clock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {CONFIG_SYS_MX5_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. unsigned int reg;
  82. reg = readl(&mxc_ccm->cscmr1) &
  83. ~MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK;
  84. reg |= 1 << MXC_CCM_CSCMR1_USBOH3_CLK_SEL_OFFSET;
  85. writel(reg, &mxc_ccm->cscmr1);
  86. reg = readl(&mxc_ccm->cscdr1);
  87. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK;
  88. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK;
  89. reg |= 4 << MXC_CCM_CSCDR1_USBOH3_CLK_PRED_OFFSET;
  90. reg |= 1 << MXC_CCM_CSCDR1_USBOH3_CLK_PODF_OFFSET;
  91. writel(reg, &mxc_ccm->cscdr1);
  92. }
  93. void enable_usboh3_clk(unsigned char enable)
  94. {
  95. unsigned int reg;
  96. reg = readl(&mxc_ccm->CCGR2);
  97. if (enable)
  98. reg |= 1 << MXC_CCM_CCGR2_CG14_OFFSET;
  99. else
  100. reg &= ~(1 << MXC_CCM_CCGR2_CG14_OFFSET);
  101. writel(reg, &mxc_ccm->CCGR2);
  102. }
  103. void set_usb_phy1_clk(void)
  104. {
  105. unsigned int reg;
  106. reg = readl(&mxc_ccm->cscmr1);
  107. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  108. writel(reg, &mxc_ccm->cscmr1);
  109. }
  110. void enable_usb_phy1_clk(unsigned char enable)
  111. {
  112. unsigned int reg;
  113. reg = readl(&mxc_ccm->CCGR4);
  114. if (enable)
  115. reg |= 1 << MXC_CCM_CCGR4_CG5_OFFSET;
  116. else
  117. reg &= ~(1 << MXC_CCM_CCGR4_CG5_OFFSET);
  118. writel(reg, &mxc_ccm->CCGR4);
  119. }
  120. void set_usb_phy2_clk(void)
  121. {
  122. unsigned int reg;
  123. reg = readl(&mxc_ccm->cscmr1);
  124. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  125. writel(reg, &mxc_ccm->cscmr1);
  126. }
  127. void enable_usb_phy2_clk(unsigned char enable)
  128. {
  129. unsigned int reg;
  130. reg = readl(&mxc_ccm->CCGR4);
  131. if (enable)
  132. reg |= 1 << MXC_CCM_CCGR4_CG6_OFFSET;
  133. else
  134. reg &= ~(1 << MXC_CCM_CCGR4_CG6_OFFSET);
  135. writel(reg, &mxc_ccm->CCGR4);
  136. }
  137. /*
  138. * Calculate the frequency of PLLn.
  139. */
  140. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  141. {
  142. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  143. uint64_t refclk, temp;
  144. int32_t mfn_abs;
  145. ctrl = readl(&pll->ctrl);
  146. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  147. mfn = __raw_readl(&pll->hfs_mfn);
  148. mfd = __raw_readl(&pll->hfs_mfd);
  149. op = __raw_readl(&pll->hfs_op);
  150. } else {
  151. mfn = __raw_readl(&pll->mfn);
  152. mfd = __raw_readl(&pll->mfd);
  153. op = __raw_readl(&pll->op);
  154. }
  155. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  156. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  157. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  158. mfi = (op & MXC_DPLLC_OP_MFI_MASK) >> MXC_DPLLC_OP_MFI_OFFSET;
  159. /* 21.2.3 */
  160. if (mfi < 5)
  161. mfi = 5;
  162. /* Sign extend */
  163. if (mfn >= 0x04000000) {
  164. mfn |= 0xfc000000;
  165. mfn_abs = -mfn;
  166. } else
  167. mfn_abs = mfn;
  168. refclk = infreq * 2;
  169. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  170. refclk *= 2;
  171. do_div(refclk, pdf + 1);
  172. temp = refclk * mfn_abs;
  173. do_div(temp, mfd + 1);
  174. ret = refclk * mfi;
  175. if ((int)mfn < 0)
  176. ret -= temp;
  177. else
  178. ret += temp;
  179. return ret;
  180. }
  181. /*
  182. * Get mcu main rate
  183. */
  184. u32 get_mcu_main_clk(void)
  185. {
  186. u32 reg, freq;
  187. reg = (__raw_readl(&mxc_ccm->cacrr) & MXC_CCM_CACRR_ARM_PODF_MASK) >>
  188. MXC_CCM_CACRR_ARM_PODF_OFFSET;
  189. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  190. return freq / (reg + 1);
  191. }
  192. /*
  193. * Get the rate of peripheral's root clock.
  194. */
  195. u32 get_periph_clk(void)
  196. {
  197. u32 reg;
  198. reg = __raw_readl(&mxc_ccm->cbcdr);
  199. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  200. return decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  201. reg = __raw_readl(&mxc_ccm->cbcmr);
  202. switch ((reg & MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
  203. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  204. case 0:
  205. return decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  206. case 1:
  207. return decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  208. default:
  209. return 0;
  210. }
  211. /* NOTREACHED */
  212. }
  213. /*
  214. * Get the rate of ipg clock.
  215. */
  216. static u32 get_ipg_clk(void)
  217. {
  218. uint32_t freq, reg, div;
  219. freq = get_ahb_clk();
  220. reg = __raw_readl(&mxc_ccm->cbcdr);
  221. div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
  222. MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
  223. return freq / div;
  224. }
  225. /*
  226. * Get the rate of ipg_per clock.
  227. */
  228. static u32 get_ipg_per_clk(void)
  229. {
  230. u32 pred1, pred2, podf;
  231. if (__raw_readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  232. return get_ipg_clk();
  233. /* Fixme: not handle what about lpm*/
  234. podf = __raw_readl(&mxc_ccm->cbcdr);
  235. pred1 = (podf & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
  236. MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET;
  237. pred2 = (podf & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
  238. MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET;
  239. podf = (podf & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
  240. MXC_CCM_CBCDR_PERCLK_PODF_OFFSET;
  241. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  242. }
  243. /*
  244. * Get the rate of uart clk.
  245. */
  246. static u32 get_uart_clk(void)
  247. {
  248. unsigned int freq, reg, pred, podf;
  249. reg = __raw_readl(&mxc_ccm->cscmr1);
  250. switch ((reg & MXC_CCM_CSCMR1_UART_CLK_SEL_MASK) >>
  251. MXC_CCM_CSCMR1_UART_CLK_SEL_OFFSET) {
  252. case 0x0:
  253. freq = decode_pll(mxc_plls[PLL1_CLOCK],
  254. CONFIG_SYS_MX5_HCLK);
  255. break;
  256. case 0x1:
  257. freq = decode_pll(mxc_plls[PLL2_CLOCK],
  258. CONFIG_SYS_MX5_HCLK);
  259. break;
  260. case 0x2:
  261. freq = decode_pll(mxc_plls[PLL3_CLOCK],
  262. CONFIG_SYS_MX5_HCLK);
  263. break;
  264. default:
  265. return 66500000;
  266. }
  267. reg = __raw_readl(&mxc_ccm->cscdr1);
  268. pred = (reg & MXC_CCM_CSCDR1_UART_CLK_PRED_MASK) >>
  269. MXC_CCM_CSCDR1_UART_CLK_PRED_OFFSET;
  270. podf = (reg & MXC_CCM_CSCDR1_UART_CLK_PODF_MASK) >>
  271. MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  272. freq /= (pred + 1) * (podf + 1);
  273. return freq;
  274. }
  275. /*
  276. * This function returns the low power audio clock.
  277. */
  278. static u32 get_lp_apm(void)
  279. {
  280. u32 ret_val = 0;
  281. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  282. if (((ccsr >> 9) & 1) == 0)
  283. ret_val = CONFIG_SYS_MX5_HCLK;
  284. else
  285. ret_val = ((32768 * 1024));
  286. return ret_val;
  287. }
  288. /*
  289. * get cspi clock rate.
  290. */
  291. static u32 imx_get_cspiclk(void)
  292. {
  293. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  294. u32 cscmr1 = __raw_readl(&mxc_ccm->cscmr1);
  295. u32 cscdr2 = __raw_readl(&mxc_ccm->cscdr2);
  296. pre_pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PRED_MASK) \
  297. >> MXC_CCM_CSCDR2_CSPI_CLK_PRED_OFFSET;
  298. pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PODF_MASK) \
  299. >> MXC_CCM_CSCDR2_CSPI_CLK_PODF_OFFSET;
  300. clk_sel = (cscmr1 & MXC_CCM_CSCMR1_CSPI_CLK_SEL_MASK) \
  301. >> MXC_CCM_CSCMR1_CSPI_CLK_SEL_OFFSET;
  302. switch (clk_sel) {
  303. case 0:
  304. ret_val = decode_pll(mxc_plls[PLL1_CLOCK],
  305. CONFIG_SYS_MX5_HCLK) /
  306. ((pre_pdf + 1) * (pdf + 1));
  307. break;
  308. case 1:
  309. ret_val = decode_pll(mxc_plls[PLL2_CLOCK],
  310. CONFIG_SYS_MX5_HCLK) /
  311. ((pre_pdf + 1) * (pdf + 1));
  312. break;
  313. case 2:
  314. ret_val = decode_pll(mxc_plls[PLL3_CLOCK],
  315. CONFIG_SYS_MX5_HCLK) /
  316. ((pre_pdf + 1) * (pdf + 1));
  317. break;
  318. default:
  319. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  320. break;
  321. }
  322. return ret_val;
  323. }
  324. static u32 get_axi_a_clk(void)
  325. {
  326. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  327. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_A_PODF_MASK) \
  328. >> MXC_CCM_CBCDR_AXI_A_PODF_OFFSET;
  329. return get_periph_clk() / (pdf + 1);
  330. }
  331. static u32 get_axi_b_clk(void)
  332. {
  333. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  334. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_B_PODF_MASK) \
  335. >> MXC_CCM_CBCDR_AXI_B_PODF_OFFSET;
  336. return get_periph_clk() / (pdf + 1);
  337. }
  338. static u32 get_emi_slow_clk(void)
  339. {
  340. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  341. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  342. u32 pdf = (cbcdr & MXC_CCM_CBCDR_EMI_PODF_MASK) \
  343. >> MXC_CCM_CBCDR_EMI_PODF_OFFSET;
  344. if (emi_clk_sel)
  345. return get_ahb_clk() / (pdf + 1);
  346. return get_periph_clk() / (pdf + 1);
  347. }
  348. static u32 get_ddr_clk(void)
  349. {
  350. u32 ret_val = 0;
  351. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  352. u32 ddr_clk_sel = (cbcmr & MXC_CCM_CBCMR_DDR_CLK_SEL_MASK) \
  353. >> MXC_CCM_CBCMR_DDR_CLK_SEL_OFFSET;
  354. #ifdef CONFIG_MX51
  355. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  356. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  357. u32 ddr_clk_podf = (cbcdr & MXC_CCM_CBCDR_DDR_PODF_MASK) >> \
  358. MXC_CCM_CBCDR_DDR_PODF_OFFSET;
  359. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  360. ret_val /= ddr_clk_podf + 1;
  361. return ret_val;
  362. }
  363. #endif
  364. switch (ddr_clk_sel) {
  365. case 0:
  366. ret_val = get_axi_a_clk();
  367. break;
  368. case 1:
  369. ret_val = get_axi_b_clk();
  370. break;
  371. case 2:
  372. ret_val = get_emi_slow_clk();
  373. break;
  374. case 3:
  375. ret_val = get_ahb_clk();
  376. break;
  377. default:
  378. break;
  379. }
  380. return ret_val;
  381. }
  382. /*
  383. * The API of get mxc clocks.
  384. */
  385. unsigned int mxc_get_clock(enum mxc_clock clk)
  386. {
  387. switch (clk) {
  388. case MXC_ARM_CLK:
  389. return get_mcu_main_clk();
  390. case MXC_AHB_CLK:
  391. return get_ahb_clk();
  392. case MXC_IPG_CLK:
  393. return get_ipg_clk();
  394. case MXC_IPG_PERCLK:
  395. return get_ipg_per_clk();
  396. case MXC_UART_CLK:
  397. return get_uart_clk();
  398. case MXC_CSPI_CLK:
  399. return imx_get_cspiclk();
  400. case MXC_FEC_CLK:
  401. return decode_pll(mxc_plls[PLL1_CLOCK],
  402. CONFIG_SYS_MX5_HCLK);
  403. case MXC_SATA_CLK:
  404. return get_ahb_clk();
  405. case MXC_DDR_CLK:
  406. return get_ddr_clk();
  407. default:
  408. break;
  409. }
  410. return -EINVAL;
  411. }
  412. u32 imx_get_uartclk(void)
  413. {
  414. return get_uart_clk();
  415. }
  416. u32 imx_get_fecclk(void)
  417. {
  418. return mxc_get_clock(MXC_IPG_CLK);
  419. }
  420. static int gcd(int m, int n)
  421. {
  422. int t;
  423. while (m > 0) {
  424. if (n > m) {
  425. t = m;
  426. m = n;
  427. n = t;
  428. } /* swap */
  429. m -= n;
  430. }
  431. return n;
  432. }
  433. /*
  434. * This is to calculate various parameters based on reference clock and
  435. * targeted clock based on the equation:
  436. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  437. * This calculation is based on a fixed MFD value for simplicity.
  438. */
  439. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  440. {
  441. u64 pd, mfi = 1, mfn, mfd, t1;
  442. u32 n_target = target;
  443. u32 n_ref = ref, i;
  444. /*
  445. * Make sure targeted freq is in the valid range.
  446. * Otherwise the following calculation might be wrong!!!
  447. */
  448. if (n_target < PLL_FREQ_MIN(ref) ||
  449. n_target > PLL_FREQ_MAX(ref)) {
  450. printf("Targeted peripheral clock should be"
  451. "within [%d - %d]\n",
  452. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  453. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  454. return -EINVAL;
  455. }
  456. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  457. if (fixed_mfd[i].ref_clk_hz == ref) {
  458. mfd = fixed_mfd[i].mfd;
  459. break;
  460. }
  461. }
  462. if (i == ARRAY_SIZE(fixed_mfd))
  463. return -EINVAL;
  464. /* Use n_target and n_ref to avoid overflow */
  465. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  466. t1 = n_target * pd;
  467. do_div(t1, (4 * n_ref));
  468. mfi = t1;
  469. if (mfi > PLL_MFI_MAX)
  470. return -EINVAL;
  471. else if (mfi < 5)
  472. continue;
  473. break;
  474. }
  475. /*
  476. * Now got pd and mfi already
  477. *
  478. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  479. */
  480. t1 = n_target * pd;
  481. do_div(t1, 4);
  482. t1 -= n_ref * mfi;
  483. t1 *= mfd;
  484. do_div(t1, n_ref);
  485. mfn = t1;
  486. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  487. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  488. i = 1;
  489. if (mfn != 0)
  490. i = gcd(mfd, mfn);
  491. pll->pd = (u32)pd;
  492. pll->mfi = (u32)mfi;
  493. do_div(mfn, i);
  494. pll->mfn = (u32)mfn;
  495. do_div(mfd, i);
  496. pll->mfd = (u32)mfd;
  497. return 0;
  498. }
  499. #define calc_div(tgt_clk, src_clk, limit) ({ \
  500. u32 v = 0; \
  501. if (((src_clk) % (tgt_clk)) <= 100) \
  502. v = (src_clk) / (tgt_clk); \
  503. else \
  504. v = ((src_clk) / (tgt_clk)) + 1;\
  505. if (v > limit) \
  506. v = limit; \
  507. (v - 1); \
  508. })
  509. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  510. { \
  511. __raw_writel(0x1232, &pll->ctrl); \
  512. __raw_writel(0x2, &pll->config); \
  513. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  514. &pll->op); \
  515. __raw_writel(fn, &(pll->mfn)); \
  516. __raw_writel((fd) - 1, &pll->mfd); \
  517. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  518. &pll->hfs_op); \
  519. __raw_writel(fn, &pll->hfs_mfn); \
  520. __raw_writel((fd) - 1, &pll->hfs_mfd); \
  521. __raw_writel(0x1232, &pll->ctrl); \
  522. while (!__raw_readl(&pll->ctrl) & 0x1) \
  523. ;\
  524. }
  525. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  526. {
  527. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  528. struct mxc_pll_reg *pll = mxc_plls[index];
  529. switch (index) {
  530. case PLL1_CLOCK:
  531. /* Switch ARM to PLL2 clock */
  532. __raw_writel(ccsr | 0x4, &mxc_ccm->ccsr);
  533. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  534. pll_param->mfi, pll_param->mfn,
  535. pll_param->mfd);
  536. /* Switch back */
  537. __raw_writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  538. break;
  539. case PLL2_CLOCK:
  540. /* Switch to pll2 bypass clock */
  541. __raw_writel(ccsr | 0x2, &mxc_ccm->ccsr);
  542. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  543. pll_param->mfi, pll_param->mfn,
  544. pll_param->mfd);
  545. /* Switch back */
  546. __raw_writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  547. break;
  548. case PLL3_CLOCK:
  549. /* Switch to pll3 bypass clock */
  550. __raw_writel(ccsr | 0x1, &mxc_ccm->ccsr);
  551. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  552. pll_param->mfi, pll_param->mfn,
  553. pll_param->mfd);
  554. /* Switch back */
  555. __raw_writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  556. break;
  557. case PLL4_CLOCK:
  558. /* Switch to pll4 bypass clock */
  559. __raw_writel(ccsr | 0x20, &mxc_ccm->ccsr);
  560. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  561. pll_param->mfi, pll_param->mfn,
  562. pll_param->mfd);
  563. /* Switch back */
  564. __raw_writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  565. break;
  566. default:
  567. return -EINVAL;
  568. }
  569. return 0;
  570. }
  571. /* Config CPU clock */
  572. static int config_core_clk(u32 ref, u32 freq)
  573. {
  574. int ret = 0;
  575. struct pll_param pll_param;
  576. memset(&pll_param, 0, sizeof(struct pll_param));
  577. /* The case that periph uses PLL1 is not considered here */
  578. ret = calc_pll_params(ref, freq, &pll_param);
  579. if (ret != 0) {
  580. printf("Error:Can't find pll parameters: %d\n", ret);
  581. return ret;
  582. }
  583. return config_pll_clk(PLL1_CLOCK, &pll_param);
  584. }
  585. static int config_nfc_clk(u32 nfc_clk)
  586. {
  587. u32 reg;
  588. u32 parent_rate = get_emi_slow_clk();
  589. u32 div = parent_rate / nfc_clk;
  590. if (nfc_clk <= 0)
  591. return -EINVAL;
  592. if (div == 0)
  593. div++;
  594. if (parent_rate / div > NFC_CLK_MAX)
  595. div++;
  596. reg = __raw_readl(&mxc_ccm->cbcdr);
  597. reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
  598. reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
  599. __raw_writel(reg, &mxc_ccm->cbcdr);
  600. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  601. ;
  602. return 0;
  603. }
  604. /* Config main_bus_clock for periphs */
  605. static int config_periph_clk(u32 ref, u32 freq)
  606. {
  607. int ret = 0;
  608. struct pll_param pll_param;
  609. memset(&pll_param, 0, sizeof(struct pll_param));
  610. if (__raw_readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  611. ret = calc_pll_params(ref, freq, &pll_param);
  612. if (ret != 0) {
  613. printf("Error:Can't find pll parameters: %d\n",
  614. ret);
  615. return ret;
  616. }
  617. switch ((__raw_readl(&mxc_ccm->cbcmr) & \
  618. MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >> \
  619. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  620. case 0:
  621. return config_pll_clk(PLL1_CLOCK, &pll_param);
  622. break;
  623. case 1:
  624. return config_pll_clk(PLL3_CLOCK, &pll_param);
  625. break;
  626. default:
  627. return -EINVAL;
  628. }
  629. }
  630. return 0;
  631. }
  632. static int config_ddr_clk(u32 emi_clk)
  633. {
  634. u32 clk_src;
  635. s32 shift = 0, clk_sel, div = 1;
  636. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  637. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  638. if (emi_clk > MAX_DDR_CLK) {
  639. printf("Warning:DDR clock should not exceed %d MHz\n",
  640. MAX_DDR_CLK / SZ_DEC_1M);
  641. emi_clk = MAX_DDR_CLK;
  642. }
  643. clk_src = get_periph_clk();
  644. /* Find DDR clock input */
  645. clk_sel = (cbcmr >> 10) & 0x3;
  646. switch (clk_sel) {
  647. case 0:
  648. shift = 16;
  649. break;
  650. case 1:
  651. shift = 19;
  652. break;
  653. case 2:
  654. shift = 22;
  655. break;
  656. case 3:
  657. shift = 10;
  658. break;
  659. default:
  660. return -EINVAL;
  661. }
  662. if ((clk_src % emi_clk) < 10000000)
  663. div = clk_src / emi_clk;
  664. else
  665. div = (clk_src / emi_clk) + 1;
  666. if (div > 8)
  667. div = 8;
  668. cbcdr = cbcdr & ~(0x7 << shift);
  669. cbcdr |= ((div - 1) << shift);
  670. __raw_writel(cbcdr, &mxc_ccm->cbcdr);
  671. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  672. ;
  673. __raw_writel(0x0, &mxc_ccm->ccdr);
  674. return 0;
  675. }
  676. /*
  677. * This function assumes the expected core clock has to be changed by
  678. * modifying the PLL. This is NOT true always but for most of the times,
  679. * it is. So it assumes the PLL output freq is the same as the expected
  680. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  681. * In the latter case, it will try to increase the presc value until
  682. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  683. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  684. * on the targeted PLL and reference input clock to the PLL. Lastly,
  685. * it sets the register based on these values along with the dividers.
  686. * Note 1) There is no value checking for the passed-in divider values
  687. * so the caller has to make sure those values are sensible.
  688. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  689. * exceed NFC_CLK_MAX.
  690. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  691. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  692. * 4) This function should not have allowed diag_printf() calls since
  693. * the serial driver has been stoped. But leave then here to allow
  694. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  695. */
  696. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  697. {
  698. freq *= SZ_DEC_1M;
  699. switch (clk) {
  700. case MXC_ARM_CLK:
  701. if (config_core_clk(ref, freq))
  702. return -EINVAL;
  703. break;
  704. case MXC_PERIPH_CLK:
  705. if (config_periph_clk(ref, freq))
  706. return -EINVAL;
  707. break;
  708. case MXC_DDR_CLK:
  709. if (config_ddr_clk(freq))
  710. return -EINVAL;
  711. break;
  712. case MXC_NFC_CLK:
  713. if (config_nfc_clk(freq))
  714. return -EINVAL;
  715. break;
  716. default:
  717. printf("Warning:Unsupported or invalid clock type\n");
  718. }
  719. return 0;
  720. }
  721. #ifdef CONFIG_MX53
  722. /*
  723. * The clock for the external interface can be set to use internal clock
  724. * if fuse bank 4, row 3, bit 2 is set.
  725. * This is an undocumented feature and it was confirmed by Freescale's support:
  726. * Fuses (but not pins) may be used to configure SATA clocks.
  727. * Particularly the i.MX53 Fuse_Map contains the next information
  728. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  729. * '00' - 100MHz (External)
  730. * '01' - 50MHz (External)
  731. * '10' - 120MHz, internal (USB PHY)
  732. * '11' - Reserved
  733. */
  734. void mxc_set_sata_internal_clock(void)
  735. {
  736. u32 *tmp_base =
  737. (u32 *)(IIM_BASE_ADDR + 0x180c);
  738. set_usb_phy1_clk();
  739. writel((readl(tmp_base) & (~0x6)) | 0x4, tmp_base);
  740. }
  741. #endif
  742. /*
  743. * Dump some core clockes.
  744. */
  745. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  746. {
  747. u32 freq;
  748. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  749. printf("PLL1 %8d MHz\n", freq / 1000000);
  750. freq = decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  751. printf("PLL2 %8d MHz\n", freq / 1000000);
  752. freq = decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  753. printf("PLL3 %8d MHz\n", freq / 1000000);
  754. #ifdef CONFIG_MX53
  755. freq = decode_pll(mxc_plls[PLL4_CLOCK], CONFIG_SYS_MX5_HCLK);
  756. printf("PLL4 %8d MHz\n", freq / 1000000);
  757. #endif
  758. printf("\n");
  759. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  760. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  761. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  762. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  763. return 0;
  764. }
  765. /***************************************************/
  766. U_BOOT_CMD(
  767. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  768. "display clocks",
  769. ""
  770. );