tegra114_spi.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. /*
  2. * NVIDIA Tegra SPI controller (T114 and later)
  3. *
  4. * Copyright (c) 2010-2013 NVIDIA Corporation
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This software is licensed under the terms of the GNU General Public
  10. * License version 2, as published by the Free Software Foundation, and
  11. * may be copied, distributed, and modified under those terms.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <malloc.h>
  25. #include <asm/io.h>
  26. #include <asm/gpio.h>
  27. #include <asm/arch/clock.h>
  28. #include <asm/arch-tegra/clk_rst.h>
  29. #include <asm/arch-tegra114/tegra114_spi.h>
  30. #include <spi.h>
  31. #include <fdtdec.h>
  32. DECLARE_GLOBAL_DATA_PTR;
  33. /* COMMAND1 */
  34. #define SPI_CMD1_GO (1 << 31)
  35. #define SPI_CMD1_M_S (1 << 30)
  36. #define SPI_CMD1_MODE_MASK 0x3
  37. #define SPI_CMD1_MODE_SHIFT 28
  38. #define SPI_CMD1_CS_SEL_MASK 0x3
  39. #define SPI_CMD1_CS_SEL_SHIFT 26
  40. #define SPI_CMD1_CS_POL_INACTIVE3 (1 << 25)
  41. #define SPI_CMD1_CS_POL_INACTIVE2 (1 << 24)
  42. #define SPI_CMD1_CS_POL_INACTIVE1 (1 << 23)
  43. #define SPI_CMD1_CS_POL_INACTIVE0 (1 << 22)
  44. #define SPI_CMD1_CS_SW_HW (1 << 21)
  45. #define SPI_CMD1_CS_SW_VAL (1 << 20)
  46. #define SPI_CMD1_IDLE_SDA_MASK 0x3
  47. #define SPI_CMD1_IDLE_SDA_SHIFT 18
  48. #define SPI_CMD1_BIDIR (1 << 17)
  49. #define SPI_CMD1_LSBI_FE (1 << 16)
  50. #define SPI_CMD1_LSBY_FE (1 << 15)
  51. #define SPI_CMD1_BOTH_EN_BIT (1 << 14)
  52. #define SPI_CMD1_BOTH_EN_BYTE (1 << 13)
  53. #define SPI_CMD1_RX_EN (1 << 12)
  54. #define SPI_CMD1_TX_EN (1 << 11)
  55. #define SPI_CMD1_PACKED (1 << 5)
  56. #define SPI_CMD1_BIT_LEN_MASK 0x1F
  57. #define SPI_CMD1_BIT_LEN_SHIFT 0
  58. /* COMMAND2 */
  59. #define SPI_CMD2_TX_CLK_TAP_DELAY (1 << 6)
  60. #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK (0x3F << 6)
  61. #define SPI_CMD2_RX_CLK_TAP_DELAY (1 << 0)
  62. #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK (0x3F << 0)
  63. /* TRANSFER STATUS */
  64. #define SPI_XFER_STS_RDY (1 << 30)
  65. /* FIFO STATUS */
  66. #define SPI_FIFO_STS_CS_INACTIVE (1 << 31)
  67. #define SPI_FIFO_STS_FRAME_END (1 << 30)
  68. #define SPI_FIFO_STS_RX_FIFO_FLUSH (1 << 15)
  69. #define SPI_FIFO_STS_TX_FIFO_FLUSH (1 << 14)
  70. #define SPI_FIFO_STS_ERR (1 << 8)
  71. #define SPI_FIFO_STS_TX_FIFO_OVF (1 << 7)
  72. #define SPI_FIFO_STS_TX_FIFO_UNR (1 << 6)
  73. #define SPI_FIFO_STS_RX_FIFO_OVF (1 << 5)
  74. #define SPI_FIFO_STS_RX_FIFO_UNR (1 << 4)
  75. #define SPI_FIFO_STS_TX_FIFO_FULL (1 << 3)
  76. #define SPI_FIFO_STS_TX_FIFO_EMPTY (1 << 2)
  77. #define SPI_FIFO_STS_RX_FIFO_FULL (1 << 1)
  78. #define SPI_FIFO_STS_RX_FIFO_EMPTY (1 << 0)
  79. #define SPI_TIMEOUT 1000
  80. #define TEGRA_SPI_MAX_FREQ 52000000
  81. struct spi_regs {
  82. u32 command1; /* 000:SPI_COMMAND1 register */
  83. u32 command2; /* 004:SPI_COMMAND2 register */
  84. u32 timing1; /* 008:SPI_CS_TIM1 register */
  85. u32 timing2; /* 00c:SPI_CS_TIM2 register */
  86. u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
  87. u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
  88. u32 tx_data; /* 018:SPI_TX_DATA register */
  89. u32 rx_data; /* 01c:SPI_RX_DATA register */
  90. u32 dma_ctl; /* 020:SPI_DMA_CTL register */
  91. u32 dma_blk; /* 024:SPI_DMA_BLK register */
  92. u32 rsvd[56]; /* 028-107 reserved */
  93. u32 tx_fifo; /* 108:SPI_FIFO1 register */
  94. u32 rsvd2[31]; /* 10c-187 reserved */
  95. u32 rx_fifo; /* 188:SPI_FIFO2 register */
  96. u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */
  97. };
  98. struct tegra_spi_ctrl {
  99. struct spi_regs *regs;
  100. unsigned int freq;
  101. unsigned int mode;
  102. int periph_id;
  103. int valid;
  104. };
  105. struct tegra_spi_slave {
  106. struct spi_slave slave;
  107. struct tegra_spi_ctrl *ctrl;
  108. };
  109. static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA114_SPI_CTRLS];
  110. static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
  111. {
  112. return container_of(slave, struct tegra_spi_slave, slave);
  113. }
  114. int tegra114_spi_cs_is_valid(unsigned int bus, unsigned int cs)
  115. {
  116. if (bus >= CONFIG_TEGRA114_SPI_CTRLS || cs > 3 || !spi_ctrls[bus].valid)
  117. return 0;
  118. else
  119. return 1;
  120. }
  121. struct spi_slave *tegra114_spi_setup_slave(unsigned int bus, unsigned int cs,
  122. unsigned int max_hz, unsigned int mode)
  123. {
  124. struct tegra_spi_slave *spi;
  125. debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__,
  126. bus, cs, max_hz, mode);
  127. if (!spi_cs_is_valid(bus, cs)) {
  128. printf("SPI error: unsupported bus %d / chip select %d\n",
  129. bus, cs);
  130. return NULL;
  131. }
  132. if (max_hz > TEGRA_SPI_MAX_FREQ) {
  133. printf("SPI error: unsupported frequency %d Hz. Max frequency"
  134. " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
  135. return NULL;
  136. }
  137. spi = spi_alloc_slave(struct tegra_spi_slave, bus, cs);
  138. if (!spi) {
  139. printf("SPI error: malloc of SPI structure failed\n");
  140. return NULL;
  141. }
  142. spi->ctrl = &spi_ctrls[bus];
  143. if (!spi->ctrl) {
  144. printf("SPI error: could not find controller for bus %d\n",
  145. bus);
  146. return NULL;
  147. }
  148. if (max_hz < spi->ctrl->freq) {
  149. debug("%s: limiting frequency from %u to %u\n", __func__,
  150. spi->ctrl->freq, max_hz);
  151. spi->ctrl->freq = max_hz;
  152. }
  153. spi->ctrl->mode = mode;
  154. return &spi->slave;
  155. }
  156. void tegra114_spi_free_slave(struct spi_slave *slave)
  157. {
  158. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  159. free(spi);
  160. }
  161. int tegra114_spi_init(int *node_list, int count)
  162. {
  163. struct tegra_spi_ctrl *ctrl;
  164. int i;
  165. int node = 0;
  166. int found = 0;
  167. for (i = 0; i < count; i++) {
  168. ctrl = &spi_ctrls[i];
  169. node = node_list[i];
  170. ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob,
  171. node, "reg");
  172. if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
  173. debug("%s: no spi register found\n", __func__);
  174. continue;
  175. }
  176. ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
  177. "spi-max-frequency", 0);
  178. if (!ctrl->freq) {
  179. debug("%s: no spi max frequency found\n", __func__);
  180. continue;
  181. }
  182. ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
  183. if (ctrl->periph_id == PERIPH_ID_NONE) {
  184. debug("%s: could not decode periph id\n", __func__);
  185. continue;
  186. }
  187. ctrl->valid = 1;
  188. found = 1;
  189. debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
  190. __func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
  191. }
  192. return !found;
  193. }
  194. int tegra114_spi_claim_bus(struct spi_slave *slave)
  195. {
  196. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  197. struct spi_regs *regs = spi->ctrl->regs;
  198. /* Change SPI clock to correct frequency, PLLP_OUT0 source */
  199. clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
  200. spi->ctrl->freq);
  201. /* Clear stale status here */
  202. setbits_le32(&regs->fifo_status,
  203. SPI_FIFO_STS_ERR |
  204. SPI_FIFO_STS_TX_FIFO_OVF |
  205. SPI_FIFO_STS_TX_FIFO_UNR |
  206. SPI_FIFO_STS_RX_FIFO_OVF |
  207. SPI_FIFO_STS_RX_FIFO_UNR |
  208. SPI_FIFO_STS_TX_FIFO_FULL |
  209. SPI_FIFO_STS_TX_FIFO_EMPTY |
  210. SPI_FIFO_STS_RX_FIFO_FULL |
  211. SPI_FIFO_STS_RX_FIFO_EMPTY);
  212. debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
  213. /* Set master mode and sw controlled CS */
  214. setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
  215. (spi->ctrl->mode << SPI_CMD1_MODE_SHIFT));
  216. debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
  217. return 0;
  218. }
  219. void tegra114_spi_cs_activate(struct spi_slave *slave)
  220. {
  221. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  222. struct spi_regs *regs = spi->ctrl->regs;
  223. clrbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
  224. }
  225. void tegra114_spi_cs_deactivate(struct spi_slave *slave)
  226. {
  227. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  228. struct spi_regs *regs = spi->ctrl->regs;
  229. setbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
  230. }
  231. int tegra114_spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  232. const void *data_out, void *data_in, unsigned long flags)
  233. {
  234. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  235. struct spi_regs *regs = spi->ctrl->regs;
  236. u32 reg, tmpdout, tmpdin = 0;
  237. const u8 *dout = data_out;
  238. u8 *din = data_in;
  239. int num_bytes;
  240. int ret;
  241. debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
  242. __func__, slave->bus, slave->cs, dout, din, bitlen);
  243. if (bitlen % 8)
  244. return -1;
  245. num_bytes = bitlen / 8;
  246. ret = 0;
  247. /* clear all error status bits */
  248. reg = readl(&regs->fifo_status);
  249. writel(reg, &regs->fifo_status);
  250. clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
  251. SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
  252. (slave->cs << SPI_CMD1_CS_SEL_SHIFT));
  253. /* set xfer size to 1 block (32 bits) */
  254. writel(0, &regs->dma_blk);
  255. if (flags & SPI_XFER_BEGIN)
  256. spi_cs_activate(slave);
  257. /* handle data in 32-bit chunks */
  258. while (num_bytes > 0) {
  259. int bytes;
  260. int tm, i;
  261. tmpdout = 0;
  262. bytes = (num_bytes > 4) ? 4 : num_bytes;
  263. if (dout != NULL) {
  264. for (i = 0; i < bytes; ++i)
  265. tmpdout = (tmpdout << 8) | dout[i];
  266. dout += bytes;
  267. }
  268. num_bytes -= bytes;
  269. /* clear ready bit */
  270. setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
  271. clrsetbits_le32(&regs->command1,
  272. SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
  273. (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
  274. writel(tmpdout, &regs->tx_fifo);
  275. setbits_le32(&regs->command1, SPI_CMD1_GO);
  276. /*
  277. * Wait for SPI transmit FIFO to empty, or to time out.
  278. * The RX FIFO status will be read and cleared last
  279. */
  280. for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
  281. u32 fifo_status, xfer_status;
  282. xfer_status = readl(&regs->xfer_status);
  283. if (!(xfer_status & SPI_XFER_STS_RDY))
  284. continue;
  285. fifo_status = readl(&regs->fifo_status);
  286. if (fifo_status & SPI_FIFO_STS_ERR) {
  287. debug("%s: got a fifo error: ", __func__);
  288. if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
  289. debug("tx FIFO overflow ");
  290. if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
  291. debug("tx FIFO underrun ");
  292. if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
  293. debug("rx FIFO overflow ");
  294. if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
  295. debug("rx FIFO underrun ");
  296. if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
  297. debug("tx FIFO full ");
  298. if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
  299. debug("tx FIFO empty ");
  300. if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
  301. debug("rx FIFO full ");
  302. if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
  303. debug("rx FIFO empty ");
  304. debug("\n");
  305. break;
  306. }
  307. if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
  308. tmpdin = readl(&regs->rx_fifo);
  309. /* swap bytes read in */
  310. if (din != NULL) {
  311. for (i = bytes - 1; i >= 0; --i) {
  312. din[i] = tmpdin & 0xff;
  313. tmpdin >>= 8;
  314. }
  315. din += bytes;
  316. }
  317. /* We can exit when we've had both RX and TX */
  318. break;
  319. }
  320. }
  321. if (tm >= SPI_TIMEOUT)
  322. ret = tm;
  323. /* clear ACK RDY, etc. bits */
  324. writel(readl(&regs->fifo_status), &regs->fifo_status);
  325. }
  326. if (flags & SPI_XFER_END)
  327. spi_cs_deactivate(slave);
  328. debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
  329. __func__, tmpdin, readl(&regs->fifo_status));
  330. if (ret) {
  331. printf("%s: timeout during SPI transfer, tm %d\n",
  332. __func__, ret);
  333. return -1;
  334. }
  335. return 0;
  336. }