tegra114_spi.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. /*
  2. * NVIDIA Tegra SPI controller (T114 and later)
  3. *
  4. * Copyright (c) 2010-2013 NVIDIA Corporation
  5. *
  6. * SPDX-License-Identifier: GPL-2.0
  7. */
  8. #include <common.h>
  9. #include <dm.h>
  10. #include <asm/io.h>
  11. #include <asm/arch/clock.h>
  12. #include <asm/arch-tegra/clk_rst.h>
  13. #include <spi.h>
  14. #include <fdtdec.h>
  15. #include "tegra_spi.h"
  16. DECLARE_GLOBAL_DATA_PTR;
  17. /* COMMAND1 */
  18. #define SPI_CMD1_GO BIT(31)
  19. #define SPI_CMD1_M_S BIT(30)
  20. #define SPI_CMD1_MODE_MASK GENMASK(1, 0)
  21. #define SPI_CMD1_MODE_SHIFT 28
  22. #define SPI_CMD1_CS_SEL_MASK GENMASK(1, 0)
  23. #define SPI_CMD1_CS_SEL_SHIFT 26
  24. #define SPI_CMD1_CS_POL_INACTIVE3 BIT(25)
  25. #define SPI_CMD1_CS_POL_INACTIVE2 BIT(24)
  26. #define SPI_CMD1_CS_POL_INACTIVE1 BIT(23)
  27. #define SPI_CMD1_CS_POL_INACTIVE0 BIT(22)
  28. #define SPI_CMD1_CS_SW_HW BIT(21)
  29. #define SPI_CMD1_CS_SW_VAL BIT(20)
  30. #define SPI_CMD1_IDLE_SDA_MASK GENMASK(1, 0)
  31. #define SPI_CMD1_IDLE_SDA_SHIFT 18
  32. #define SPI_CMD1_BIDIR BIT(17)
  33. #define SPI_CMD1_LSBI_FE BIT(16)
  34. #define SPI_CMD1_LSBY_FE BIT(15)
  35. #define SPI_CMD1_BOTH_EN_BIT BIT(14)
  36. #define SPI_CMD1_BOTH_EN_BYTE BIT(13)
  37. #define SPI_CMD1_RX_EN BIT(12)
  38. #define SPI_CMD1_TX_EN BIT(11)
  39. #define SPI_CMD1_PACKED BIT(5)
  40. #define SPI_CMD1_BIT_LEN_MASK GENMASK(4, 0)
  41. #define SPI_CMD1_BIT_LEN_SHIFT 0
  42. /* COMMAND2 */
  43. #define SPI_CMD2_TX_CLK_TAP_DELAY BIT(6)
  44. #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK GENMASK(11, 6)
  45. #define SPI_CMD2_RX_CLK_TAP_DELAY BIT(0)
  46. #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK GENMASK(5, 0)
  47. /* TRANSFER STATUS */
  48. #define SPI_XFER_STS_RDY BIT(30)
  49. /* FIFO STATUS */
  50. #define SPI_FIFO_STS_CS_INACTIVE BIT(31)
  51. #define SPI_FIFO_STS_FRAME_END BIT(30)
  52. #define SPI_FIFO_STS_RX_FIFO_FLUSH BIT(15)
  53. #define SPI_FIFO_STS_TX_FIFO_FLUSH BIT(14)
  54. #define SPI_FIFO_STS_ERR BIT(8)
  55. #define SPI_FIFO_STS_TX_FIFO_OVF BIT(7)
  56. #define SPI_FIFO_STS_TX_FIFO_UNR BIT(6)
  57. #define SPI_FIFO_STS_RX_FIFO_OVF BIT(5)
  58. #define SPI_FIFO_STS_RX_FIFO_UNR BIT(4)
  59. #define SPI_FIFO_STS_TX_FIFO_FULL BIT(3)
  60. #define SPI_FIFO_STS_TX_FIFO_EMPTY BIT(2)
  61. #define SPI_FIFO_STS_RX_FIFO_FULL BIT(1)
  62. #define SPI_FIFO_STS_RX_FIFO_EMPTY BIT(0)
  63. #define SPI_TIMEOUT 1000
  64. #define TEGRA_SPI_MAX_FREQ 52000000
  65. struct spi_regs {
  66. u32 command1; /* 000:SPI_COMMAND1 register */
  67. u32 command2; /* 004:SPI_COMMAND2 register */
  68. u32 timing1; /* 008:SPI_CS_TIM1 register */
  69. u32 timing2; /* 00c:SPI_CS_TIM2 register */
  70. u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
  71. u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
  72. u32 tx_data; /* 018:SPI_TX_DATA register */
  73. u32 rx_data; /* 01c:SPI_RX_DATA register */
  74. u32 dma_ctl; /* 020:SPI_DMA_CTL register */
  75. u32 dma_blk; /* 024:SPI_DMA_BLK register */
  76. u32 rsvd[56]; /* 028-107 reserved */
  77. u32 tx_fifo; /* 108:SPI_FIFO1 register */
  78. u32 rsvd2[31]; /* 10c-187 reserved */
  79. u32 rx_fifo; /* 188:SPI_FIFO2 register */
  80. u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */
  81. };
  82. struct tegra114_spi_priv {
  83. struct spi_regs *regs;
  84. unsigned int freq;
  85. unsigned int mode;
  86. int periph_id;
  87. int valid;
  88. int last_transaction_us;
  89. };
  90. static int tegra114_spi_ofdata_to_platdata(struct udevice *bus)
  91. {
  92. struct tegra_spi_platdata *plat = bus->platdata;
  93. const void *blob = gd->fdt_blob;
  94. int node = dev_of_offset(bus);
  95. plat->base = devfdt_get_addr(bus);
  96. plat->periph_id = clock_decode_periph_id(blob, node);
  97. if (plat->periph_id == PERIPH_ID_NONE) {
  98. debug("%s: could not decode periph id %d\n", __func__,
  99. plat->periph_id);
  100. return -FDT_ERR_NOTFOUND;
  101. }
  102. /* Use 500KHz as a suitable default */
  103. plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
  104. 500000);
  105. plat->deactivate_delay_us = fdtdec_get_int(blob, node,
  106. "spi-deactivate-delay", 0);
  107. debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
  108. __func__, plat->base, plat->periph_id, plat->frequency,
  109. plat->deactivate_delay_us);
  110. return 0;
  111. }
  112. static int tegra114_spi_probe(struct udevice *bus)
  113. {
  114. struct tegra_spi_platdata *plat = dev_get_platdata(bus);
  115. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  116. struct spi_regs *regs;
  117. ulong rate;
  118. priv->regs = (struct spi_regs *)plat->base;
  119. regs = priv->regs;
  120. priv->last_transaction_us = timer_get_us();
  121. priv->freq = plat->frequency;
  122. priv->periph_id = plat->periph_id;
  123. /*
  124. * Change SPI clock to correct frequency, PLLP_OUT0 source, falling
  125. * back to the oscillator if that is too fast.
  126. */
  127. rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
  128. priv->freq);
  129. if (rate > priv->freq + 100000) {
  130. rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_OSC,
  131. priv->freq);
  132. if (rate != priv->freq) {
  133. printf("Warning: SPI '%s' requested clock %u, actual clock %lu\n",
  134. bus->name, priv->freq, rate);
  135. }
  136. }
  137. udelay(plat->deactivate_delay_us);
  138. /* Clear stale status here */
  139. setbits_le32(&regs->fifo_status,
  140. SPI_FIFO_STS_ERR |
  141. SPI_FIFO_STS_TX_FIFO_OVF |
  142. SPI_FIFO_STS_TX_FIFO_UNR |
  143. SPI_FIFO_STS_RX_FIFO_OVF |
  144. SPI_FIFO_STS_RX_FIFO_UNR |
  145. SPI_FIFO_STS_TX_FIFO_FULL |
  146. SPI_FIFO_STS_TX_FIFO_EMPTY |
  147. SPI_FIFO_STS_RX_FIFO_FULL |
  148. SPI_FIFO_STS_RX_FIFO_EMPTY);
  149. debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
  150. setbits_le32(&priv->regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
  151. (priv->mode << SPI_CMD1_MODE_SHIFT) | SPI_CMD1_CS_SW_VAL);
  152. debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
  153. return 0;
  154. }
  155. /**
  156. * Activate the CS by driving it LOW
  157. *
  158. * @param slave Pointer to spi_slave to which controller has to
  159. * communicate with
  160. */
  161. static void spi_cs_activate(struct udevice *dev)
  162. {
  163. struct udevice *bus = dev->parent;
  164. struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
  165. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  166. /* If it's too soon to do another transaction, wait */
  167. if (pdata->deactivate_delay_us &&
  168. priv->last_transaction_us) {
  169. ulong delay_us; /* The delay completed so far */
  170. delay_us = timer_get_us() - priv->last_transaction_us;
  171. if (delay_us < pdata->deactivate_delay_us)
  172. udelay(pdata->deactivate_delay_us - delay_us);
  173. }
  174. clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
  175. }
  176. /**
  177. * Deactivate the CS by driving it HIGH
  178. *
  179. * @param slave Pointer to spi_slave to which controller has to
  180. * communicate with
  181. */
  182. static void spi_cs_deactivate(struct udevice *dev)
  183. {
  184. struct udevice *bus = dev->parent;
  185. struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
  186. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  187. setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
  188. /* Remember time of this transaction so we can honour the bus delay */
  189. if (pdata->deactivate_delay_us)
  190. priv->last_transaction_us = timer_get_us();
  191. debug("Deactivate CS, bus '%s'\n", bus->name);
  192. }
  193. static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen,
  194. const void *data_out, void *data_in,
  195. unsigned long flags)
  196. {
  197. struct udevice *bus = dev->parent;
  198. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  199. struct spi_regs *regs = priv->regs;
  200. u32 reg, tmpdout, tmpdin = 0;
  201. const u8 *dout = data_out;
  202. u8 *din = data_in;
  203. int num_bytes;
  204. int ret;
  205. debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
  206. __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
  207. if (bitlen % 8)
  208. return -1;
  209. num_bytes = bitlen / 8;
  210. ret = 0;
  211. if (flags & SPI_XFER_BEGIN)
  212. spi_cs_activate(dev);
  213. /* clear all error status bits */
  214. reg = readl(&regs->fifo_status);
  215. writel(reg, &regs->fifo_status);
  216. clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
  217. SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
  218. (spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT));
  219. /* set xfer size to 1 block (32 bits) */
  220. writel(0, &regs->dma_blk);
  221. /* handle data in 32-bit chunks */
  222. while (num_bytes > 0) {
  223. int bytes;
  224. int tm, i;
  225. tmpdout = 0;
  226. bytes = (num_bytes > 4) ? 4 : num_bytes;
  227. if (dout != NULL) {
  228. for (i = 0; i < bytes; ++i)
  229. tmpdout = (tmpdout << 8) | dout[i];
  230. dout += bytes;
  231. }
  232. num_bytes -= bytes;
  233. /* clear ready bit */
  234. setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
  235. clrsetbits_le32(&regs->command1,
  236. SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
  237. (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
  238. writel(tmpdout, &regs->tx_fifo);
  239. setbits_le32(&regs->command1, SPI_CMD1_GO);
  240. /*
  241. * Wait for SPI transmit FIFO to empty, or to time out.
  242. * The RX FIFO status will be read and cleared last
  243. */
  244. for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
  245. u32 fifo_status, xfer_status;
  246. xfer_status = readl(&regs->xfer_status);
  247. if (!(xfer_status & SPI_XFER_STS_RDY))
  248. continue;
  249. fifo_status = readl(&regs->fifo_status);
  250. if (fifo_status & SPI_FIFO_STS_ERR) {
  251. debug("%s: got a fifo error: ", __func__);
  252. if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
  253. debug("tx FIFO overflow ");
  254. if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
  255. debug("tx FIFO underrun ");
  256. if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
  257. debug("rx FIFO overflow ");
  258. if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
  259. debug("rx FIFO underrun ");
  260. if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
  261. debug("tx FIFO full ");
  262. if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
  263. debug("tx FIFO empty ");
  264. if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
  265. debug("rx FIFO full ");
  266. if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
  267. debug("rx FIFO empty ");
  268. debug("\n");
  269. break;
  270. }
  271. if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
  272. tmpdin = readl(&regs->rx_fifo);
  273. /* swap bytes read in */
  274. if (din != NULL) {
  275. for (i = bytes - 1; i >= 0; --i) {
  276. din[i] = tmpdin & 0xff;
  277. tmpdin >>= 8;
  278. }
  279. din += bytes;
  280. }
  281. /* We can exit when we've had both RX and TX */
  282. break;
  283. }
  284. }
  285. if (tm >= SPI_TIMEOUT)
  286. ret = tm;
  287. /* clear ACK RDY, etc. bits */
  288. writel(readl(&regs->fifo_status), &regs->fifo_status);
  289. }
  290. if (flags & SPI_XFER_END)
  291. spi_cs_deactivate(dev);
  292. debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
  293. __func__, tmpdin, readl(&regs->fifo_status));
  294. if (ret) {
  295. printf("%s: timeout during SPI transfer, tm %d\n",
  296. __func__, ret);
  297. return -1;
  298. }
  299. return ret;
  300. }
  301. static int tegra114_spi_set_speed(struct udevice *bus, uint speed)
  302. {
  303. struct tegra_spi_platdata *plat = bus->platdata;
  304. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  305. if (speed > plat->frequency)
  306. speed = plat->frequency;
  307. priv->freq = speed;
  308. debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
  309. return 0;
  310. }
  311. static int tegra114_spi_set_mode(struct udevice *bus, uint mode)
  312. {
  313. struct tegra114_spi_priv *priv = dev_get_priv(bus);
  314. priv->mode = mode;
  315. debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
  316. return 0;
  317. }
  318. static const struct dm_spi_ops tegra114_spi_ops = {
  319. .xfer = tegra114_spi_xfer,
  320. .set_speed = tegra114_spi_set_speed,
  321. .set_mode = tegra114_spi_set_mode,
  322. /*
  323. * cs_info is not needed, since we require all chip selects to be
  324. * in the device tree explicitly
  325. */
  326. };
  327. static const struct udevice_id tegra114_spi_ids[] = {
  328. { .compatible = "nvidia,tegra114-spi" },
  329. { }
  330. };
  331. U_BOOT_DRIVER(tegra114_spi) = {
  332. .name = "tegra114_spi",
  333. .id = UCLASS_SPI,
  334. .of_match = tegra114_spi_ids,
  335. .ops = &tegra114_spi_ops,
  336. .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
  337. .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
  338. .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
  339. .probe = tegra114_spi_probe,
  340. };