is found use it. */
  259. if ((htab->table[idx].used == hval)
  260. && strcmp(item.key, htab->table[idx].entry.key) == 0) {
  261. /* Overwrite existing value? */
  262. if ((action == ENTER) && (item.data != NULL)) {
  263. free(htab->table[idx].entry.data);
  264. htab->table[idx].entry.data =
  265. strdup(item.data);
  266. if (!htab->table[idx].entry.data) {
  267. __set_errno(ENOMEM);
  268. *retval = NULL;
  269. return 0;
  270. }
  271. }
  272. /* return found entry */
  273. *retval = &htab->table[idx].entry;
  274. return idx;
  275. }
  276. }
  277. while (htab->table[idx].used);
  278. }
  279. /* An empty bucket has been found. */
  280. if (action == ENTER) {
  281. /*
  282. * If table is full and another entry should be
  283. * entered return with error.
  284. */
  285. if (htab->filled == htab->size) {
  286. __set_errno(ENOMEM);
  287. *retval = NULL;
  288. return 0;
  289. }
  290. /*
  291. * Create new entry;
  292. * create copies of item.key and item.data
  293. */
  294. htab->table[idx].used = hval;
  295. htab->table[idx].entry.key = strdup(item.key);
  296. htab->table[idx].entry.data = strdup(item.data);
  297. if (!htab->table[idx].entry.key ||
  298. !htab->table[idx].entry.data) {
  299. __set_errno(ENOMEM);
  300. *retval = NULL;
  301. return 0;
  302. }
  303. ++htab->filled;
  304. /* return new entry */
  305. *retval = &htab->table[idx].entry;
  306. return 1;
  307. }
  308. __set_errno(ESRCH);
  309. *retval = NULL;
  310. return 0;
  311. }
  312. /*
  313. * hdelete()
  314. */
  315. /*
  316. * The standard implementation of hsearch(3) does not provide any way
  317. * to delete any entries from the hash table. We extend the code to
  318. * do that.
  319. */
  320. int hdelete_r(const char *key, struct hsearch_data *htab)
  321. {
  322. ENTRY e, *ep;
  323. int idx;
  324. debug("hdelete: DELETE key \"%s\"\n", key);
  325. e.key = (char *)key;
  326. if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
  327. __set_errno(ESRCH);
  328. return 0; /* not found */
  329. }
  330. /* free used ENTRY */
  331. debug("hdelete: DELETING key \"%s\"\n", key);
  332. free(ep->key);
  333. free(ep->data);
  334. htab->table[idx].used = 0;
  335. --htab->filled;
  336. return 1;
  337. }
  338. /*
  339. * hexport()
  340. */
  341. /*
  342. * Export the data stored in the hash table in linearized form.
  343. *
  344. * Entries are exported as "name=value" strings, separated by an
  345. * arbitrary (non-NUL, of course) separator character. This allows to
  346. * use this function both when formatting the U-Boot environment for
  347. * external storage (using '\0' as separator), but also when using it
  348. * for the "printenv" command to print all variables, simply by using
  349. * as '\n" as separator. This can also be used for new features like
  350. * exporting the environment data as text file, including the option
  351. * for later re-import.
  352. *
  353. * The entries in the result list will be sorted by ascending key
  354. * values.
  355. *
  356. * If the separator character is different from NUL, then any
  357. * separator characters and backslash characters in the values will
  358. * be escaped by a preceeding backslash in output. This is needed for
  359. * example to enable multi-line values, especially when the output
  360. * shall later be parsed (for example, for re-import).
  361. *
  362. * There are several options how the result buffer is handled:
  363. *
  364. * *resp size
  365. * -----------
  366. * NULL 0 A string of sufficient length will be allocated.
  367. * NULL >0 A string of the size given will be
  368. * allocated. An error will be returned if the size is
  369. * not sufficient. Any unused bytes in the string will
  370. * be '\0'-padded.
  371. * !NULL 0 The user-supplied buffer will be used. No length
  372. * checking will be performed, i. e. it is assumed that
  373. * the buffer size will always be big enough. DANGEROUS.
  374. * !NULL >0 The user-supplied buffer will be used. An error will
  375. * be returned if the size is not sufficient. Any unused
  376. * bytes in the string will be '\0'-padded.
  377. */
  378. static int cmpkey(const void *p1, const void *p2)
  379. {
  380. ENTRY *e1 = *(ENTRY **) p1;
  381. ENTRY *e2 = *(ENTRY **) p2;
  382. return (strcmp(e1->key, e2->key));
  383. }
  384. ssize_t hexport_r(struct hsearch_data *htab, const char sep,
  385. char **resp, size_t size)
  386. {
  387. ENTRY *list[htab->size];
  388. char *res, *p;
  389. size_t totlen;
  390. int i, n;
  391. /* Test for correct arguments. */
  392. if ((resp == NULL) || (htab == NULL)) {
  393. __set_errno(EINVAL);
  394. return (-1);
  395. }
  396. debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
  397. htab, htab->size, htab->filled, size);
  398. /*
  399. * Pass 1:
  400. * search used entries,
  401. * save addresses and compute total length
  402. */
  403. for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
  404. if (htab->table[i].used) {
  405. ENTRY *ep = &htab->table[i].entry;
  406. list[n++] = ep;
  407. totlen += strlen(ep->key) + 2;
  408. if (sep == '\0') {
  409. totlen += strlen(ep->data);
  410. } else { /* check if escapes are needed */
  411. char *s = ep->data;
  412. while (*s) {
  413. ++totlen;
  414. /* add room for needed escape chars */
  415. if ((*s == sep) || (*s == '\\'))
  416. ++totlen;
  417. ++s;
  418. }
  419. }
  420. totlen += 2; /* for '=' and 'sep' char */
  421. }
  422. }
  423. #ifdef DEBUG
  424. /* Pass 1a: print unsorted list */
  425. printf("Unsorted: n=%d\n", n);
  426. for (i = 0; i < n; ++i) {
  427. printf("\t%3d: %p ==> %-10s => %s\n",
  428. i, list[i], list[i]->key, list[i]->data);
  429. }
  430. #endif
  431. /* Sort list by keys */
  432. qsort(list, n, sizeof(ENTRY *), cmpkey);
  433. /* Check if the user supplied buffer size is sufficient */
  434. if (size) {
  435. if (size < totlen + 1) { /* provided buffer too small */
  436. debug("### buffer too small: %d, but need %d\n",
  437. size, totlen + 1);
  438. __set_errno(ENOMEM);
  439. return (-1);
  440. }
  441. } else {
  442. size = totlen + 1;
  443. }
  444. /* Check if the user provided a buffer */
  445. if (*resp) {
  446. /* yes; clear it */
  447. res = *resp;
  448. memset(res, '\0', size);
  449. } else {
  450. /* no, allocate and clear one */
  451. *resp = res = calloc(1, size);
  452. if (res == NULL) {
  453. __set_errno(ENOMEM);
  454. return (-1);
  455. }
  456. }
  457. /*
  458. * Pass 2:
  459. * export sorted list of result data
  460. */
  461. for (i = 0, p = res; i < n; ++i) {
  462. char *s;
  463. s = list[i]->key;
  464. while (*s)
  465. *p++ = *s++;
  466. *p++ = '=';
  467. s = list[i]->data;
  468. while (*s) {
  469. if ((*s == sep) || (*s == '\\'))
  470. *p++ = '\\'; /* escape */
  471. *p++ = *s++;
  472. }
  473. *p++ = sep;
  474. }
  475. *p = '\0'; /* terminate result */
  476. return size;
  477. }
  478. /*
  479. * himport()
  480. */
  481. /*
  482. * Import linearized data into hash table.
  483. *
  484. * This is the inverse function to hexport(): it takes a linear list
  485. * of "name=value" pairs and creates hash table entries from it.
  486. *
  487. * Entries without "value", i. e. consisting of only "name" or
  488. * "name=", will cause this entry to be deleted from the hash table.
  489. *
  490. * The "flag" argument can be used to control the behaviour: when the
  491. * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
  492. * new data will be added to an existing hash table; otherwise, old
  493. * data will be discarded and a new hash table will be created.
  494. *
  495. * The separator character for the "name=value" pairs can be selected,
  496. * so we both support importing from externally stored environment
  497. * data (separated by NUL characters) and from plain text files
  498. * (entries separated by newline characters).
  499. *
  500. * To allow for nicely formatted text input, leading white space
  501. * (sequences of SPACE and TAB chars) is ignored, and entries starting
  502. * (after removal of any leading white space) with a '#' character are
  503. * considered comments and ignored.
  504. *
  505. * [NOTE: this means that a variable name cannot start with a '#'
  506. * character.]
  507. *
  508. * When using a non-NUL separator character, backslash is used as
  509. * escape character in the value part, allowing for example for
  510. * multi-line values.
  511. *
  512. * In theory, arbitrary separator characters can be used, but only
  513. * '\0' and '\n' have really been tested.
  514. */
  515. int himport_r(struct hsearch_data *htab,
  516. const char *env, size_t size, const char sep, int flag)
  517. {
  518. char *data, *sp, *dp, *name, *value;
  519. /* Test for correct arguments. */
  520. if (htab == NULL) {
  521. __set_errno(EINVAL);
  522. return 0;
  523. }
  524. /* we allocate new space to make sure we can write to the array */
  525. if ((data = malloc(size)) == NULL) {
  526. debug("himport_r: can't malloc %d bytes\n", size);
  527. __set_errno(ENOMEM);
  528. return 0;
  529. }
  530. memcpy(data, env, size);
  531. dp = data;
  532. if ((flag & H_NOCLEAR) == 0) {
  533. /* Destroy old hash table if one exists */
  534. debug("Destroy Hash Table: %p table = %p\n", htab,
  535. htab->table);
  536. if (htab->table)
  537. hdestroy_r(htab);
  538. }
  539. /*
  540. * Create new hash table (if needed). The computation of the hash
  541. * table size is based on heuristics: in a sample of some 70+
  542. * existing systems we found an average size of 39+ bytes per entry
  543. * in the environment (for the whole key=value pair). Assuming a
  544. * size of 8 per entry (= safety factor of ~5) should provide enough
  545. * safety margin for any existing environment definitions and still
  546. * allow for more than enough dynamic additions. Note that the
  547. * "size" argument is supposed to give the maximum enviroment size
  548. * (CONFIG_ENV_SIZE). This heuristics will result in
  549. * unreasonably large numbers (and thus memory footprint) for
  550. * big flash environments (>8,000 entries for 64 KB
  551. * envrionment size), so we clip it to a reasonable value.
  552. * On the other hand we need to add some more entries for free
  553. * space when importing very small buffers. Both boundaries can
  554. * be overwritten in the board config file if needed.
  555. */
  556. if (!htab->table) {
  557. int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
  558. if (nent > CONFIG_ENV_MAX_ENTRIES)
  559. nent = CONFIG_ENV_MAX_ENTRIES;
  560. debug("Create Hash Table: N=%d\n", nent);
  561. if (hcreate_r(nent, htab) == 0) {
  562. free(data);
  563. return 0;
  564. }
  565. }
  566. /* Parse environment; allow for '\0' and 'sep' as separators */
  567. do {
  568. ENTRY e, *rv;
  569. /* skip leading white space */
  570. while ((*dp == ' ') || (*dp == '\t'))
  571. ++dp;
  572. /* skip comment lines */
  573. if (*dp == '#') {
  574. while (*dp && (*dp != sep))
  575. ++dp;
  576. ++dp;
  577. continue;
  578. }
  579. /* parse name */
  580. for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
  581. ;
  582. /* deal with "name" and "name=" entries (delete var) */
  583. if (*dp == '\0' || *(dp + 1) == '\0' ||
  584. *dp == sep || *(dp + 1) == sep) {
  585. if (*dp == '=')
  586. *dp++ = '\0';
  587. *dp++ = '\0'; /* terminate name */
  588. debug("DELETE CANDIDATE: \"%s\"\n", name);
  589. if (hdelete_r(name, htab) == 0)
  590. debug("DELETE ERROR ##############################\n");
  591. continue;
  592. }
  593. *dp++ = '\0'; /* terminate name */
  594. /* parse value; deal with escapes */
  595. for (value = sp = dp; *dp && (*dp != sep); ++dp) {
  596. if ((*dp == '\\') && *(dp + 1))
  597. ++dp;
  598. *sp++ = *dp;
  599. }
  600. *sp++ = '\0'; /* terminate value */
  601. ++dp;
  602. /* enter into hash table */
  603. e.key = name;
  604. e.data = value;
  605. hsearch_r(e, ENTER, &rv, htab);
  606. if (rv == NULL) {
  607. printf("himport_r: can't insert \"%s=%s\" into hash table\n",
  608. name, value);
  609. return 0;
  610. }
  611. debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
  612. htab, htab->filled, htab->size,
  613. rv, name, value);
  614. } while ((dp < data + size) && *dp); /* size check needed for text */
  615. /* without '\0' termination */
  616. debug("INSERT: free(data = %p)\n", data);
  617. free(data);
  618. debug("INSERT: done\n");
  619. return 1; /* everything OK */
  620. }