nand_ecc.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. /*
  2. * This file contains an ECC algorithm from Toshiba that detects and
  3. * corrects 1 bit errors in a 256 byte block of data.
  4. *
  5. * drivers/mtd/nand/nand_ecc.c
  6. *
  7. * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
  8. * Toshiba America Electronics Components, Inc.
  9. *
  10. * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
  11. *
  12. * SPDX-License-Identifier: GPL-2.0+
  13. *
  14. * As a special exception, if other files instantiate templates or use
  15. * macros or inline functions from these files, or you compile these
  16. * files and link them with other works to produce a work based on these
  17. * files, these files do not by themselves cause the resulting work to be
  18. * covered by the GNU General Public License. However the source code for
  19. * these files must still be made available in accordance with section (3)
  20. * of the GNU General Public License.
  21. *
  22. * This exception does not invalidate any other reasons why a work based on
  23. * this file might be covered by the GNU General Public License.
  24. */
  25. #include <common.h>
  26. #include <linux/errno.h>
  27. #include <linux/mtd/mtd.h>
  28. #include <linux/mtd/nand_ecc.h>
  29. /* The PPC4xx NDFC uses Smart Media (SMC) bytes order */
  30. #ifdef CONFIG_NAND_NDFC
  31. #define CONFIG_MTD_NAND_ECC_SMC
  32. #endif
  33. /*
  34. * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
  35. * only nand_correct_data() is needed
  36. */
  37. #if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
  38. /*
  39. * Pre-calculated 256-way 1 byte column parity
  40. */
  41. static const u_char nand_ecc_precalc_table[] = {
  42. 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
  43. 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
  44. 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
  45. 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
  46. 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
  47. 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
  48. 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
  49. 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
  50. 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
  51. 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
  52. 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
  53. 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
  54. 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
  55. 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
  56. 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
  57. 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
  58. };
  59. /**
  60. * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
  61. * @mtd: MTD block structure
  62. * @dat: raw data
  63. * @ecc_code: buffer for ECC
  64. */
  65. int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  66. u_char *ecc_code)
  67. {
  68. uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
  69. int i;
  70. /* Initialize variables */
  71. reg1 = reg2 = reg3 = 0;
  72. /* Build up column parity */
  73. for(i = 0; i < 256; i++) {
  74. /* Get CP0 - CP5 from table */
  75. idx = nand_ecc_precalc_table[*dat++];
  76. reg1 ^= (idx & 0x3f);
  77. /* All bit XOR = 1 ? */
  78. if (idx & 0x40) {
  79. reg3 ^= (uint8_t) i;
  80. reg2 ^= ~((uint8_t) i);
  81. }
  82. }
  83. /* Create non-inverted ECC code from line parity */
  84. tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
  85. tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
  86. tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
  87. tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
  88. tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
  89. tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
  90. tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
  91. tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
  92. tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
  93. tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
  94. tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
  95. tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
  96. tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
  97. tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
  98. tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
  99. tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
  100. /* Calculate final ECC code */
  101. #ifdef CONFIG_MTD_NAND_ECC_SMC
  102. ecc_code[0] = ~tmp2;
  103. ecc_code[1] = ~tmp1;
  104. #else
  105. ecc_code[0] = ~tmp1;
  106. ecc_code[1] = ~tmp2;
  107. #endif
  108. ecc_code[2] = ((~reg1) << 2) | 0x03;
  109. return 0;
  110. }
  111. #endif /* CONFIG_NAND_SPL */
  112. static inline int countbits(uint32_t byte)
  113. {
  114. int res = 0;
  115. for (;byte; byte >>= 1)
  116. res += byte & 0x01;
  117. return res;
  118. }
  119. /**
  120. * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
  121. * @mtd: MTD block structure
  122. * @dat: raw data read from the chip
  123. * @read_ecc: ECC from the chip
  124. * @calc_ecc: the ECC calculated from raw data
  125. *
  126. * Detect and correct a 1 bit error for 256 byte block
  127. */
  128. int nand_correct_data(struct mtd_info *mtd, u_char *dat,
  129. u_char *read_ecc, u_char *calc_ecc)
  130. {
  131. uint8_t s0, s1, s2;
  132. #ifdef CONFIG_MTD_NAND_ECC_SMC
  133. s0 = calc_ecc[0] ^ read_ecc[0];
  134. s1 = calc_ecc[1] ^ read_ecc[1];
  135. s2 = calc_ecc[2] ^ read_ecc[2];
  136. #else
  137. s1 = calc_ecc[0] ^ read_ecc[0];
  138. s0 = calc_ecc[1] ^ read_ecc[1];
  139. s2 = calc_ecc[2] ^ read_ecc[2];
  140. #endif
  141. if ((s0 | s1 | s2) == 0)
  142. return 0;
  143. /* Check for a single bit error */
  144. if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
  145. ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
  146. ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
  147. uint32_t byteoffs, bitnum;
  148. byteoffs = (s1 << 0) & 0x80;
  149. byteoffs |= (s1 << 1) & 0x40;
  150. byteoffs |= (s1 << 2) & 0x20;
  151. byteoffs |= (s1 << 3) & 0x10;
  152. byteoffs |= (s0 >> 4) & 0x08;
  153. byteoffs |= (s0 >> 3) & 0x04;
  154. byteoffs |= (s0 >> 2) & 0x02;
  155. byteoffs |= (s0 >> 1) & 0x01;
  156. bitnum = (s2 >> 5) & 0x04;
  157. bitnum |= (s2 >> 4) & 0x02;
  158. bitnum |= (s2 >> 3) & 0x01;
  159. dat[byteoffs] ^= (1 << bitnum);
  160. return 1;
  161. }
  162. if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
  163. return 1;
  164. return -EBADMSG;
  165. }