fsl_qspi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * Copyright 2013-2015 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include <dm.h>
  14. #include <errno.h>
  15. #include <watchdog.h>
  16. #include "fsl_qspi.h"
  17. DECLARE_GLOBAL_DATA_PTR;
  18. #define RX_BUFFER_SIZE 0x80
  19. #ifdef CONFIG_MX6SX
  20. #define TX_BUFFER_SIZE 0x200
  21. #else
  22. #define TX_BUFFER_SIZE 0x40
  23. #endif
  24. #define OFFSET_BITS_MASK GENMASK(23, 0)
  25. #define FLASH_STATUS_WEL 0x02
  26. /* SEQID */
  27. #define SEQID_WREN 1
  28. #define SEQID_FAST_READ 2
  29. #define SEQID_RDSR 3
  30. #define SEQID_SE 4
  31. #define SEQID_CHIP_ERASE 5
  32. #define SEQID_PP 6
  33. #define SEQID_RDID 7
  34. #define SEQID_BE_4K 8
  35. #ifdef CONFIG_SPI_FLASH_BAR
  36. #define SEQID_BRRD 9
  37. #define SEQID_BRWR 10
  38. #define SEQID_RDEAR 11
  39. #define SEQID_WREAR 12
  40. #endif
  41. #define SEQID_WRAR 13
  42. #define SEQID_RDAR 14
  43. /* QSPI CMD */
  44. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  45. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  46. #define QSPI_CMD_WREN 0x06 /* Write enable */
  47. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  48. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  49. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  50. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  51. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  52. /* Used for Micron, winbond and Macronix flashes */
  53. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  54. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  55. /* Used for Spansion flashes only. */
  56. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  57. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  58. /* Used for Spansion S25FS-S family flash only. */
  59. #define QSPI_CMD_RDAR 0x65 /* Read any device register */
  60. #define QSPI_CMD_WRAR 0x71 /* Write any device register */
  61. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  62. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  63. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  64. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  65. /* fsl_qspi_platdata flags */
  66. #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
  67. /* default SCK frequency, unit: HZ */
  68. #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
  69. /* QSPI max chipselect signals number */
  70. #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
  71. #ifdef CONFIG_DM_SPI
  72. /**
  73. * struct fsl_qspi_platdata - platform data for Freescale QSPI
  74. *
  75. * @flags: Flags for QSPI QSPI_FLAG_...
  76. * @speed_hz: Default SCK frequency
  77. * @reg_base: Base address of QSPI registers
  78. * @amba_base: Base address of QSPI memory mapping
  79. * @amba_total_size: size of QSPI memory mapping
  80. * @flash_num: Number of active slave devices
  81. * @num_chipselect: Number of QSPI chipselect signals
  82. */
  83. struct fsl_qspi_platdata {
  84. u32 flags;
  85. u32 speed_hz;
  86. fdt_addr_t reg_base;
  87. fdt_addr_t amba_base;
  88. fdt_size_t amba_total_size;
  89. u32 flash_num;
  90. u32 num_chipselect;
  91. };
  92. #endif
  93. /**
  94. * struct fsl_qspi_priv - private data for Freescale QSPI
  95. *
  96. * @flags: Flags for QSPI QSPI_FLAG_...
  97. * @bus_clk: QSPI input clk frequency
  98. * @speed_hz: Default SCK frequency
  99. * @cur_seqid: current LUT table sequence id
  100. * @sf_addr: flash access offset
  101. * @amba_base: Base address of QSPI memory mapping of every CS
  102. * @amba_total_size: size of QSPI memory mapping
  103. * @cur_amba_base: Base address of QSPI memory mapping of current CS
  104. * @flash_num: Number of active slave devices
  105. * @num_chipselect: Number of QSPI chipselect signals
  106. * @regs: Point to QSPI register structure for I/O access
  107. */
  108. struct fsl_qspi_priv {
  109. u32 flags;
  110. u32 bus_clk;
  111. u32 speed_hz;
  112. u32 cur_seqid;
  113. u32 sf_addr;
  114. u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
  115. u32 amba_total_size;
  116. u32 cur_amba_base;
  117. u32 flash_num;
  118. u32 num_chipselect;
  119. struct fsl_qspi_regs *regs;
  120. };
  121. #ifndef CONFIG_DM_SPI
  122. struct fsl_qspi {
  123. struct spi_slave slave;
  124. struct fsl_qspi_priv priv;
  125. };
  126. #endif
  127. static u32 qspi_read32(u32 flags, u32 *addr)
  128. {
  129. return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  130. in_be32(addr) : in_le32(addr);
  131. }
  132. static void qspi_write32(u32 flags, u32 *addr, u32 val)
  133. {
  134. flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  135. out_be32(addr, val) : out_le32(addr, val);
  136. }
  137. /* QSPI support swapping the flash read/write data
  138. * in hardware for LS102xA, but not for VF610 */
  139. static inline u32 qspi_endian_xchg(u32 data)
  140. {
  141. #ifdef CONFIG_VF610
  142. return swab32(data);
  143. #else
  144. return data;
  145. #endif
  146. }
  147. static void qspi_set_lut(struct fsl_qspi_priv *priv)
  148. {
  149. struct fsl_qspi_regs *regs = priv->regs;
  150. u32 lut_base;
  151. /* Unlock the LUT */
  152. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  153. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
  154. /* Write Enable */
  155. lut_base = SEQID_WREN * 4;
  156. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  157. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  158. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  159. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  160. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  161. /* Fast Read */
  162. lut_base = SEQID_FAST_READ * 4;
  163. #ifdef CONFIG_SPI_FLASH_BAR
  164. qspi_write32(priv->flags, &regs->lut[lut_base],
  165. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  166. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  167. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  168. #else
  169. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  170. qspi_write32(priv->flags, &regs->lut[lut_base],
  171. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  172. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  173. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  174. else
  175. qspi_write32(priv->flags, &regs->lut[lut_base],
  176. OPRND0(QSPI_CMD_FAST_READ_4B) |
  177. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  178. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  179. INSTR1(LUT_ADDR));
  180. #endif
  181. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  182. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  183. OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  184. INSTR1(LUT_READ));
  185. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  186. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  187. /* Read Status */
  188. lut_base = SEQID_RDSR * 4;
  189. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  190. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  191. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  192. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  193. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  194. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  195. /* Erase a sector */
  196. lut_base = SEQID_SE * 4;
  197. #ifdef CONFIG_SPI_FLASH_BAR
  198. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  199. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  200. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  201. #else
  202. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  203. qspi_write32(priv->flags, &regs->lut[lut_base],
  204. OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
  205. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  206. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  207. else
  208. qspi_write32(priv->flags, &regs->lut[lut_base],
  209. OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
  210. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  211. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  212. #endif
  213. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  214. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  215. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  216. /* Erase the whole chip */
  217. lut_base = SEQID_CHIP_ERASE * 4;
  218. qspi_write32(priv->flags, &regs->lut[lut_base],
  219. OPRND0(QSPI_CMD_CHIP_ERASE) |
  220. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  221. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  222. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  223. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  224. /* Page Program */
  225. lut_base = SEQID_PP * 4;
  226. #ifdef CONFIG_SPI_FLASH_BAR
  227. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  228. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  229. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  230. #else
  231. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  232. qspi_write32(priv->flags, &regs->lut[lut_base],
  233. OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
  234. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  235. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  236. else
  237. qspi_write32(priv->flags, &regs->lut[lut_base],
  238. OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
  239. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  240. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  241. #endif
  242. #ifdef CONFIG_MX6SX
  243. /*
  244. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  245. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  246. */
  247. qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
  248. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  249. #else
  250. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  251. OPRND0(TX_BUFFER_SIZE) |
  252. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  253. #endif
  254. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  255. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  256. /* READ ID */
  257. lut_base = SEQID_RDID * 4;
  258. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  259. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  260. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  261. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  262. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  263. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  264. /* SUB SECTOR 4K ERASE */
  265. lut_base = SEQID_BE_4K * 4;
  266. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  267. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  268. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  269. #ifdef CONFIG_SPI_FLASH_BAR
  270. /*
  271. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  272. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  273. * initialization.
  274. */
  275. lut_base = SEQID_BRRD * 4;
  276. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  277. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  278. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  279. lut_base = SEQID_BRWR * 4;
  280. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  281. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  282. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  283. lut_base = SEQID_RDEAR * 4;
  284. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  285. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  286. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  287. lut_base = SEQID_WREAR * 4;
  288. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  289. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  290. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  291. #endif
  292. /*
  293. * Read any device register.
  294. * Used for Spansion S25FS-S family flash only.
  295. */
  296. lut_base = SEQID_RDAR * 4;
  297. qspi_write32(priv->flags, &regs->lut[lut_base],
  298. OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
  299. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  300. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  301. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  302. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  303. OPRND1(1) | PAD1(LUT_PAD1) |
  304. INSTR1(LUT_READ));
  305. /*
  306. * Write any device register.
  307. * Used for Spansion S25FS-S family flash only.
  308. */
  309. lut_base = SEQID_WRAR * 4;
  310. qspi_write32(priv->flags, &regs->lut[lut_base],
  311. OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
  312. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  313. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  314. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  315. OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  316. /* Lock the LUT */
  317. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  318. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
  319. }
  320. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  321. /*
  322. * If we have changed the content of the flash by writing or erasing,
  323. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  324. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  325. * domain at the same time.
  326. */
  327. static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
  328. {
  329. struct fsl_qspi_regs *regs = priv->regs;
  330. u32 reg;
  331. reg = qspi_read32(priv->flags, &regs->mcr);
  332. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  333. qspi_write32(priv->flags, &regs->mcr, reg);
  334. /*
  335. * The minimum delay : 1 AHB + 2 SFCK clocks.
  336. * Delay 1 us is enough.
  337. */
  338. udelay(1);
  339. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  340. qspi_write32(priv->flags, &regs->mcr, reg);
  341. }
  342. /* Read out the data from the AHB buffer. */
  343. static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
  344. {
  345. struct fsl_qspi_regs *regs = priv->regs;
  346. u32 mcr_reg;
  347. void *rx_addr = NULL;
  348. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  349. qspi_write32(priv->flags, &regs->mcr,
  350. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  351. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  352. rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
  353. /* Read out the data directly from the AHB buffer. */
  354. memcpy(rxbuf, rx_addr, len);
  355. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  356. }
  357. static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
  358. {
  359. u32 reg, reg2;
  360. struct fsl_qspi_regs *regs = priv->regs;
  361. reg = qspi_read32(priv->flags, &regs->mcr);
  362. /* Disable the module */
  363. qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  364. /* Set the Sampling Register for DDR */
  365. reg2 = qspi_read32(priv->flags, &regs->smpr);
  366. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  367. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  368. qspi_write32(priv->flags, &regs->smpr, reg2);
  369. /* Enable the module again (enable the DDR too) */
  370. reg |= QSPI_MCR_DDR_EN_MASK;
  371. /* Enable bit 29 for imx6sx */
  372. reg |= BIT(29);
  373. qspi_write32(priv->flags, &regs->mcr, reg);
  374. }
  375. /*
  376. * There are two different ways to read out the data from the flash:
  377. * the "IP Command Read" and the "AHB Command Read".
  378. *
  379. * The IC guy suggests we use the "AHB Command Read" which is faster
  380. * then the "IP Command Read". (What's more is that there is a bug in
  381. * the "IP Command Read" in the Vybrid.)
  382. *
  383. * After we set up the registers for the "AHB Command Read", we can use
  384. * the memcpy to read the data directly. A "missed" access to the buffer
  385. * causes the controller to clear the buffer, and use the sequence pointed
  386. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  387. */
  388. static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
  389. {
  390. struct fsl_qspi_regs *regs = priv->regs;
  391. /* AHB configuration for access buffer 0/1/2 .*/
  392. qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  393. qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  394. qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  395. qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  396. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  397. /* We only use the buffer3 */
  398. qspi_write32(priv->flags, &regs->buf0ind, 0);
  399. qspi_write32(priv->flags, &regs->buf1ind, 0);
  400. qspi_write32(priv->flags, &regs->buf2ind, 0);
  401. /*
  402. * Set the default lut sequence for AHB Read.
  403. * Parallel mode is disabled.
  404. */
  405. qspi_write32(priv->flags, &regs->bfgencr,
  406. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  407. /*Enable DDR Mode*/
  408. qspi_enable_ddr_mode(priv);
  409. }
  410. #endif
  411. #ifdef CONFIG_SPI_FLASH_BAR
  412. /* Bank register read/write, EAR register read/write */
  413. static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
  414. {
  415. struct fsl_qspi_regs *regs = priv->regs;
  416. u32 reg, mcr_reg, data, seqid;
  417. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  418. qspi_write32(priv->flags, &regs->mcr,
  419. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  420. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  421. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  422. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  423. if (priv->cur_seqid == QSPI_CMD_BRRD)
  424. seqid = SEQID_BRRD;
  425. else
  426. seqid = SEQID_RDEAR;
  427. qspi_write32(priv->flags, &regs->ipcr,
  428. (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  429. /* Wait previous command complete */
  430. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  431. ;
  432. while (1) {
  433. WATCHDOG_RESET();
  434. reg = qspi_read32(priv->flags, &regs->rbsr);
  435. if (reg & QSPI_RBSR_RDBFL_MASK) {
  436. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  437. data = qspi_endian_xchg(data);
  438. memcpy(rxbuf, &data, len);
  439. qspi_write32(priv->flags, &regs->mcr,
  440. qspi_read32(priv->flags, &regs->mcr) |
  441. QSPI_MCR_CLR_RXF_MASK);
  442. break;
  443. }
  444. }
  445. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  446. }
  447. #endif
  448. static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  449. {
  450. struct fsl_qspi_regs *regs = priv->regs;
  451. u32 mcr_reg, rbsr_reg, data, size;
  452. int i;
  453. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  454. qspi_write32(priv->flags, &regs->mcr,
  455. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  456. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  457. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  458. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  459. qspi_write32(priv->flags, &regs->ipcr,
  460. (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  461. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  462. ;
  463. i = 0;
  464. while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
  465. WATCHDOG_RESET();
  466. rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
  467. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  468. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  469. data = qspi_endian_xchg(data);
  470. size = (len < 4) ? len : 4;
  471. memcpy(rxbuf, &data, size);
  472. len -= size;
  473. rxbuf++;
  474. i++;
  475. }
  476. }
  477. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  478. }
  479. /* If not use AHB read, read data from ip interface */
  480. static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  481. {
  482. struct fsl_qspi_regs *regs = priv->regs;
  483. u32 mcr_reg, data;
  484. int i, size;
  485. u32 to_or_from;
  486. u32 seqid;
  487. if (priv->cur_seqid == QSPI_CMD_RDAR)
  488. seqid = SEQID_RDAR;
  489. else
  490. seqid = SEQID_FAST_READ;
  491. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  492. qspi_write32(priv->flags, &regs->mcr,
  493. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  494. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  495. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  496. to_or_from = priv->sf_addr + priv->cur_amba_base;
  497. while (len > 0) {
  498. WATCHDOG_RESET();
  499. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  500. size = (len > RX_BUFFER_SIZE) ?
  501. RX_BUFFER_SIZE : len;
  502. qspi_write32(priv->flags, &regs->ipcr,
  503. (seqid << QSPI_IPCR_SEQID_SHIFT) |
  504. size);
  505. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  506. ;
  507. to_or_from += size;
  508. len -= size;
  509. i = 0;
  510. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  511. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  512. data = qspi_endian_xchg(data);
  513. if (size < 4)
  514. memcpy(rxbuf, &data, size);
  515. else
  516. memcpy(rxbuf, &data, 4);
  517. rxbuf++;
  518. size -= 4;
  519. i++;
  520. }
  521. qspi_write32(priv->flags, &regs->mcr,
  522. qspi_read32(priv->flags, &regs->mcr) |
  523. QSPI_MCR_CLR_RXF_MASK);
  524. }
  525. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  526. }
  527. static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
  528. {
  529. struct fsl_qspi_regs *regs = priv->regs;
  530. u32 mcr_reg, data, reg, status_reg, seqid;
  531. int i, size, tx_size;
  532. u32 to_or_from = 0;
  533. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  534. qspi_write32(priv->flags, &regs->mcr,
  535. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  536. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  537. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  538. status_reg = 0;
  539. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  540. WATCHDOG_RESET();
  541. qspi_write32(priv->flags, &regs->ipcr,
  542. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  543. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  544. ;
  545. qspi_write32(priv->flags, &regs->ipcr,
  546. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  547. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  548. ;
  549. reg = qspi_read32(priv->flags, &regs->rbsr);
  550. if (reg & QSPI_RBSR_RDBFL_MASK) {
  551. status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
  552. status_reg = qspi_endian_xchg(status_reg);
  553. }
  554. qspi_write32(priv->flags, &regs->mcr,
  555. qspi_read32(priv->flags, &regs->mcr) |
  556. QSPI_MCR_CLR_RXF_MASK);
  557. }
  558. /* Default is page programming */
  559. seqid = SEQID_PP;
  560. if (priv->cur_seqid == QSPI_CMD_WRAR)
  561. seqid = SEQID_WRAR;
  562. #ifdef CONFIG_SPI_FLASH_BAR
  563. if (priv->cur_seqid == QSPI_CMD_BRWR)
  564. seqid = SEQID_BRWR;
  565. else if (priv->cur_seqid == QSPI_CMD_WREAR)
  566. seqid = SEQID_WREAR;
  567. #endif
  568. to_or_from = priv->sf_addr + priv->cur_amba_base;
  569. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  570. tx_size = (len > TX_BUFFER_SIZE) ?
  571. TX_BUFFER_SIZE : len;
  572. size = tx_size / 4;
  573. for (i = 0; i < size; i++) {
  574. memcpy(&data, txbuf, 4);
  575. data = qspi_endian_xchg(data);
  576. qspi_write32(priv->flags, &regs->tbdr, data);
  577. txbuf += 4;
  578. }
  579. size = tx_size % 4;
  580. if (size) {
  581. data = 0;
  582. memcpy(&data, txbuf, size);
  583. data = qspi_endian_xchg(data);
  584. qspi_write32(priv->flags, &regs->tbdr, data);
  585. }
  586. qspi_write32(priv->flags, &regs->ipcr,
  587. (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  588. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  589. ;
  590. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  591. }
  592. static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
  593. {
  594. struct fsl_qspi_regs *regs = priv->regs;
  595. u32 mcr_reg, reg, data;
  596. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  597. qspi_write32(priv->flags, &regs->mcr,
  598. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  599. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  600. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  601. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  602. qspi_write32(priv->flags, &regs->ipcr,
  603. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  604. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  605. ;
  606. while (1) {
  607. WATCHDOG_RESET();
  608. reg = qspi_read32(priv->flags, &regs->rbsr);
  609. if (reg & QSPI_RBSR_RDBFL_MASK) {
  610. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  611. data = qspi_endian_xchg(data);
  612. memcpy(rxbuf, &data, len);
  613. qspi_write32(priv->flags, &regs->mcr,
  614. qspi_read32(priv->flags, &regs->mcr) |
  615. QSPI_MCR_CLR_RXF_MASK);
  616. break;
  617. }
  618. }
  619. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  620. }
  621. static void qspi_op_erase(struct fsl_qspi_priv *priv)
  622. {
  623. struct fsl_qspi_regs *regs = priv->regs;
  624. u32 mcr_reg;
  625. u32 to_or_from = 0;
  626. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  627. qspi_write32(priv->flags, &regs->mcr,
  628. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  629. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  630. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  631. to_or_from = priv->sf_addr + priv->cur_amba_base;
  632. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  633. qspi_write32(priv->flags, &regs->ipcr,
  634. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  635. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  636. ;
  637. if (priv->cur_seqid == QSPI_CMD_SE) {
  638. qspi_write32(priv->flags, &regs->ipcr,
  639. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  640. } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
  641. qspi_write32(priv->flags, &regs->ipcr,
  642. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  643. }
  644. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  645. ;
  646. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  647. }
  648. int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
  649. const void *dout, void *din, unsigned long flags)
  650. {
  651. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  652. static u32 wr_sfaddr;
  653. u32 txbuf;
  654. WATCHDOG_RESET();
  655. if (dout) {
  656. if (flags & SPI_XFER_BEGIN) {
  657. priv->cur_seqid = *(u8 *)dout;
  658. memcpy(&txbuf, dout, 4);
  659. }
  660. if (flags == SPI_XFER_END) {
  661. priv->sf_addr = wr_sfaddr;
  662. qspi_op_write(priv, (u8 *)dout, bytes);
  663. return 0;
  664. }
  665. if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
  666. priv->cur_seqid == QSPI_CMD_RDAR) {
  667. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  668. } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
  669. (priv->cur_seqid == QSPI_CMD_BE_4K)) {
  670. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  671. qspi_op_erase(priv);
  672. } else if (priv->cur_seqid == QSPI_CMD_PP ||
  673. priv->cur_seqid == QSPI_CMD_WRAR) {
  674. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  675. } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
  676. (priv->cur_seqid == QSPI_CMD_WREAR)) {
  677. #ifdef CONFIG_SPI_FLASH_BAR
  678. wr_sfaddr = 0;
  679. #endif
  680. }
  681. }
  682. if (din) {
  683. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  684. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  685. qspi_ahb_read(priv, din, bytes);
  686. #else
  687. qspi_op_read(priv, din, bytes);
  688. #endif
  689. } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
  690. qspi_op_read(priv, din, bytes);
  691. } else if (priv->cur_seqid == QSPI_CMD_RDID)
  692. qspi_op_rdid(priv, din, bytes);
  693. else if (priv->cur_seqid == QSPI_CMD_RDSR)
  694. qspi_op_rdsr(priv, din, bytes);
  695. #ifdef CONFIG_SPI_FLASH_BAR
  696. else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
  697. (priv->cur_seqid == QSPI_CMD_RDEAR)) {
  698. priv->sf_addr = 0;
  699. qspi_op_rdbank(priv, din, bytes);
  700. }
  701. #endif
  702. }
  703. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  704. if ((priv->cur_seqid == QSPI_CMD_SE) ||
  705. (priv->cur_seqid == QSPI_CMD_PP) ||
  706. (priv->cur_seqid == QSPI_CMD_BE_4K) ||
  707. (priv->cur_seqid == QSPI_CMD_WREAR) ||
  708. (priv->cur_seqid == QSPI_CMD_BRWR))
  709. qspi_ahb_invalid(priv);
  710. #endif
  711. return 0;
  712. }
  713. void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
  714. {
  715. u32 mcr_val;
  716. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  717. if (disable)
  718. mcr_val |= QSPI_MCR_MDIS_MASK;
  719. else
  720. mcr_val &= ~QSPI_MCR_MDIS_MASK;
  721. qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
  722. }
  723. void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
  724. {
  725. u32 smpr_val;
  726. smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
  727. smpr_val &= ~clear_bits;
  728. smpr_val |= set_bits;
  729. qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
  730. }
  731. #ifndef CONFIG_DM_SPI
  732. static unsigned long spi_bases[] = {
  733. QSPI0_BASE_ADDR,
  734. #ifdef CONFIG_MX6SX
  735. QSPI1_BASE_ADDR,
  736. #endif
  737. };
  738. static unsigned long amba_bases[] = {
  739. QSPI0_AMBA_BASE,
  740. #ifdef CONFIG_MX6SX
  741. QSPI1_AMBA_BASE,
  742. #endif
  743. };
  744. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  745. {
  746. return container_of(slave, struct fsl_qspi, slave);
  747. }
  748. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  749. unsigned int max_hz, unsigned int mode)
  750. {
  751. u32 mcr_val;
  752. struct fsl_qspi *qspi;
  753. struct fsl_qspi_regs *regs;
  754. u32 total_size;
  755. if (bus >= ARRAY_SIZE(spi_bases))
  756. return NULL;
  757. if (cs >= FSL_QSPI_FLASH_NUM)
  758. return NULL;
  759. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  760. if (!qspi)
  761. return NULL;
  762. #ifdef CONFIG_SYS_FSL_QSPI_BE
  763. qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  764. #endif
  765. regs = (struct fsl_qspi_regs *)spi_bases[bus];
  766. qspi->priv.regs = regs;
  767. /*
  768. * According cs, use different amba_base to choose the
  769. * corresponding flash devices.
  770. *
  771. * If not, only one flash device is used even if passing
  772. * different cs using `sf probe`
  773. */
  774. qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  775. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  776. mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
  777. qspi_write32(qspi->priv.flags, &regs->mcr,
  778. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  779. (mcr_val & QSPI_MCR_END_CFD_MASK));
  780. qspi_cfg_smpr(&qspi->priv,
  781. ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  782. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  783. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  784. /*
  785. * Any read access to non-implemented addresses will provide
  786. * undefined results.
  787. *
  788. * In case single die flash devices, TOP_ADDR_MEMA2 and
  789. * TOP_ADDR_MEMB2 should be initialized/programmed to
  790. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  791. * setting the size of these devices to 0. This would ensure
  792. * that the complete memory map is assigned to only one flash device.
  793. */
  794. qspi_write32(qspi->priv.flags, &regs->sfa1ad,
  795. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  796. qspi_write32(qspi->priv.flags, &regs->sfa2ad,
  797. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  798. qspi_write32(qspi->priv.flags, &regs->sfb1ad,
  799. total_size | amba_bases[bus]);
  800. qspi_write32(qspi->priv.flags, &regs->sfb2ad,
  801. total_size | amba_bases[bus]);
  802. qspi_set_lut(&qspi->priv);
  803. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  804. qspi_init_ahb_read(&qspi->priv);
  805. #endif
  806. qspi_module_disable(&qspi->priv, 0);
  807. return &qspi->slave;
  808. }
  809. void spi_free_slave(struct spi_slave *slave)
  810. {
  811. struct fsl_qspi *qspi = to_qspi_spi(slave);
  812. free(qspi);
  813. }
  814. int spi_claim_bus(struct spi_slave *slave)
  815. {
  816. return 0;
  817. }
  818. void spi_release_bus(struct spi_slave *slave)
  819. {
  820. /* Nothing to do */
  821. }
  822. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  823. const void *dout, void *din, unsigned long flags)
  824. {
  825. struct fsl_qspi *qspi = to_qspi_spi(slave);
  826. return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
  827. }
  828. void spi_init(void)
  829. {
  830. /* Nothing to do */
  831. }
  832. #else
  833. static int fsl_qspi_child_pre_probe(struct udevice *dev)
  834. {
  835. struct spi_slave *slave = dev_get_parent_priv(dev);
  836. slave->max_write_size = TX_BUFFER_SIZE;
  837. return 0;
  838. }
  839. static int fsl_qspi_probe(struct udevice *bus)
  840. {
  841. u32 mcr_val;
  842. u32 amba_size_per_chip;
  843. struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
  844. struct fsl_qspi_priv *priv = dev_get_priv(bus);
  845. struct dm_spi_bus *dm_spi_bus;
  846. int i;
  847. dm_spi_bus = bus->uclass_priv;
  848. dm_spi_bus->max_hz = plat->speed_hz;
  849. priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
  850. priv->flags = plat->flags;
  851. priv->speed_hz = plat->speed_hz;
  852. /*
  853. * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
  854. * AMBA memory zone should be located on the 0~4GB space
  855. * even on a 64bits cpu.
  856. */
  857. priv->amba_base[0] = (u32)plat->amba_base;
  858. priv->amba_total_size = (u32)plat->amba_total_size;
  859. priv->flash_num = plat->flash_num;
  860. priv->num_chipselect = plat->num_chipselect;
  861. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  862. qspi_write32(priv->flags, &priv->regs->mcr,
  863. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  864. (mcr_val & QSPI_MCR_END_CFD_MASK));
  865. qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  866. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  867. /*
  868. * Assign AMBA memory zone for every chipselect
  869. * QuadSPI has two channels, every channel has two chipselects.
  870. * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
  871. * into two parts and assign to every channel. This indicate that every
  872. * channel only has one valid chipselect.
  873. * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
  874. * into four parts and assign to every chipselect.
  875. * Every channel will has two valid chipselects.
  876. */
  877. amba_size_per_chip = priv->amba_total_size >>
  878. (priv->num_chipselect >> 1);
  879. for (i = 1 ; i < priv->num_chipselect ; i++)
  880. priv->amba_base[i] =
  881. amba_size_per_chip + priv->amba_base[i - 1];
  882. /*
  883. * Any read access to non-implemented addresses will provide
  884. * undefined results.
  885. *
  886. * In case single die flash devices, TOP_ADDR_MEMA2 and
  887. * TOP_ADDR_MEMB2 should be initialized/programmed to
  888. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  889. * setting the size of these devices to 0. This would ensure
  890. * that the complete memory map is assigned to only one flash device.
  891. */
  892. qspi_write32(priv->flags, &priv->regs->sfa1ad,
  893. priv->amba_base[0] + amba_size_per_chip);
  894. switch (priv->num_chipselect) {
  895. case 1:
  896. break;
  897. case 2:
  898. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  899. priv->amba_base[1]);
  900. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  901. priv->amba_base[1] + amba_size_per_chip);
  902. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  903. priv->amba_base[1] + amba_size_per_chip);
  904. break;
  905. case 4:
  906. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  907. priv->amba_base[2]);
  908. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  909. priv->amba_base[3]);
  910. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  911. priv->amba_base[3] + amba_size_per_chip);
  912. break;
  913. default:
  914. debug("Error: Unsupported chipselect number %u!\n",
  915. priv->num_chipselect);
  916. qspi_module_disable(priv, 1);
  917. return -EINVAL;
  918. }
  919. qspi_set_lut(priv);
  920. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  921. qspi_init_ahb_read(priv);
  922. #endif
  923. qspi_module_disable(priv, 0);
  924. return 0;
  925. }
  926. static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
  927. {
  928. struct fdt_resource res_regs, res_mem;
  929. struct fsl_qspi_platdata *plat = bus->platdata;
  930. const void *blob = gd->fdt_blob;
  931. int node = dev_of_offset(bus);
  932. int ret, flash_num = 0, subnode;
  933. if (fdtdec_get_bool(blob, node, "big-endian"))
  934. plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  935. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  936. "QuadSPI", &res_regs);
  937. if (ret) {
  938. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  939. return -ENOMEM;
  940. }
  941. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  942. "QuadSPI-memory", &res_mem);
  943. if (ret) {
  944. debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
  945. return -ENOMEM;
  946. }
  947. /* Count flash numbers */
  948. fdt_for_each_subnode(subnode, blob, node)
  949. ++flash_num;
  950. if (flash_num == 0) {
  951. debug("Error: Missing flashes!\n");
  952. return -ENODEV;
  953. }
  954. plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  955. FSL_QSPI_DEFAULT_SCK_FREQ);
  956. plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
  957. FSL_QSPI_MAX_CHIPSELECT_NUM);
  958. plat->reg_base = res_regs.start;
  959. plat->amba_base = res_mem.start;
  960. plat->amba_total_size = res_mem.end - res_mem.start + 1;
  961. plat->flash_num = flash_num;
  962. debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
  963. __func__,
  964. (u64)plat->reg_base,
  965. (u64)plat->amba_base,
  966. (u64)plat->amba_total_size,
  967. plat->speed_hz,
  968. plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
  969. );
  970. return 0;
  971. }
  972. static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  973. const void *dout, void *din, unsigned long flags)
  974. {
  975. struct fsl_qspi_priv *priv;
  976. struct udevice *bus;
  977. bus = dev->parent;
  978. priv = dev_get_priv(bus);
  979. return qspi_xfer(priv, bitlen, dout, din, flags);
  980. }
  981. static int fsl_qspi_claim_bus(struct udevice *dev)
  982. {
  983. struct fsl_qspi_priv *priv;
  984. struct udevice *bus;
  985. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  986. bus = dev->parent;
  987. priv = dev_get_priv(bus);
  988. priv->cur_amba_base = priv->amba_base[slave_plat->cs];
  989. qspi_module_disable(priv, 0);
  990. return 0;
  991. }
  992. static int fsl_qspi_release_bus(struct udevice *dev)
  993. {
  994. struct fsl_qspi_priv *priv;
  995. struct udevice *bus;
  996. bus = dev->parent;
  997. priv = dev_get_priv(bus);
  998. qspi_module_disable(priv, 1);
  999. return 0;
  1000. }
  1001. static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
  1002. {
  1003. /* Nothing to do */
  1004. return 0;
  1005. }
  1006. static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
  1007. {
  1008. /* Nothing to do */
  1009. return 0;
  1010. }
  1011. static const struct dm_spi_ops fsl_qspi_ops = {
  1012. .claim_bus = fsl_qspi_claim_bus,
  1013. .release_bus = fsl_qspi_release_bus,
  1014. .xfer = fsl_qspi_xfer,
  1015. .set_speed = fsl_qspi_set_speed,
  1016. .set_mode = fsl_qspi_set_mode,
  1017. };
  1018. static const struct udevice_id fsl_qspi_ids[] = {
  1019. { .compatible = "fsl,vf610-qspi" },
  1020. { .compatible = "fsl,imx6sx-qspi" },
  1021. { }
  1022. };
  1023. U_BOOT_DRIVER(fsl_qspi) = {
  1024. .name = "fsl_qspi",
  1025. .id = UCLASS_SPI,
  1026. .of_match = fsl_qspi_ids,
  1027. .ops = &fsl_qspi_ops,
  1028. .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
  1029. .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
  1030. .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
  1031. .probe = fsl_qspi_probe,
  1032. .child_pre_probe = fsl_qspi_child_pre_probe,
  1033. };
  1034. #endif