efi_memory.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /*
  2. * EFI application memory management
  3. *
  4. * Copyright (c) 2016 Alexander Graf
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <efi_loader.h>
  10. #include <malloc.h>
  11. #include <asm/global_data.h>
  12. #include <libfdt_env.h>
  13. #include <linux/list_sort.h>
  14. #include <inttypes.h>
  15. #include <watchdog.h>
  16. DECLARE_GLOBAL_DATA_PTR;
  17. struct efi_mem_list {
  18. struct list_head link;
  19. struct efi_mem_desc desc;
  20. };
  21. #define EFI_CARVE_NO_OVERLAP -1
  22. #define EFI_CARVE_LOOP_AGAIN -2
  23. #define EFI_CARVE_OVERLAPS_NONRAM -3
  24. /* This list contains all memory map items */
  25. LIST_HEAD(efi_mem);
  26. #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
  27. void *efi_bounce_buffer;
  28. #endif
  29. /*
  30. * Sorts the memory list from highest address to lowest address
  31. *
  32. * When allocating memory we should always start from the highest
  33. * address chunk, so sort the memory list such that the first list
  34. * iterator gets the highest address and goes lower from there.
  35. */
  36. static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
  37. {
  38. struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
  39. struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
  40. if (mema->desc.physical_start == memb->desc.physical_start)
  41. return 0;
  42. else if (mema->desc.physical_start < memb->desc.physical_start)
  43. return 1;
  44. else
  45. return -1;
  46. }
  47. static void efi_mem_sort(void)
  48. {
  49. list_sort(NULL, &efi_mem, efi_mem_cmp);
  50. }
  51. /*
  52. * Unmaps all memory occupied by the carve_desc region from the
  53. * list entry pointed to by map.
  54. *
  55. * Returns 1 if carving was performed or 0 if the regions don't overlap.
  56. * Returns -1 if it would affect non-RAM regions but overlap_only_ram is set.
  57. * Carving is only guaranteed to complete when all regions return 0.
  58. */
  59. static int efi_mem_carve_out(struct efi_mem_list *map,
  60. struct efi_mem_desc *carve_desc,
  61. bool overlap_only_ram)
  62. {
  63. struct efi_mem_list *newmap;
  64. struct efi_mem_desc *map_desc = &map->desc;
  65. uint64_t map_start = map_desc->physical_start;
  66. uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
  67. uint64_t carve_start = carve_desc->physical_start;
  68. uint64_t carve_end = carve_start +
  69. (carve_desc->num_pages << EFI_PAGE_SHIFT);
  70. /* check whether we're overlapping */
  71. if ((carve_end <= map_start) || (carve_start >= map_end))
  72. return EFI_CARVE_NO_OVERLAP;
  73. /* We're overlapping with non-RAM, warn the caller if desired */
  74. if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
  75. return EFI_CARVE_OVERLAPS_NONRAM;
  76. /* Sanitize carve_start and carve_end to lie within our bounds */
  77. carve_start = max(carve_start, map_start);
  78. carve_end = min(carve_end, map_end);
  79. /* Carving at the beginning of our map? Just move it! */
  80. if (carve_start == map_start) {
  81. if (map_end == carve_end) {
  82. /* Full overlap, just remove map */
  83. list_del(&map->link);
  84. }
  85. map_desc->physical_start = carve_end;
  86. map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT;
  87. return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
  88. }
  89. /*
  90. * Overlapping maps, just split the list map at carve_start,
  91. * it will get moved or removed in the next iteration.
  92. *
  93. * [ map_desc |__carve_start__| newmap ]
  94. */
  95. /* Create a new map from [ carve_start ... map_end ] */
  96. newmap = calloc(1, sizeof(*newmap));
  97. newmap->desc = map->desc;
  98. newmap->desc.physical_start = carve_start;
  99. newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
  100. list_add_tail(&newmap->link, &efi_mem);
  101. /* Shrink the map to [ map_start ... carve_start ] */
  102. map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
  103. return EFI_CARVE_LOOP_AGAIN;
  104. }
  105. uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
  106. bool overlap_only_ram)
  107. {
  108. struct list_head *lhandle;
  109. struct efi_mem_list *newlist;
  110. bool carve_again;
  111. uint64_t carved_pages = 0;
  112. debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
  113. start, pages, memory_type, overlap_only_ram ? "yes" : "no");
  114. if (!pages)
  115. return start;
  116. newlist = calloc(1, sizeof(*newlist));
  117. newlist->desc.type = memory_type;
  118. newlist->desc.physical_start = start;
  119. newlist->desc.virtual_start = start;
  120. newlist->desc.num_pages = pages;
  121. switch (memory_type) {
  122. case EFI_RUNTIME_SERVICES_CODE:
  123. case EFI_RUNTIME_SERVICES_DATA:
  124. newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
  125. (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
  126. break;
  127. case EFI_MMAP_IO:
  128. newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
  129. break;
  130. default:
  131. newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
  132. break;
  133. }
  134. /* Add our new map */
  135. do {
  136. carve_again = false;
  137. list_for_each(lhandle, &efi_mem) {
  138. struct efi_mem_list *lmem;
  139. int r;
  140. lmem = list_entry(lhandle, struct efi_mem_list, link);
  141. r = efi_mem_carve_out(lmem, &newlist->desc,
  142. overlap_only_ram);
  143. switch (r) {
  144. case EFI_CARVE_OVERLAPS_NONRAM:
  145. /*
  146. * The user requested to only have RAM overlaps,
  147. * but we hit a non-RAM region. Error out.
  148. */
  149. return 0;
  150. case EFI_CARVE_NO_OVERLAP:
  151. /* Just ignore this list entry */
  152. break;
  153. case EFI_CARVE_LOOP_AGAIN:
  154. /*
  155. * We split an entry, but need to loop through
  156. * the list again to actually carve it.
  157. */
  158. carve_again = true;
  159. break;
  160. default:
  161. /* We carved a number of pages */
  162. carved_pages += r;
  163. carve_again = true;
  164. break;
  165. }
  166. if (carve_again) {
  167. /* The list changed, we need to start over */
  168. break;
  169. }
  170. }
  171. } while (carve_again);
  172. if (overlap_only_ram && (carved_pages != pages)) {
  173. /*
  174. * The payload wanted to have RAM overlaps, but we overlapped
  175. * with an unallocated region. Error out.
  176. */
  177. return 0;
  178. }
  179. /* Add our new map */
  180. list_add_tail(&newlist->link, &efi_mem);
  181. /* And make sure memory is listed in descending order */
  182. efi_mem_sort();
  183. return start;
  184. }
  185. static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
  186. {
  187. struct list_head *lhandle;
  188. list_for_each(lhandle, &efi_mem) {
  189. struct efi_mem_list *lmem = list_entry(lhandle,
  190. struct efi_mem_list, link);
  191. struct efi_mem_desc *desc = &lmem->desc;
  192. uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
  193. uint64_t desc_end = desc->physical_start + desc_len;
  194. uint64_t curmax = min(max_addr, desc_end);
  195. uint64_t ret = curmax - len;
  196. /* We only take memory from free RAM */
  197. if (desc->type != EFI_CONVENTIONAL_MEMORY)
  198. continue;
  199. /* Out of bounds for max_addr */
  200. if ((ret + len) > max_addr)
  201. continue;
  202. /* Out of bounds for upper map limit */
  203. if ((ret + len) > desc_end)
  204. continue;
  205. /* Out of bounds for lower map limit */
  206. if (ret < desc->physical_start)
  207. continue;
  208. /* Return the highest address in this map within bounds */
  209. return ret;
  210. }
  211. return 0;
  212. }
  213. efi_status_t efi_allocate_pages(int type, int memory_type,
  214. unsigned long pages, uint64_t *memory)
  215. {
  216. u64 len = pages << EFI_PAGE_SHIFT;
  217. efi_status_t r = EFI_SUCCESS;
  218. uint64_t addr;
  219. switch (type) {
  220. case 0:
  221. /* Any page */
  222. addr = efi_find_free_memory(len, gd->start_addr_sp);
  223. if (!addr) {
  224. r = EFI_NOT_FOUND;
  225. break;
  226. }
  227. break;
  228. case 1:
  229. /* Max address */
  230. addr = efi_find_free_memory(len, *memory);
  231. if (!addr) {
  232. r = EFI_NOT_FOUND;
  233. break;
  234. }
  235. break;
  236. case 2:
  237. /* Exact address, reserve it. The addr is already in *memory. */
  238. addr = *memory;
  239. break;
  240. default:
  241. /* UEFI doesn't specify other allocation types */
  242. r = EFI_INVALID_PARAMETER;
  243. break;
  244. }
  245. if (r == EFI_SUCCESS) {
  246. uint64_t ret;
  247. /* Reserve that map in our memory maps */
  248. ret = efi_add_memory_map(addr, pages, memory_type, true);
  249. if (ret == addr) {
  250. *memory = addr;
  251. } else {
  252. /* Map would overlap, bail out */
  253. r = EFI_OUT_OF_RESOURCES;
  254. }
  255. }
  256. return r;
  257. }
  258. void *efi_alloc(uint64_t len, int memory_type)
  259. {
  260. uint64_t ret = 0;
  261. uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  262. efi_status_t r;
  263. r = efi_allocate_pages(0, memory_type, pages, &ret);
  264. if (r == EFI_SUCCESS)
  265. return (void*)(uintptr_t)ret;
  266. return NULL;
  267. }
  268. efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
  269. {
  270. /* We don't free, let's cross our fingers we have plenty RAM */
  271. return EFI_SUCCESS;
  272. }
  273. efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
  274. struct efi_mem_desc *memory_map,
  275. unsigned long *map_key,
  276. unsigned long *descriptor_size,
  277. uint32_t *descriptor_version)
  278. {
  279. ulong map_size = 0;
  280. int map_entries = 0;
  281. struct list_head *lhandle;
  282. list_for_each(lhandle, &efi_mem)
  283. map_entries++;
  284. map_size = map_entries * sizeof(struct efi_mem_desc);
  285. *memory_map_size = map_size;
  286. if (descriptor_size)
  287. *descriptor_size = sizeof(struct efi_mem_desc);
  288. if (descriptor_version)
  289. *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
  290. if (*memory_map_size < map_size)
  291. return EFI_BUFFER_TOO_SMALL;
  292. /* Copy list into array */
  293. if (memory_map) {
  294. /* Return the list in ascending order */
  295. memory_map = &memory_map[map_entries - 1];
  296. list_for_each(lhandle, &efi_mem) {
  297. struct efi_mem_list *lmem;
  298. lmem = list_entry(lhandle, struct efi_mem_list, link);
  299. *memory_map = lmem->desc;
  300. memory_map--;
  301. }
  302. }
  303. return EFI_SUCCESS;
  304. }
  305. int efi_memory_init(void)
  306. {
  307. unsigned long runtime_start, runtime_end, runtime_pages;
  308. unsigned long uboot_start, uboot_pages;
  309. unsigned long uboot_stack_size = 16 * 1024 * 1024;
  310. int i;
  311. /* Add RAM */
  312. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  313. u64 ram_start = gd->bd->bi_dram[i].start;
  314. u64 ram_size = gd->bd->bi_dram[i].size;
  315. u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  316. u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
  317. efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
  318. false);
  319. }
  320. /* Add U-Boot */
  321. uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
  322. uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
  323. efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
  324. /* Add Runtime Services */
  325. runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
  326. runtime_end = (ulong)&__efi_runtime_stop;
  327. runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
  328. runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
  329. efi_add_memory_map(runtime_start, runtime_pages,
  330. EFI_RUNTIME_SERVICES_CODE, false);
  331. #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
  332. /* Request a 32bit 64MB bounce buffer region */
  333. uint64_t efi_bounce_buffer_addr = 0xffffffff;
  334. if (efi_allocate_pages(1, EFI_LOADER_DATA,
  335. (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
  336. &efi_bounce_buffer_addr) != EFI_SUCCESS)
  337. return -1;
  338. efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
  339. #endif
  340. return 0;
  341. }