clock.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <asm/io.h>
  9. #include <asm/arch/clock.h>
  10. #include <asm/arch/clk.h>
  11. #include <asm/arch/periph.h>
  12. #define PLL_DIV_1024 1024
  13. #define PLL_DIV_65535 65535
  14. #define PLL_DIV_65536 65536
  15. /* *
  16. * This structure is to store the src bit, div bit and prediv bit
  17. * positions of the peripheral clocks of the src and div registers
  18. */
  19. struct clk_bit_info {
  20. int8_t src_bit;
  21. int8_t div_bit;
  22. int8_t prediv_bit;
  23. };
  24. /* src_bit div_bit prediv_bit */
  25. static struct clk_bit_info clk_bit_info[] = {
  26. {0, 0, -1},
  27. {4, 4, -1},
  28. {8, 8, -1},
  29. {12, 12, -1},
  30. {0, 0, 8},
  31. {4, 16, 24},
  32. {8, 0, 8},
  33. {12, 16, 24},
  34. {-1, -1, -1},
  35. {16, 0, 8},
  36. {20, 16, 24},
  37. {24, 0, 8},
  38. {0, 0, 4},
  39. {4, 12, 16},
  40. {-1, -1, -1},
  41. {-1, -1, -1},
  42. {-1, 24, 0},
  43. {-1, 24, 0},
  44. {-1, 24, 0},
  45. {-1, 24, 0},
  46. {-1, 24, 0},
  47. {-1, 24, 0},
  48. {-1, 24, 0},
  49. {-1, 24, 0},
  50. {24, 0, -1},
  51. {24, 0, -1},
  52. {24, 0, -1},
  53. {24, 0, -1},
  54. {24, 0, -1},
  55. };
  56. /* Epll Clock division values to achive different frequency output */
  57. static struct set_epll_con_val exynos5_epll_div[] = {
  58. { 192000000, 0, 48, 3, 1, 0 },
  59. { 180000000, 0, 45, 3, 1, 0 },
  60. { 73728000, 1, 73, 3, 3, 47710 },
  61. { 67737600, 1, 90, 4, 3, 20762 },
  62. { 49152000, 0, 49, 3, 3, 9961 },
  63. { 45158400, 0, 45, 3, 3, 10381 },
  64. { 180633600, 0, 45, 3, 1, 10381 }
  65. };
  66. /* exynos: return pll clock frequency */
  67. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  68. {
  69. unsigned long m, p, s = 0, mask, fout;
  70. unsigned int div;
  71. unsigned int freq;
  72. /*
  73. * APLL_CON: MIDV [25:16]
  74. * MPLL_CON: MIDV [25:16]
  75. * EPLL_CON: MIDV [24:16]
  76. * VPLL_CON: MIDV [24:16]
  77. * BPLL_CON: MIDV [25:16]: Exynos5
  78. */
  79. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  80. mask = 0x3ff;
  81. else
  82. mask = 0x1ff;
  83. m = (r >> 16) & mask;
  84. /* PDIV [13:8] */
  85. p = (r >> 8) & 0x3f;
  86. /* SDIV [2:0] */
  87. s = r & 0x7;
  88. freq = CONFIG_SYS_CLK_FREQ;
  89. if (pllreg == EPLL || pllreg == RPLL) {
  90. k = k & 0xffff;
  91. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  92. fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s)));
  93. } else if (pllreg == VPLL) {
  94. k = k & 0xfff;
  95. /*
  96. * Exynos4210
  97. * FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV)
  98. *
  99. * Exynos4412
  100. * FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV)
  101. *
  102. * Exynos5250
  103. * FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV)
  104. */
  105. if (proid_is_exynos4210())
  106. div = PLL_DIV_1024;
  107. else if (proid_is_exynos4412())
  108. div = PLL_DIV_65535;
  109. else if (proid_is_exynos5250() || proid_is_exynos5420())
  110. div = PLL_DIV_65536;
  111. else
  112. return 0;
  113. fout = (m + k / div) * (freq / (p * (1 << s)));
  114. } else {
  115. /*
  116. * Exynos4412 / Exynos5250
  117. * FOUT = MDIV * FIN / (PDIV * 2^SDIV)
  118. *
  119. * Exynos4210
  120. * FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1))
  121. */
  122. if (proid_is_exynos4210())
  123. fout = m * (freq / (p * (1 << (s - 1))));
  124. else
  125. fout = m * (freq / (p * (1 << s)));
  126. }
  127. return fout;
  128. }
  129. /* exynos4: return pll clock frequency */
  130. static unsigned long exynos4_get_pll_clk(int pllreg)
  131. {
  132. struct exynos4_clock *clk =
  133. (struct exynos4_clock *)samsung_get_base_clock();
  134. unsigned long r, k = 0;
  135. switch (pllreg) {
  136. case APLL:
  137. r = readl(&clk->apll_con0);
  138. break;
  139. case MPLL:
  140. r = readl(&clk->mpll_con0);
  141. break;
  142. case EPLL:
  143. r = readl(&clk->epll_con0);
  144. k = readl(&clk->epll_con1);
  145. break;
  146. case VPLL:
  147. r = readl(&clk->vpll_con0);
  148. k = readl(&clk->vpll_con1);
  149. break;
  150. default:
  151. printf("Unsupported PLL (%d)\n", pllreg);
  152. return 0;
  153. }
  154. return exynos_get_pll_clk(pllreg, r, k);
  155. }
  156. /* exynos4x12: return pll clock frequency */
  157. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  158. {
  159. struct exynos4x12_clock *clk =
  160. (struct exynos4x12_clock *)samsung_get_base_clock();
  161. unsigned long r, k = 0;
  162. switch (pllreg) {
  163. case APLL:
  164. r = readl(&clk->apll_con0);
  165. break;
  166. case MPLL:
  167. r = readl(&clk->mpll_con0);
  168. break;
  169. case EPLL:
  170. r = readl(&clk->epll_con0);
  171. k = readl(&clk->epll_con1);
  172. break;
  173. case VPLL:
  174. r = readl(&clk->vpll_con0);
  175. k = readl(&clk->vpll_con1);
  176. break;
  177. default:
  178. printf("Unsupported PLL (%d)\n", pllreg);
  179. return 0;
  180. }
  181. return exynos_get_pll_clk(pllreg, r, k);
  182. }
  183. /* exynos5: return pll clock frequency */
  184. static unsigned long exynos5_get_pll_clk(int pllreg)
  185. {
  186. struct exynos5_clock *clk =
  187. (struct exynos5_clock *)samsung_get_base_clock();
  188. unsigned long r, k = 0, fout;
  189. unsigned int pll_div2_sel, fout_sel;
  190. switch (pllreg) {
  191. case APLL:
  192. r = readl(&clk->apll_con0);
  193. break;
  194. case MPLL:
  195. r = readl(&clk->mpll_con0);
  196. break;
  197. case EPLL:
  198. r = readl(&clk->epll_con0);
  199. k = readl(&clk->epll_con1);
  200. break;
  201. case VPLL:
  202. r = readl(&clk->vpll_con0);
  203. k = readl(&clk->vpll_con1);
  204. break;
  205. case BPLL:
  206. r = readl(&clk->bpll_con0);
  207. break;
  208. default:
  209. printf("Unsupported PLL (%d)\n", pllreg);
  210. return 0;
  211. }
  212. fout = exynos_get_pll_clk(pllreg, r, k);
  213. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  214. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  215. if (pllreg == MPLL || pllreg == BPLL) {
  216. pll_div2_sel = readl(&clk->pll_div2_sel);
  217. switch (pllreg) {
  218. case MPLL:
  219. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  220. & MPLL_FOUT_SEL_MASK;
  221. break;
  222. case BPLL:
  223. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  224. & BPLL_FOUT_SEL_MASK;
  225. break;
  226. default:
  227. fout_sel = -1;
  228. break;
  229. }
  230. if (fout_sel == 0)
  231. fout /= 2;
  232. }
  233. return fout;
  234. }
  235. static unsigned long exynos5_get_periph_rate(int peripheral)
  236. {
  237. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  238. unsigned long sclk, sub_clk;
  239. unsigned int src, div, sub_div;
  240. struct exynos5_clock *clk =
  241. (struct exynos5_clock *)samsung_get_base_clock();
  242. switch (peripheral) {
  243. case PERIPH_ID_UART0:
  244. case PERIPH_ID_UART1:
  245. case PERIPH_ID_UART2:
  246. case PERIPH_ID_UART3:
  247. src = readl(&clk->src_peric0);
  248. div = readl(&clk->div_peric0);
  249. break;
  250. case PERIPH_ID_PWM0:
  251. case PERIPH_ID_PWM1:
  252. case PERIPH_ID_PWM2:
  253. case PERIPH_ID_PWM3:
  254. case PERIPH_ID_PWM4:
  255. src = readl(&clk->src_peric0);
  256. div = readl(&clk->div_peric3);
  257. break;
  258. case PERIPH_ID_I2S0:
  259. src = readl(&clk->src_mau);
  260. div = readl(&clk->div_mau);
  261. case PERIPH_ID_SPI0:
  262. case PERIPH_ID_SPI1:
  263. src = readl(&clk->src_peric1);
  264. div = readl(&clk->div_peric1);
  265. break;
  266. case PERIPH_ID_SPI2:
  267. src = readl(&clk->src_peric1);
  268. div = readl(&clk->div_peric2);
  269. break;
  270. case PERIPH_ID_SPI3:
  271. case PERIPH_ID_SPI4:
  272. src = readl(&clk->sclk_src_isp);
  273. div = readl(&clk->sclk_div_isp);
  274. break;
  275. case PERIPH_ID_SDMMC0:
  276. case PERIPH_ID_SDMMC1:
  277. case PERIPH_ID_SDMMC2:
  278. case PERIPH_ID_SDMMC3:
  279. src = readl(&clk->src_fsys);
  280. div = readl(&clk->div_fsys1);
  281. break;
  282. case PERIPH_ID_I2C0:
  283. case PERIPH_ID_I2C1:
  284. case PERIPH_ID_I2C2:
  285. case PERIPH_ID_I2C3:
  286. case PERIPH_ID_I2C4:
  287. case PERIPH_ID_I2C5:
  288. case PERIPH_ID_I2C6:
  289. case PERIPH_ID_I2C7:
  290. sclk = exynos5_get_pll_clk(MPLL);
  291. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  292. & 0x7) + 1;
  293. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  294. & 0x7) + 1;
  295. return (sclk / sub_div) / div;
  296. default:
  297. debug("%s: invalid peripheral %d", __func__, peripheral);
  298. return -1;
  299. };
  300. src = (src >> bit_info->src_bit) & 0xf;
  301. switch (src) {
  302. case EXYNOS_SRC_MPLL:
  303. sclk = exynos5_get_pll_clk(MPLL);
  304. break;
  305. case EXYNOS_SRC_EPLL:
  306. sclk = exynos5_get_pll_clk(EPLL);
  307. break;
  308. case EXYNOS_SRC_VPLL:
  309. sclk = exynos5_get_pll_clk(VPLL);
  310. break;
  311. default:
  312. return 0;
  313. }
  314. /* Ratio clock division for this peripheral */
  315. sub_div = (div >> bit_info->div_bit) & 0xf;
  316. sub_clk = sclk / (sub_div + 1);
  317. /* Pre-ratio clock division for SDMMC0 and 2 */
  318. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  319. div = (div >> bit_info->prediv_bit) & 0xff;
  320. return sub_clk / (div + 1);
  321. }
  322. return sub_clk;
  323. }
  324. unsigned long clock_get_periph_rate(int peripheral)
  325. {
  326. if (cpu_is_exynos5())
  327. return exynos5_get_periph_rate(peripheral);
  328. else
  329. return 0;
  330. }
  331. /* exynos5420: return pll clock frequency */
  332. static unsigned long exynos5420_get_pll_clk(int pllreg)
  333. {
  334. struct exynos5420_clock *clk =
  335. (struct exynos5420_clock *)samsung_get_base_clock();
  336. unsigned long r, k = 0;
  337. switch (pllreg) {
  338. case APLL:
  339. r = readl(&clk->apll_con0);
  340. break;
  341. case MPLL:
  342. r = readl(&clk->mpll_con0);
  343. break;
  344. case EPLL:
  345. r = readl(&clk->epll_con0);
  346. k = readl(&clk->epll_con1);
  347. break;
  348. case VPLL:
  349. r = readl(&clk->vpll_con0);
  350. k = readl(&clk->vpll_con1);
  351. break;
  352. case BPLL:
  353. r = readl(&clk->bpll_con0);
  354. break;
  355. case RPLL:
  356. r = readl(&clk->rpll_con0);
  357. k = readl(&clk->rpll_con1);
  358. break;
  359. default:
  360. printf("Unsupported PLL (%d)\n", pllreg);
  361. return 0;
  362. }
  363. return exynos_get_pll_clk(pllreg, r, k);
  364. }
  365. /* exynos4: return ARM clock frequency */
  366. static unsigned long exynos4_get_arm_clk(void)
  367. {
  368. struct exynos4_clock *clk =
  369. (struct exynos4_clock *)samsung_get_base_clock();
  370. unsigned long div;
  371. unsigned long armclk;
  372. unsigned int core_ratio;
  373. unsigned int core2_ratio;
  374. div = readl(&clk->div_cpu0);
  375. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  376. core_ratio = (div >> 0) & 0x7;
  377. core2_ratio = (div >> 28) & 0x7;
  378. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  379. armclk /= (core2_ratio + 1);
  380. return armclk;
  381. }
  382. /* exynos4x12: return ARM clock frequency */
  383. static unsigned long exynos4x12_get_arm_clk(void)
  384. {
  385. struct exynos4x12_clock *clk =
  386. (struct exynos4x12_clock *)samsung_get_base_clock();
  387. unsigned long div;
  388. unsigned long armclk;
  389. unsigned int core_ratio;
  390. unsigned int core2_ratio;
  391. div = readl(&clk->div_cpu0);
  392. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  393. core_ratio = (div >> 0) & 0x7;
  394. core2_ratio = (div >> 28) & 0x7;
  395. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  396. armclk /= (core2_ratio + 1);
  397. return armclk;
  398. }
  399. /* exynos5: return ARM clock frequency */
  400. static unsigned long exynos5_get_arm_clk(void)
  401. {
  402. struct exynos5_clock *clk =
  403. (struct exynos5_clock *)samsung_get_base_clock();
  404. unsigned long div;
  405. unsigned long armclk;
  406. unsigned int arm_ratio;
  407. unsigned int arm2_ratio;
  408. div = readl(&clk->div_cpu0);
  409. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  410. arm_ratio = (div >> 0) & 0x7;
  411. arm2_ratio = (div >> 28) & 0x7;
  412. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  413. armclk /= (arm2_ratio + 1);
  414. return armclk;
  415. }
  416. /* exynos4: return pwm clock frequency */
  417. static unsigned long exynos4_get_pwm_clk(void)
  418. {
  419. struct exynos4_clock *clk =
  420. (struct exynos4_clock *)samsung_get_base_clock();
  421. unsigned long pclk, sclk;
  422. unsigned int sel;
  423. unsigned int ratio;
  424. if (s5p_get_cpu_rev() == 0) {
  425. /*
  426. * CLK_SRC_PERIL0
  427. * PWM_SEL [27:24]
  428. */
  429. sel = readl(&clk->src_peril0);
  430. sel = (sel >> 24) & 0xf;
  431. if (sel == 0x6)
  432. sclk = get_pll_clk(MPLL);
  433. else if (sel == 0x7)
  434. sclk = get_pll_clk(EPLL);
  435. else if (sel == 0x8)
  436. sclk = get_pll_clk(VPLL);
  437. else
  438. return 0;
  439. /*
  440. * CLK_DIV_PERIL3
  441. * PWM_RATIO [3:0]
  442. */
  443. ratio = readl(&clk->div_peril3);
  444. ratio = ratio & 0xf;
  445. } else if (s5p_get_cpu_rev() == 1) {
  446. sclk = get_pll_clk(MPLL);
  447. ratio = 8;
  448. } else
  449. return 0;
  450. pclk = sclk / (ratio + 1);
  451. return pclk;
  452. }
  453. /* exynos4x12: return pwm clock frequency */
  454. static unsigned long exynos4x12_get_pwm_clk(void)
  455. {
  456. unsigned long pclk, sclk;
  457. unsigned int ratio;
  458. sclk = get_pll_clk(MPLL);
  459. ratio = 8;
  460. pclk = sclk / (ratio + 1);
  461. return pclk;
  462. }
  463. /* exynos5420: return pwm clock frequency */
  464. static unsigned long exynos5420_get_pwm_clk(void)
  465. {
  466. struct exynos5420_clock *clk =
  467. (struct exynos5420_clock *)samsung_get_base_clock();
  468. unsigned long pclk, sclk;
  469. unsigned int ratio;
  470. /*
  471. * CLK_DIV_PERIC0
  472. * PWM_RATIO [31:28]
  473. */
  474. ratio = readl(&clk->div_peric0);
  475. ratio = (ratio >> 28) & 0xf;
  476. sclk = get_pll_clk(MPLL);
  477. pclk = sclk / (ratio + 1);
  478. return pclk;
  479. }
  480. /* exynos4: return uart clock frequency */
  481. static unsigned long exynos4_get_uart_clk(int dev_index)
  482. {
  483. struct exynos4_clock *clk =
  484. (struct exynos4_clock *)samsung_get_base_clock();
  485. unsigned long uclk, sclk;
  486. unsigned int sel;
  487. unsigned int ratio;
  488. /*
  489. * CLK_SRC_PERIL0
  490. * UART0_SEL [3:0]
  491. * UART1_SEL [7:4]
  492. * UART2_SEL [8:11]
  493. * UART3_SEL [12:15]
  494. * UART4_SEL [16:19]
  495. * UART5_SEL [23:20]
  496. */
  497. sel = readl(&clk->src_peril0);
  498. sel = (sel >> (dev_index << 2)) & 0xf;
  499. if (sel == 0x6)
  500. sclk = get_pll_clk(MPLL);
  501. else if (sel == 0x7)
  502. sclk = get_pll_clk(EPLL);
  503. else if (sel == 0x8)
  504. sclk = get_pll_clk(VPLL);
  505. else
  506. return 0;
  507. /*
  508. * CLK_DIV_PERIL0
  509. * UART0_RATIO [3:0]
  510. * UART1_RATIO [7:4]
  511. * UART2_RATIO [8:11]
  512. * UART3_RATIO [12:15]
  513. * UART4_RATIO [16:19]
  514. * UART5_RATIO [23:20]
  515. */
  516. ratio = readl(&clk->div_peril0);
  517. ratio = (ratio >> (dev_index << 2)) & 0xf;
  518. uclk = sclk / (ratio + 1);
  519. return uclk;
  520. }
  521. /* exynos4x12: return uart clock frequency */
  522. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  523. {
  524. struct exynos4x12_clock *clk =
  525. (struct exynos4x12_clock *)samsung_get_base_clock();
  526. unsigned long uclk, sclk;
  527. unsigned int sel;
  528. unsigned int ratio;
  529. /*
  530. * CLK_SRC_PERIL0
  531. * UART0_SEL [3:0]
  532. * UART1_SEL [7:4]
  533. * UART2_SEL [8:11]
  534. * UART3_SEL [12:15]
  535. * UART4_SEL [16:19]
  536. */
  537. sel = readl(&clk->src_peril0);
  538. sel = (sel >> (dev_index << 2)) & 0xf;
  539. if (sel == 0x6)
  540. sclk = get_pll_clk(MPLL);
  541. else if (sel == 0x7)
  542. sclk = get_pll_clk(EPLL);
  543. else if (sel == 0x8)
  544. sclk = get_pll_clk(VPLL);
  545. else
  546. return 0;
  547. /*
  548. * CLK_DIV_PERIL0
  549. * UART0_RATIO [3:0]
  550. * UART1_RATIO [7:4]
  551. * UART2_RATIO [8:11]
  552. * UART3_RATIO [12:15]
  553. * UART4_RATIO [16:19]
  554. */
  555. ratio = readl(&clk->div_peril0);
  556. ratio = (ratio >> (dev_index << 2)) & 0xf;
  557. uclk = sclk / (ratio + 1);
  558. return uclk;
  559. }
  560. /* exynos5: return uart clock frequency */
  561. static unsigned long exynos5_get_uart_clk(int dev_index)
  562. {
  563. struct exynos5_clock *clk =
  564. (struct exynos5_clock *)samsung_get_base_clock();
  565. unsigned long uclk, sclk;
  566. unsigned int sel;
  567. unsigned int ratio;
  568. /*
  569. * CLK_SRC_PERIC0
  570. * UART0_SEL [3:0]
  571. * UART1_SEL [7:4]
  572. * UART2_SEL [8:11]
  573. * UART3_SEL [12:15]
  574. * UART4_SEL [16:19]
  575. * UART5_SEL [23:20]
  576. */
  577. sel = readl(&clk->src_peric0);
  578. sel = (sel >> (dev_index << 2)) & 0xf;
  579. if (sel == 0x6)
  580. sclk = get_pll_clk(MPLL);
  581. else if (sel == 0x7)
  582. sclk = get_pll_clk(EPLL);
  583. else if (sel == 0x8)
  584. sclk = get_pll_clk(VPLL);
  585. else
  586. return 0;
  587. /*
  588. * CLK_DIV_PERIC0
  589. * UART0_RATIO [3:0]
  590. * UART1_RATIO [7:4]
  591. * UART2_RATIO [8:11]
  592. * UART3_RATIO [12:15]
  593. * UART4_RATIO [16:19]
  594. * UART5_RATIO [23:20]
  595. */
  596. ratio = readl(&clk->div_peric0);
  597. ratio = (ratio >> (dev_index << 2)) & 0xf;
  598. uclk = sclk / (ratio + 1);
  599. return uclk;
  600. }
  601. /* exynos5420: return uart clock frequency */
  602. static unsigned long exynos5420_get_uart_clk(int dev_index)
  603. {
  604. struct exynos5420_clock *clk =
  605. (struct exynos5420_clock *)samsung_get_base_clock();
  606. unsigned long uclk, sclk;
  607. unsigned int sel;
  608. unsigned int ratio;
  609. /*
  610. * CLK_SRC_PERIC0
  611. * UART0_SEL [6:4]
  612. * UART1_SEL [10:8]
  613. * UART2_SEL [14:12]
  614. * UART3_SEL [18:16]
  615. * generalised calculation as follows
  616. * sel = (sel >> ((dev_index * 4) + 4)) & mask;
  617. */
  618. sel = readl(&clk->src_peric0);
  619. sel = (sel >> ((dev_index * 4) + 4)) & 0x7;
  620. if (sel == 0x3)
  621. sclk = get_pll_clk(MPLL);
  622. else if (sel == 0x6)
  623. sclk = get_pll_clk(EPLL);
  624. else if (sel == 0x7)
  625. sclk = get_pll_clk(RPLL);
  626. else
  627. return 0;
  628. /*
  629. * CLK_DIV_PERIC0
  630. * UART0_RATIO [11:8]
  631. * UART1_RATIO [15:12]
  632. * UART2_RATIO [19:16]
  633. * UART3_RATIO [23:20]
  634. * generalised calculation as follows
  635. * ratio = (ratio >> ((dev_index * 4) + 8)) & mask;
  636. */
  637. ratio = readl(&clk->div_peric0);
  638. ratio = (ratio >> ((dev_index * 4) + 8)) & 0xf;
  639. uclk = sclk / (ratio + 1);
  640. return uclk;
  641. }
  642. static unsigned long exynos4_get_mmc_clk(int dev_index)
  643. {
  644. struct exynos4_clock *clk =
  645. (struct exynos4_clock *)samsung_get_base_clock();
  646. unsigned long uclk, sclk;
  647. unsigned int sel, ratio, pre_ratio;
  648. int shift = 0;
  649. sel = readl(&clk->src_fsys);
  650. sel = (sel >> (dev_index << 2)) & 0xf;
  651. if (sel == 0x6)
  652. sclk = get_pll_clk(MPLL);
  653. else if (sel == 0x7)
  654. sclk = get_pll_clk(EPLL);
  655. else if (sel == 0x8)
  656. sclk = get_pll_clk(VPLL);
  657. else
  658. return 0;
  659. switch (dev_index) {
  660. case 0:
  661. case 1:
  662. ratio = readl(&clk->div_fsys1);
  663. pre_ratio = readl(&clk->div_fsys1);
  664. break;
  665. case 2:
  666. case 3:
  667. ratio = readl(&clk->div_fsys2);
  668. pre_ratio = readl(&clk->div_fsys2);
  669. break;
  670. case 4:
  671. ratio = readl(&clk->div_fsys3);
  672. pre_ratio = readl(&clk->div_fsys3);
  673. break;
  674. default:
  675. return 0;
  676. }
  677. if (dev_index == 1 || dev_index == 3)
  678. shift = 16;
  679. ratio = (ratio >> shift) & 0xf;
  680. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  681. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  682. return uclk;
  683. }
  684. static unsigned long exynos5_get_mmc_clk(int dev_index)
  685. {
  686. struct exynos5_clock *clk =
  687. (struct exynos5_clock *)samsung_get_base_clock();
  688. unsigned long uclk, sclk;
  689. unsigned int sel, ratio, pre_ratio;
  690. int shift = 0;
  691. sel = readl(&clk->src_fsys);
  692. sel = (sel >> (dev_index << 2)) & 0xf;
  693. if (sel == 0x6)
  694. sclk = get_pll_clk(MPLL);
  695. else if (sel == 0x7)
  696. sclk = get_pll_clk(EPLL);
  697. else if (sel == 0x8)
  698. sclk = get_pll_clk(VPLL);
  699. else
  700. return 0;
  701. switch (dev_index) {
  702. case 0:
  703. case 1:
  704. ratio = readl(&clk->div_fsys1);
  705. pre_ratio = readl(&clk->div_fsys1);
  706. break;
  707. case 2:
  708. case 3:
  709. ratio = readl(&clk->div_fsys2);
  710. pre_ratio = readl(&clk->div_fsys2);
  711. break;
  712. default:
  713. return 0;
  714. }
  715. if (dev_index == 1 || dev_index == 3)
  716. shift = 16;
  717. ratio = (ratio >> shift) & 0xf;
  718. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  719. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  720. return uclk;
  721. }
  722. static unsigned long exynos5420_get_mmc_clk(int dev_index)
  723. {
  724. struct exynos5420_clock *clk =
  725. (struct exynos5420_clock *)samsung_get_base_clock();
  726. unsigned long uclk, sclk;
  727. unsigned int sel, ratio;
  728. /*
  729. * CLK_SRC_FSYS
  730. * MMC0_SEL [10:8]
  731. * MMC1_SEL [14:12]
  732. * MMC2_SEL [18:16]
  733. * generalised calculation as follows
  734. * sel = (sel >> ((dev_index * 4) + 8)) & mask
  735. */
  736. sel = readl(&clk->src_fsys);
  737. sel = (sel >> ((dev_index * 4) + 8)) & 0x7;
  738. if (sel == 0x3)
  739. sclk = get_pll_clk(MPLL);
  740. else if (sel == 0x6)
  741. sclk = get_pll_clk(EPLL);
  742. else
  743. return 0;
  744. /*
  745. * CLK_DIV_FSYS1
  746. * MMC0_RATIO [9:0]
  747. * MMC1_RATIO [19:10]
  748. * MMC2_RATIO [29:20]
  749. * generalised calculation as follows
  750. * ratio = (ratio >> (dev_index * 10)) & mask
  751. */
  752. ratio = readl(&clk->div_fsys1);
  753. ratio = (ratio >> (dev_index * 10)) & 0x3ff;
  754. uclk = (sclk / (ratio + 1));
  755. return uclk;
  756. }
  757. /* exynos4: set the mmc clock */
  758. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  759. {
  760. struct exynos4_clock *clk =
  761. (struct exynos4_clock *)samsung_get_base_clock();
  762. unsigned int addr, clear_bit, set_bit;
  763. /*
  764. * CLK_DIV_FSYS1
  765. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  766. * CLK_DIV_FSYS2
  767. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  768. * CLK_DIV_FSYS3
  769. * MMC4_RATIO [3:0]
  770. */
  771. if (dev_index < 2) {
  772. addr = (unsigned int)&clk->div_fsys1;
  773. clear_bit = MASK_PRE_RATIO(dev_index);
  774. set_bit = SET_PRE_RATIO(dev_index, div);
  775. } else if (dev_index == 4) {
  776. addr = (unsigned int)&clk->div_fsys3;
  777. dev_index -= 4;
  778. /* MMC4 is controlled with the MMC4_RATIO value */
  779. clear_bit = MASK_RATIO(dev_index);
  780. set_bit = SET_RATIO(dev_index, div);
  781. } else {
  782. addr = (unsigned int)&clk->div_fsys2;
  783. dev_index -= 2;
  784. clear_bit = MASK_PRE_RATIO(dev_index);
  785. set_bit = SET_PRE_RATIO(dev_index, div);
  786. }
  787. clrsetbits_le32(addr, clear_bit, set_bit);
  788. }
  789. /* exynos5: set the mmc clock */
  790. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  791. {
  792. struct exynos5_clock *clk =
  793. (struct exynos5_clock *)samsung_get_base_clock();
  794. unsigned int addr;
  795. /*
  796. * CLK_DIV_FSYS1
  797. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  798. * CLK_DIV_FSYS2
  799. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  800. */
  801. if (dev_index < 2) {
  802. addr = (unsigned int)&clk->div_fsys1;
  803. } else {
  804. addr = (unsigned int)&clk->div_fsys2;
  805. dev_index -= 2;
  806. }
  807. clrsetbits_le32(addr, 0xff << ((dev_index << 4) + 8),
  808. (div & 0xff) << ((dev_index << 4) + 8));
  809. }
  810. /* exynos5: set the mmc clock */
  811. static void exynos5420_set_mmc_clk(int dev_index, unsigned int div)
  812. {
  813. struct exynos5420_clock *clk =
  814. (struct exynos5420_clock *)samsung_get_base_clock();
  815. unsigned int addr;
  816. unsigned int shift;
  817. /*
  818. * CLK_DIV_FSYS1
  819. * MMC0_RATIO [9:0]
  820. * MMC1_RATIO [19:10]
  821. * MMC2_RATIO [29:20]
  822. */
  823. addr = (unsigned int)&clk->div_fsys1;
  824. shift = dev_index * 10;
  825. clrsetbits_le32(addr, 0x3ff << shift, (div & 0x3ff) << shift);
  826. }
  827. /* get_lcd_clk: return lcd clock frequency */
  828. static unsigned long exynos4_get_lcd_clk(void)
  829. {
  830. struct exynos4_clock *clk =
  831. (struct exynos4_clock *)samsung_get_base_clock();
  832. unsigned long pclk, sclk;
  833. unsigned int sel;
  834. unsigned int ratio;
  835. /*
  836. * CLK_SRC_LCD0
  837. * FIMD0_SEL [3:0]
  838. */
  839. sel = readl(&clk->src_lcd0);
  840. sel = sel & 0xf;
  841. /*
  842. * 0x6: SCLK_MPLL
  843. * 0x7: SCLK_EPLL
  844. * 0x8: SCLK_VPLL
  845. */
  846. if (sel == 0x6)
  847. sclk = get_pll_clk(MPLL);
  848. else if (sel == 0x7)
  849. sclk = get_pll_clk(EPLL);
  850. else if (sel == 0x8)
  851. sclk = get_pll_clk(VPLL);
  852. else
  853. return 0;
  854. /*
  855. * CLK_DIV_LCD0
  856. * FIMD0_RATIO [3:0]
  857. */
  858. ratio = readl(&clk->div_lcd0);
  859. ratio = ratio & 0xf;
  860. pclk = sclk / (ratio + 1);
  861. return pclk;
  862. }
  863. /* get_lcd_clk: return lcd clock frequency */
  864. static unsigned long exynos5_get_lcd_clk(void)
  865. {
  866. struct exynos5_clock *clk =
  867. (struct exynos5_clock *)samsung_get_base_clock();
  868. unsigned long pclk, sclk;
  869. unsigned int sel;
  870. unsigned int ratio;
  871. /*
  872. * CLK_SRC_LCD0
  873. * FIMD0_SEL [3:0]
  874. */
  875. sel = readl(&clk->src_disp1_0);
  876. sel = sel & 0xf;
  877. /*
  878. * 0x6: SCLK_MPLL
  879. * 0x7: SCLK_EPLL
  880. * 0x8: SCLK_VPLL
  881. */
  882. if (sel == 0x6)
  883. sclk = get_pll_clk(MPLL);
  884. else if (sel == 0x7)
  885. sclk = get_pll_clk(EPLL);
  886. else if (sel == 0x8)
  887. sclk = get_pll_clk(VPLL);
  888. else
  889. return 0;
  890. /*
  891. * CLK_DIV_LCD0
  892. * FIMD0_RATIO [3:0]
  893. */
  894. ratio = readl(&clk->div_disp1_0);
  895. ratio = ratio & 0xf;
  896. pclk = sclk / (ratio + 1);
  897. return pclk;
  898. }
  899. void exynos4_set_lcd_clk(void)
  900. {
  901. struct exynos4_clock *clk =
  902. (struct exynos4_clock *)samsung_get_base_clock();
  903. /*
  904. * CLK_GATE_BLOCK
  905. * CLK_CAM [0]
  906. * CLK_TV [1]
  907. * CLK_MFC [2]
  908. * CLK_G3D [3]
  909. * CLK_LCD0 [4]
  910. * CLK_LCD1 [5]
  911. * CLK_GPS [7]
  912. */
  913. setbits_le32(&clk->gate_block, 1 << 4);
  914. /*
  915. * CLK_SRC_LCD0
  916. * FIMD0_SEL [3:0]
  917. * MDNIE0_SEL [7:4]
  918. * MDNIE_PWM0_SEL [8:11]
  919. * MIPI0_SEL [12:15]
  920. * set lcd0 src clock 0x6: SCLK_MPLL
  921. */
  922. clrsetbits_le32(&clk->src_lcd0, 0xf, 0x6);
  923. /*
  924. * CLK_GATE_IP_LCD0
  925. * CLK_FIMD0 [0]
  926. * CLK_MIE0 [1]
  927. * CLK_MDNIE0 [2]
  928. * CLK_DSIM0 [3]
  929. * CLK_SMMUFIMD0 [4]
  930. * CLK_PPMULCD0 [5]
  931. * Gating all clocks for FIMD0
  932. */
  933. setbits_le32(&clk->gate_ip_lcd0, 1 << 0);
  934. /*
  935. * CLK_DIV_LCD0
  936. * FIMD0_RATIO [3:0]
  937. * MDNIE0_RATIO [7:4]
  938. * MDNIE_PWM0_RATIO [11:8]
  939. * MDNIE_PWM_PRE_RATIO [15:12]
  940. * MIPI0_RATIO [19:16]
  941. * MIPI0_PRE_RATIO [23:20]
  942. * set fimd ratio
  943. */
  944. clrsetbits_le32(&clk->div_lcd0, 0xf, 0x1);
  945. }
  946. void exynos5_set_lcd_clk(void)
  947. {
  948. struct exynos5_clock *clk =
  949. (struct exynos5_clock *)samsung_get_base_clock();
  950. /*
  951. * CLK_GATE_BLOCK
  952. * CLK_CAM [0]
  953. * CLK_TV [1]
  954. * CLK_MFC [2]
  955. * CLK_G3D [3]
  956. * CLK_LCD0 [4]
  957. * CLK_LCD1 [5]
  958. * CLK_GPS [7]
  959. */
  960. setbits_le32(&clk->gate_block, 1 << 4);
  961. /*
  962. * CLK_SRC_LCD0
  963. * FIMD0_SEL [3:0]
  964. * MDNIE0_SEL [7:4]
  965. * MDNIE_PWM0_SEL [8:11]
  966. * MIPI0_SEL [12:15]
  967. * set lcd0 src clock 0x6: SCLK_MPLL
  968. */
  969. clrsetbits_le32(&clk->src_disp1_0, 0xf, 0x6);
  970. /*
  971. * CLK_GATE_IP_LCD0
  972. * CLK_FIMD0 [0]
  973. * CLK_MIE0 [1]
  974. * CLK_MDNIE0 [2]
  975. * CLK_DSIM0 [3]
  976. * CLK_SMMUFIMD0 [4]
  977. * CLK_PPMULCD0 [5]
  978. * Gating all clocks for FIMD0
  979. */
  980. setbits_le32(&clk->gate_ip_disp1, 1 << 0);
  981. /*
  982. * CLK_DIV_LCD0
  983. * FIMD0_RATIO [3:0]
  984. * MDNIE0_RATIO [7:4]
  985. * MDNIE_PWM0_RATIO [11:8]
  986. * MDNIE_PWM_PRE_RATIO [15:12]
  987. * MIPI0_RATIO [19:16]
  988. * MIPI0_PRE_RATIO [23:20]
  989. * set fimd ratio
  990. */
  991. clrsetbits_le32(&clk->div_disp1_0, 0xf, 0x0);
  992. }
  993. void exynos4_set_mipi_clk(void)
  994. {
  995. struct exynos4_clock *clk =
  996. (struct exynos4_clock *)samsung_get_base_clock();
  997. /*
  998. * CLK_SRC_LCD0
  999. * FIMD0_SEL [3:0]
  1000. * MDNIE0_SEL [7:4]
  1001. * MDNIE_PWM0_SEL [8:11]
  1002. * MIPI0_SEL [12:15]
  1003. * set mipi0 src clock 0x6: SCLK_MPLL
  1004. */
  1005. clrsetbits_le32(&clk->src_lcd0, 0xf << 12, 0x6 << 12);
  1006. /*
  1007. * CLK_SRC_MASK_LCD0
  1008. * FIMD0_MASK [0]
  1009. * MDNIE0_MASK [4]
  1010. * MDNIE_PWM0_MASK [8]
  1011. * MIPI0_MASK [12]
  1012. * set src mask mipi0 0x1: Unmask
  1013. */
  1014. setbits_le32(&clk->src_mask_lcd0, 0x1 << 12);
  1015. /*
  1016. * CLK_GATE_IP_LCD0
  1017. * CLK_FIMD0 [0]
  1018. * CLK_MIE0 [1]
  1019. * CLK_MDNIE0 [2]
  1020. * CLK_DSIM0 [3]
  1021. * CLK_SMMUFIMD0 [4]
  1022. * CLK_PPMULCD0 [5]
  1023. * Gating all clocks for MIPI0
  1024. */
  1025. setbits_le32(&clk->gate_ip_lcd0, 1 << 3);
  1026. /*
  1027. * CLK_DIV_LCD0
  1028. * FIMD0_RATIO [3:0]
  1029. * MDNIE0_RATIO [7:4]
  1030. * MDNIE_PWM0_RATIO [11:8]
  1031. * MDNIE_PWM_PRE_RATIO [15:12]
  1032. * MIPI0_RATIO [19:16]
  1033. * MIPI0_PRE_RATIO [23:20]
  1034. * set mipi ratio
  1035. */
  1036. clrsetbits_le32(&clk->div_lcd0, 0xf << 16, 0x1 << 16);
  1037. }
  1038. /*
  1039. * I2C
  1040. *
  1041. * exynos5: obtaining the I2C clock
  1042. */
  1043. static unsigned long exynos5_get_i2c_clk(void)
  1044. {
  1045. struct exynos5_clock *clk =
  1046. (struct exynos5_clock *)samsung_get_base_clock();
  1047. unsigned long aclk_66, aclk_66_pre, sclk;
  1048. unsigned int ratio;
  1049. sclk = get_pll_clk(MPLL);
  1050. ratio = (readl(&clk->div_top1)) >> 24;
  1051. ratio &= 0x7;
  1052. aclk_66_pre = sclk / (ratio + 1);
  1053. ratio = readl(&clk->div_top0);
  1054. ratio &= 0x7;
  1055. aclk_66 = aclk_66_pre / (ratio + 1);
  1056. return aclk_66;
  1057. }
  1058. int exynos5_set_epll_clk(unsigned long rate)
  1059. {
  1060. unsigned int epll_con, epll_con_k;
  1061. unsigned int i;
  1062. unsigned int lockcnt;
  1063. unsigned int start;
  1064. struct exynos5_clock *clk =
  1065. (struct exynos5_clock *)samsung_get_base_clock();
  1066. epll_con = readl(&clk->epll_con0);
  1067. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  1068. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  1069. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  1070. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  1071. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  1072. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  1073. if (exynos5_epll_div[i].freq_out == rate)
  1074. break;
  1075. }
  1076. if (i == ARRAY_SIZE(exynos5_epll_div))
  1077. return -1;
  1078. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  1079. epll_con |= exynos5_epll_div[i].en_lock_det <<
  1080. EPLL_CON0_LOCK_DET_EN_SHIFT;
  1081. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  1082. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  1083. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  1084. /*
  1085. * Required period ( in cycles) to genarate a stable clock output.
  1086. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  1087. * frequency input (as per spec)
  1088. */
  1089. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  1090. writel(lockcnt, &clk->epll_lock);
  1091. writel(epll_con, &clk->epll_con0);
  1092. writel(epll_con_k, &clk->epll_con1);
  1093. start = get_timer(0);
  1094. while (!(readl(&clk->epll_con0) &
  1095. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  1096. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  1097. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  1098. return -1;
  1099. }
  1100. }
  1101. return 0;
  1102. }
  1103. int exynos5_set_i2s_clk_source(unsigned int i2s_id)
  1104. {
  1105. struct exynos5_clock *clk =
  1106. (struct exynos5_clock *)samsung_get_base_clock();
  1107. unsigned int *audio_ass = (unsigned int *)samsung_get_base_audio_ass();
  1108. if (i2s_id == 0) {
  1109. setbits_le32(&clk->src_top2, CLK_SRC_MOUT_EPLL);
  1110. clrsetbits_le32(&clk->src_mau, AUDIO0_SEL_MASK,
  1111. (CLK_SRC_SCLK_EPLL));
  1112. setbits_le32(audio_ass, AUDIO_CLKMUX_ASS);
  1113. } else if (i2s_id == 1) {
  1114. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1115. (CLK_SRC_SCLK_EPLL));
  1116. } else {
  1117. return -1;
  1118. }
  1119. return 0;
  1120. }
  1121. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1122. unsigned int dst_frq,
  1123. unsigned int i2s_id)
  1124. {
  1125. struct exynos5_clock *clk =
  1126. (struct exynos5_clock *)samsung_get_base_clock();
  1127. unsigned int div;
  1128. if ((dst_frq == 0) || (src_frq == 0)) {
  1129. debug("%s: Invalid requency input for prescaler\n", __func__);
  1130. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1131. return -1;
  1132. }
  1133. div = (src_frq / dst_frq);
  1134. if (i2s_id == 0) {
  1135. if (div > AUDIO_0_RATIO_MASK) {
  1136. debug("%s: Frequency ratio is out of range\n",
  1137. __func__);
  1138. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1139. return -1;
  1140. }
  1141. clrsetbits_le32(&clk->div_mau, AUDIO_0_RATIO_MASK,
  1142. (div & AUDIO_0_RATIO_MASK));
  1143. } else if(i2s_id == 1) {
  1144. if (div > AUDIO_1_RATIO_MASK) {
  1145. debug("%s: Frequency ratio is out of range\n",
  1146. __func__);
  1147. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1148. return -1;
  1149. }
  1150. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1151. (div & AUDIO_1_RATIO_MASK));
  1152. } else {
  1153. return -1;
  1154. }
  1155. return 0;
  1156. }
  1157. /**
  1158. * Linearly searches for the most accurate main and fine stage clock scalars
  1159. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1160. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1161. * slower than target.
  1162. *
  1163. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1164. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1165. * @param input_freq Clock frequency to be scaled in Hz
  1166. * @param target_freq Desired clock frequency in Hz
  1167. * @param best_fine_scalar Pointer to store the fine stage divisor
  1168. *
  1169. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1170. * found
  1171. */
  1172. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1173. unsigned int fine_scalar_bits, unsigned int input_rate,
  1174. unsigned int target_rate, unsigned int *best_fine_scalar)
  1175. {
  1176. int i;
  1177. int best_main_scalar = -1;
  1178. unsigned int best_error = target_rate;
  1179. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1180. const unsigned int loops = 1 << main_scaler_bits;
  1181. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1182. target_rate, cap);
  1183. assert(best_fine_scalar != NULL);
  1184. assert(main_scaler_bits <= fine_scalar_bits);
  1185. *best_fine_scalar = 1;
  1186. if (input_rate == 0 || target_rate == 0)
  1187. return -1;
  1188. if (target_rate >= input_rate)
  1189. return 1;
  1190. for (i = 1; i <= loops; i++) {
  1191. const unsigned int effective_div = max(min(input_rate / i /
  1192. target_rate, cap), 1);
  1193. const unsigned int effective_rate = input_rate / i /
  1194. effective_div;
  1195. const int error = target_rate - effective_rate;
  1196. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1197. effective_rate, error);
  1198. if (error >= 0 && error <= best_error) {
  1199. best_error = error;
  1200. best_main_scalar = i;
  1201. *best_fine_scalar = effective_div;
  1202. }
  1203. }
  1204. return best_main_scalar;
  1205. }
  1206. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1207. unsigned int rate)
  1208. {
  1209. struct exynos5_clock *clk =
  1210. (struct exynos5_clock *)samsung_get_base_clock();
  1211. int main;
  1212. unsigned int fine;
  1213. unsigned shift, pre_shift;
  1214. unsigned mask = 0xff;
  1215. u32 *reg;
  1216. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1217. if (main < 0) {
  1218. debug("%s: Cannot set clock rate for periph %d",
  1219. __func__, periph_id);
  1220. return -1;
  1221. }
  1222. main = main - 1;
  1223. fine = fine - 1;
  1224. switch (periph_id) {
  1225. case PERIPH_ID_SPI0:
  1226. reg = &clk->div_peric1;
  1227. shift = 0;
  1228. pre_shift = 8;
  1229. break;
  1230. case PERIPH_ID_SPI1:
  1231. reg = &clk->div_peric1;
  1232. shift = 16;
  1233. pre_shift = 24;
  1234. break;
  1235. case PERIPH_ID_SPI2:
  1236. reg = &clk->div_peric2;
  1237. shift = 0;
  1238. pre_shift = 8;
  1239. break;
  1240. case PERIPH_ID_SPI3:
  1241. reg = &clk->sclk_div_isp;
  1242. shift = 0;
  1243. pre_shift = 4;
  1244. break;
  1245. case PERIPH_ID_SPI4:
  1246. reg = &clk->sclk_div_isp;
  1247. shift = 12;
  1248. pre_shift = 16;
  1249. break;
  1250. default:
  1251. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1252. periph_id);
  1253. return -1;
  1254. }
  1255. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1256. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1257. return 0;
  1258. }
  1259. static int exynos5420_set_spi_clk(enum periph_id periph_id,
  1260. unsigned int rate)
  1261. {
  1262. struct exynos5420_clock *clk =
  1263. (struct exynos5420_clock *)samsung_get_base_clock();
  1264. int main;
  1265. unsigned int fine;
  1266. unsigned shift, pre_shift;
  1267. unsigned div_mask = 0xf, pre_div_mask = 0xff;
  1268. u32 *reg;
  1269. u32 *pre_reg;
  1270. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1271. if (main < 0) {
  1272. debug("%s: Cannot set clock rate for periph %d",
  1273. __func__, periph_id);
  1274. return -1;
  1275. }
  1276. main = main - 1;
  1277. fine = fine - 1;
  1278. switch (periph_id) {
  1279. case PERIPH_ID_SPI0:
  1280. reg = &clk->div_peric1;
  1281. shift = 20;
  1282. pre_reg = &clk->div_peric4;
  1283. pre_shift = 8;
  1284. break;
  1285. case PERIPH_ID_SPI1:
  1286. reg = &clk->div_peric1;
  1287. shift = 24;
  1288. pre_reg = &clk->div_peric4;
  1289. pre_shift = 16;
  1290. break;
  1291. case PERIPH_ID_SPI2:
  1292. reg = &clk->div_peric1;
  1293. shift = 28;
  1294. pre_reg = &clk->div_peric4;
  1295. pre_shift = 24;
  1296. break;
  1297. case PERIPH_ID_SPI3:
  1298. reg = &clk->div_isp1;
  1299. shift = 16;
  1300. pre_reg = &clk->div_isp1;
  1301. pre_shift = 0;
  1302. break;
  1303. case PERIPH_ID_SPI4:
  1304. reg = &clk->div_isp1;
  1305. shift = 20;
  1306. pre_reg = &clk->div_isp1;
  1307. pre_shift = 8;
  1308. break;
  1309. default:
  1310. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1311. periph_id);
  1312. return -1;
  1313. }
  1314. clrsetbits_le32(reg, div_mask << shift, (main & div_mask) << shift);
  1315. clrsetbits_le32(pre_reg, pre_div_mask << pre_shift,
  1316. (fine & pre_div_mask) << pre_shift);
  1317. return 0;
  1318. }
  1319. static unsigned long exynos4_get_i2c_clk(void)
  1320. {
  1321. struct exynos4_clock *clk =
  1322. (struct exynos4_clock *)samsung_get_base_clock();
  1323. unsigned long sclk, aclk_100;
  1324. unsigned int ratio;
  1325. sclk = get_pll_clk(APLL);
  1326. ratio = (readl(&clk->div_top)) >> 4;
  1327. ratio &= 0xf;
  1328. aclk_100 = sclk / (ratio + 1);
  1329. return aclk_100;
  1330. }
  1331. unsigned long get_pll_clk(int pllreg)
  1332. {
  1333. if (cpu_is_exynos5()) {
  1334. if (proid_is_exynos5420())
  1335. return exynos5420_get_pll_clk(pllreg);
  1336. return exynos5_get_pll_clk(pllreg);
  1337. } else {
  1338. if (proid_is_exynos4412())
  1339. return exynos4x12_get_pll_clk(pllreg);
  1340. return exynos4_get_pll_clk(pllreg);
  1341. }
  1342. }
  1343. unsigned long get_arm_clk(void)
  1344. {
  1345. if (cpu_is_exynos5())
  1346. return exynos5_get_arm_clk();
  1347. else {
  1348. if (proid_is_exynos4412())
  1349. return exynos4x12_get_arm_clk();
  1350. return exynos4_get_arm_clk();
  1351. }
  1352. }
  1353. unsigned long get_i2c_clk(void)
  1354. {
  1355. if (cpu_is_exynos5()) {
  1356. return exynos5_get_i2c_clk();
  1357. } else if (cpu_is_exynos4()) {
  1358. return exynos4_get_i2c_clk();
  1359. } else {
  1360. debug("I2C clock is not set for this CPU\n");
  1361. return 0;
  1362. }
  1363. }
  1364. unsigned long get_pwm_clk(void)
  1365. {
  1366. if (cpu_is_exynos5()) {
  1367. if (proid_is_exynos5420())
  1368. return exynos5420_get_pwm_clk();
  1369. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1370. } else {
  1371. if (proid_is_exynos4412())
  1372. return exynos4x12_get_pwm_clk();
  1373. return exynos4_get_pwm_clk();
  1374. }
  1375. }
  1376. unsigned long get_uart_clk(int dev_index)
  1377. {
  1378. if (cpu_is_exynos5()) {
  1379. if (proid_is_exynos5420())
  1380. return exynos5420_get_uart_clk(dev_index);
  1381. return exynos5_get_uart_clk(dev_index);
  1382. } else {
  1383. if (proid_is_exynos4412())
  1384. return exynos4x12_get_uart_clk(dev_index);
  1385. return exynos4_get_uart_clk(dev_index);
  1386. }
  1387. }
  1388. unsigned long get_mmc_clk(int dev_index)
  1389. {
  1390. if (cpu_is_exynos5()) {
  1391. if (proid_is_exynos5420())
  1392. return exynos5420_get_mmc_clk(dev_index);
  1393. return exynos5_get_mmc_clk(dev_index);
  1394. } else {
  1395. return exynos4_get_mmc_clk(dev_index);
  1396. }
  1397. }
  1398. void set_mmc_clk(int dev_index, unsigned int div)
  1399. {
  1400. if (cpu_is_exynos5()) {
  1401. if (proid_is_exynos5420())
  1402. exynos5420_set_mmc_clk(dev_index, div);
  1403. else
  1404. exynos5_set_mmc_clk(dev_index, div);
  1405. } else {
  1406. exynos4_set_mmc_clk(dev_index, div);
  1407. }
  1408. }
  1409. unsigned long get_lcd_clk(void)
  1410. {
  1411. if (cpu_is_exynos4())
  1412. return exynos4_get_lcd_clk();
  1413. else
  1414. return exynos5_get_lcd_clk();
  1415. }
  1416. void set_lcd_clk(void)
  1417. {
  1418. if (cpu_is_exynos4())
  1419. exynos4_set_lcd_clk();
  1420. else
  1421. exynos5_set_lcd_clk();
  1422. }
  1423. void set_mipi_clk(void)
  1424. {
  1425. if (cpu_is_exynos4())
  1426. exynos4_set_mipi_clk();
  1427. }
  1428. int set_spi_clk(int periph_id, unsigned int rate)
  1429. {
  1430. if (cpu_is_exynos5()) {
  1431. if (proid_is_exynos5420())
  1432. return exynos5420_set_spi_clk(periph_id, rate);
  1433. return exynos5_set_spi_clk(periph_id, rate);
  1434. } else {
  1435. return 0;
  1436. }
  1437. }
  1438. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq,
  1439. unsigned int i2s_id)
  1440. {
  1441. if (cpu_is_exynos5())
  1442. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq, i2s_id);
  1443. else
  1444. return 0;
  1445. }
  1446. int set_i2s_clk_source(unsigned int i2s_id)
  1447. {
  1448. if (cpu_is_exynos5())
  1449. return exynos5_set_i2s_clk_source(i2s_id);
  1450. else
  1451. return 0;
  1452. }
  1453. int set_epll_clk(unsigned long rate)
  1454. {
  1455. if (cpu_is_exynos5())
  1456. return exynos5_set_epll_clk(rate);
  1457. else
  1458. return 0;
  1459. }