clock_manager_arria10.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2016-2017 Intel Corporation
  4. */
  5. #include <common.h>
  6. #include <fdtdec.h>
  7. #include <asm/io.h>
  8. #include <dm.h>
  9. #include <asm/arch/clock_manager.h>
  10. static const struct socfpga_clock_manager *clock_manager_base =
  11. (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
  12. static u32 eosc1_hz;
  13. static u32 cb_intosc_hz;
  14. static u32 f2s_free_hz;
  15. static u32 cm_l4_main_clk_hz;
  16. static u32 cm_l4_sp_clk_hz;
  17. static u32 cm_l4_mp_clk_hz;
  18. static u32 cm_l4_sys_free_clk_hz;
  19. struct mainpll_cfg {
  20. u32 vco0_psrc;
  21. u32 vco1_denom;
  22. u32 vco1_numer;
  23. u32 mpuclk;
  24. u32 mpuclk_cnt;
  25. u32 mpuclk_src;
  26. u32 nocclk;
  27. u32 nocclk_cnt;
  28. u32 nocclk_src;
  29. u32 cntr2clk_cnt;
  30. u32 cntr3clk_cnt;
  31. u32 cntr4clk_cnt;
  32. u32 cntr5clk_cnt;
  33. u32 cntr6clk_cnt;
  34. u32 cntr7clk_cnt;
  35. u32 cntr7clk_src;
  36. u32 cntr8clk_cnt;
  37. u32 cntr9clk_cnt;
  38. u32 cntr9clk_src;
  39. u32 cntr15clk_cnt;
  40. u32 nocdiv_l4mainclk;
  41. u32 nocdiv_l4mpclk;
  42. u32 nocdiv_l4spclk;
  43. u32 nocdiv_csatclk;
  44. u32 nocdiv_cstraceclk;
  45. u32 nocdiv_cspdbclk;
  46. };
  47. struct perpll_cfg {
  48. u32 vco0_psrc;
  49. u32 vco1_denom;
  50. u32 vco1_numer;
  51. u32 cntr2clk_cnt;
  52. u32 cntr2clk_src;
  53. u32 cntr3clk_cnt;
  54. u32 cntr3clk_src;
  55. u32 cntr4clk_cnt;
  56. u32 cntr4clk_src;
  57. u32 cntr5clk_cnt;
  58. u32 cntr5clk_src;
  59. u32 cntr6clk_cnt;
  60. u32 cntr6clk_src;
  61. u32 cntr7clk_cnt;
  62. u32 cntr8clk_cnt;
  63. u32 cntr8clk_src;
  64. u32 cntr9clk_cnt;
  65. u32 cntr9clk_src;
  66. u32 emacctl_emac0sel;
  67. u32 emacctl_emac1sel;
  68. u32 emacctl_emac2sel;
  69. u32 gpiodiv_gpiodbclk;
  70. };
  71. struct strtou32 {
  72. const char *str;
  73. const u32 val;
  74. };
  75. static const struct strtou32 mainpll_cfg_tab[] = {
  76. { "vco0-psrc", offsetof(struct mainpll_cfg, vco0_psrc) },
  77. { "vco1-denom", offsetof(struct mainpll_cfg, vco1_denom) },
  78. { "vco1-numer", offsetof(struct mainpll_cfg, vco1_numer) },
  79. { "mpuclk-cnt", offsetof(struct mainpll_cfg, mpuclk_cnt) },
  80. { "mpuclk-src", offsetof(struct mainpll_cfg, mpuclk_src) },
  81. { "nocclk-cnt", offsetof(struct mainpll_cfg, nocclk_cnt) },
  82. { "nocclk-src", offsetof(struct mainpll_cfg, nocclk_src) },
  83. { "cntr2clk-cnt", offsetof(struct mainpll_cfg, cntr2clk_cnt) },
  84. { "cntr3clk-cnt", offsetof(struct mainpll_cfg, cntr3clk_cnt) },
  85. { "cntr4clk-cnt", offsetof(struct mainpll_cfg, cntr4clk_cnt) },
  86. { "cntr5clk-cnt", offsetof(struct mainpll_cfg, cntr5clk_cnt) },
  87. { "cntr6clk-cnt", offsetof(struct mainpll_cfg, cntr6clk_cnt) },
  88. { "cntr7clk-cnt", offsetof(struct mainpll_cfg, cntr7clk_cnt) },
  89. { "cntr7clk-src", offsetof(struct mainpll_cfg, cntr7clk_src) },
  90. { "cntr8clk-cnt", offsetof(struct mainpll_cfg, cntr8clk_cnt) },
  91. { "cntr9clk-cnt", offsetof(struct mainpll_cfg, cntr9clk_cnt) },
  92. { "cntr9clk-src", offsetof(struct mainpll_cfg, cntr9clk_src) },
  93. { "cntr15clk-cnt", offsetof(struct mainpll_cfg, cntr15clk_cnt) },
  94. { "nocdiv-l4mainclk", offsetof(struct mainpll_cfg, nocdiv_l4mainclk) },
  95. { "nocdiv-l4mpclk", offsetof(struct mainpll_cfg, nocdiv_l4mpclk) },
  96. { "nocdiv-l4spclk", offsetof(struct mainpll_cfg, nocdiv_l4spclk) },
  97. { "nocdiv-csatclk", offsetof(struct mainpll_cfg, nocdiv_csatclk) },
  98. { "nocdiv-cstraceclk", offsetof(struct mainpll_cfg, nocdiv_cstraceclk) },
  99. { "nocdiv-cspdbgclk", offsetof(struct mainpll_cfg, nocdiv_cspdbclk) },
  100. };
  101. static const struct strtou32 perpll_cfg_tab[] = {
  102. { "vco0-psrc", offsetof(struct perpll_cfg, vco0_psrc) },
  103. { "vco1-denom", offsetof(struct perpll_cfg, vco1_denom) },
  104. { "vco1-numer", offsetof(struct perpll_cfg, vco1_numer) },
  105. { "cntr2clk-cnt", offsetof(struct perpll_cfg, cntr2clk_cnt) },
  106. { "cntr2clk-src", offsetof(struct perpll_cfg, cntr2clk_src) },
  107. { "cntr3clk-cnt", offsetof(struct perpll_cfg, cntr3clk_cnt) },
  108. { "cntr3clk-src", offsetof(struct perpll_cfg, cntr3clk_src) },
  109. { "cntr4clk-cnt", offsetof(struct perpll_cfg, cntr4clk_cnt) },
  110. { "cntr4clk-src", offsetof(struct perpll_cfg, cntr4clk_src) },
  111. { "cntr5clk-cnt", offsetof(struct perpll_cfg, cntr5clk_cnt) },
  112. { "cntr5clk-src", offsetof(struct perpll_cfg, cntr5clk_src) },
  113. { "cntr6clk-cnt", offsetof(struct perpll_cfg, cntr6clk_cnt) },
  114. { "cntr6clk-src", offsetof(struct perpll_cfg, cntr6clk_src) },
  115. { "cntr7clk-cnt", offsetof(struct perpll_cfg, cntr7clk_cnt) },
  116. { "cntr8clk-cnt", offsetof(struct perpll_cfg, cntr8clk_cnt) },
  117. { "cntr8clk-src", offsetof(struct perpll_cfg, cntr8clk_src) },
  118. { "cntr9clk-cnt", offsetof(struct perpll_cfg, cntr9clk_cnt) },
  119. { "emacctl-emac0sel", offsetof(struct perpll_cfg, emacctl_emac0sel) },
  120. { "emacctl-emac1sel", offsetof(struct perpll_cfg, emacctl_emac1sel) },
  121. { "emacctl-emac2sel", offsetof(struct perpll_cfg, emacctl_emac2sel) },
  122. { "gpiodiv-gpiodbclk", offsetof(struct perpll_cfg, gpiodiv_gpiodbclk) },
  123. };
  124. static const struct strtou32 alteragrp_cfg_tab[] = {
  125. { "nocclk", offsetof(struct mainpll_cfg, nocclk) },
  126. { "mpuclk", offsetof(struct mainpll_cfg, mpuclk) },
  127. };
  128. struct strtopu32 {
  129. const char *str;
  130. u32 *p;
  131. };
  132. const struct strtopu32 dt_to_val[] = {
  133. { "/clocks/altera_arria10_hps_eosc1", &eosc1_hz},
  134. { "/clocks/altera_arria10_hps_cb_intosc_ls", &cb_intosc_hz},
  135. { "/clocks/altera_arria10_hps_f2h_free", &f2s_free_hz},
  136. };
  137. static int of_to_struct(const void *blob, int node, const struct strtou32 *cfg_tab,
  138. int cfg_tab_len, void *cfg)
  139. {
  140. int i;
  141. u32 val;
  142. for (i = 0; i < cfg_tab_len; i++) {
  143. if (fdtdec_get_int_array(blob, node, cfg_tab[i].str, &val, 1)) {
  144. /* could not find required property */
  145. return -EINVAL;
  146. }
  147. *(u32 *)(cfg + cfg_tab[i].val) = val;
  148. }
  149. return 0;
  150. }
  151. static void of_get_input_clks(const void *blob)
  152. {
  153. int node, i;
  154. for (i = 0; i < ARRAY_SIZE(dt_to_val); i++) {
  155. node = fdt_path_offset(blob, dt_to_val[i].str);
  156. if (node < 0)
  157. continue;
  158. fdtdec_get_int_array(blob, node, "clock-frequency",
  159. dt_to_val[i].p, 1);
  160. }
  161. }
  162. static int of_get_clk_cfg(const void *blob, struct mainpll_cfg *main_cfg,
  163. struct perpll_cfg *per_cfg)
  164. {
  165. int node, child, len;
  166. const char *node_name;
  167. of_get_input_clks(blob);
  168. node = fdtdec_next_compatible(blob, 0, COMPAT_ALTERA_SOCFPGA_CLK_INIT);
  169. if (node < 0)
  170. return -EINVAL;
  171. child = fdt_first_subnode(blob, node);
  172. if (child < 0)
  173. return -EINVAL;
  174. node_name = fdt_get_name(blob, child, &len);
  175. while (node_name) {
  176. if (!strcmp(node_name, "mainpll")) {
  177. if (of_to_struct(blob, child, mainpll_cfg_tab,
  178. ARRAY_SIZE(mainpll_cfg_tab), main_cfg))
  179. return -EINVAL;
  180. } else if (!strcmp(node_name, "perpll")) {
  181. if (of_to_struct(blob, child, perpll_cfg_tab,
  182. ARRAY_SIZE(perpll_cfg_tab), per_cfg))
  183. return -EINVAL;
  184. } else if (!strcmp(node_name, "alteragrp")) {
  185. if (of_to_struct(blob, child, alteragrp_cfg_tab,
  186. ARRAY_SIZE(alteragrp_cfg_tab), main_cfg))
  187. return -EINVAL;
  188. }
  189. child = fdt_next_subnode(blob, child);
  190. if (child < 0)
  191. break;
  192. node_name = fdt_get_name(blob, child, &len);
  193. }
  194. return 0;
  195. }
  196. /* calculate the intended main VCO frequency based on handoff */
  197. static unsigned int cm_calc_handoff_main_vco_clk_hz
  198. (struct mainpll_cfg *main_cfg)
  199. {
  200. unsigned int clk_hz;
  201. /* Check main VCO clock source: eosc, intosc or f2s? */
  202. switch (main_cfg->vco0_psrc) {
  203. case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
  204. clk_hz = eosc1_hz;
  205. break;
  206. case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
  207. clk_hz = cb_intosc_hz;
  208. break;
  209. case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
  210. clk_hz = f2s_free_hz;
  211. break;
  212. default:
  213. return 0;
  214. }
  215. /* calculate the VCO frequency */
  216. clk_hz /= 1 + main_cfg->vco1_denom;
  217. clk_hz *= 1 + main_cfg->vco1_numer;
  218. return clk_hz;
  219. }
  220. /* calculate the intended periph VCO frequency based on handoff */
  221. static unsigned int cm_calc_handoff_periph_vco_clk_hz(
  222. struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
  223. {
  224. unsigned int clk_hz;
  225. /* Check periph VCO clock source: eosc, intosc, f2s or mainpll? */
  226. switch (per_cfg->vco0_psrc) {
  227. case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
  228. clk_hz = eosc1_hz;
  229. break;
  230. case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
  231. clk_hz = cb_intosc_hz;
  232. break;
  233. case CLKMGR_PERPLL_VCO0_PSRC_F2S:
  234. clk_hz = f2s_free_hz;
  235. break;
  236. case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
  237. clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
  238. clk_hz /= main_cfg->cntr15clk_cnt;
  239. break;
  240. default:
  241. return 0;
  242. }
  243. /* calculate the VCO frequency */
  244. clk_hz /= 1 + per_cfg->vco1_denom;
  245. clk_hz *= 1 + per_cfg->vco1_numer;
  246. return clk_hz;
  247. }
  248. /* calculate the intended MPU clock frequency based on handoff */
  249. static unsigned int cm_calc_handoff_mpu_clk_hz(struct mainpll_cfg *main_cfg,
  250. struct perpll_cfg *per_cfg)
  251. {
  252. unsigned int clk_hz;
  253. /* Check MPU clock source: main, periph, osc1, intosc or f2s? */
  254. switch (main_cfg->mpuclk_src) {
  255. case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
  256. clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
  257. clk_hz /= (main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK)
  258. + 1;
  259. break;
  260. case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
  261. clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
  262. clk_hz /= ((main_cfg->mpuclk >>
  263. CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
  264. CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
  265. break;
  266. case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
  267. clk_hz = eosc1_hz;
  268. break;
  269. case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
  270. clk_hz = cb_intosc_hz;
  271. break;
  272. case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
  273. clk_hz = f2s_free_hz;
  274. break;
  275. default:
  276. return 0;
  277. }
  278. clk_hz /= main_cfg->mpuclk_cnt + 1;
  279. return clk_hz;
  280. }
  281. /* calculate the intended NOC clock frequency based on handoff */
  282. static unsigned int cm_calc_handoff_noc_clk_hz(struct mainpll_cfg *main_cfg,
  283. struct perpll_cfg *per_cfg)
  284. {
  285. unsigned int clk_hz;
  286. /* Check MPU clock source: main, periph, osc1, intosc or f2s? */
  287. switch (main_cfg->nocclk_src) {
  288. case CLKMGR_MAINPLL_NOCCLK_SRC_MAIN:
  289. clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
  290. clk_hz /= (main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK)
  291. + 1;
  292. break;
  293. case CLKMGR_MAINPLL_NOCCLK_SRC_PERI:
  294. clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg);
  295. clk_hz /= ((main_cfg->nocclk >>
  296. CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
  297. CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1;
  298. break;
  299. case CLKMGR_MAINPLL_NOCCLK_SRC_OSC1:
  300. clk_hz = eosc1_hz;
  301. break;
  302. case CLKMGR_MAINPLL_NOCCLK_SRC_INTOSC:
  303. clk_hz = cb_intosc_hz;
  304. break;
  305. case CLKMGR_MAINPLL_NOCCLK_SRC_FPGA:
  306. clk_hz = f2s_free_hz;
  307. break;
  308. default:
  309. return 0;
  310. }
  311. clk_hz /= main_cfg->nocclk_cnt + 1;
  312. return clk_hz;
  313. }
  314. /* return 1 if PLL ramp is required */
  315. static int cm_is_pll_ramp_required(int main0periph1,
  316. struct mainpll_cfg *main_cfg,
  317. struct perpll_cfg *per_cfg)
  318. {
  319. /* Check for main PLL */
  320. if (main0periph1 == 0) {
  321. /*
  322. * PLL ramp is not required if both MPU clock and NOC clock are
  323. * not sourced from main PLL
  324. */
  325. if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
  326. main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_MAIN)
  327. return 0;
  328. /*
  329. * PLL ramp is required if MPU clock is sourced from main PLL
  330. * and MPU clock is over 900MHz (as advised by HW team)
  331. */
  332. if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN &&
  333. (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
  334. CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
  335. return 1;
  336. /*
  337. * PLL ramp is required if NOC clock is sourced from main PLL
  338. * and NOC clock is over 300MHz (as advised by HW team)
  339. */
  340. if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN &&
  341. (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
  342. CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
  343. return 2;
  344. } else if (main0periph1 == 1) {
  345. /*
  346. * PLL ramp is not required if both MPU clock and NOC clock are
  347. * not sourced from periph PLL
  348. */
  349. if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
  350. main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_PERI)
  351. return 0;
  352. /*
  353. * PLL ramp is required if MPU clock are source from periph PLL
  354. * and MPU clock is over 900MHz (as advised by HW team)
  355. */
  356. if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI &&
  357. (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) >
  358. CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ))
  359. return 1;
  360. /*
  361. * PLL ramp is required if NOC clock are source from periph PLL
  362. * and NOC clock is over 300MHz (as advised by HW team)
  363. */
  364. if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI &&
  365. (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) >
  366. CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ))
  367. return 2;
  368. }
  369. return 0;
  370. }
  371. static u32 cm_calculate_numer(struct mainpll_cfg *main_cfg,
  372. struct perpll_cfg *per_cfg,
  373. u32 safe_hz, u32 clk_hz)
  374. {
  375. u32 cnt;
  376. u32 clk;
  377. u32 shift;
  378. u32 mask;
  379. u32 denom;
  380. if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
  381. cnt = main_cfg->mpuclk_cnt;
  382. clk = main_cfg->mpuclk;
  383. shift = 0;
  384. mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
  385. denom = main_cfg->vco1_denom;
  386. } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
  387. cnt = main_cfg->nocclk_cnt;
  388. clk = main_cfg->nocclk;
  389. shift = 0;
  390. mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
  391. denom = main_cfg->vco1_denom;
  392. } else if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
  393. cnt = main_cfg->mpuclk_cnt;
  394. clk = main_cfg->mpuclk;
  395. shift = CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB;
  396. mask = CLKMGR_MAINPLL_MPUCLK_CNT_MSK;
  397. denom = per_cfg->vco1_denom;
  398. } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
  399. cnt = main_cfg->nocclk_cnt;
  400. clk = main_cfg->nocclk;
  401. shift = CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB;
  402. mask = CLKMGR_MAINPLL_NOCCLK_CNT_MSK;
  403. denom = per_cfg->vco1_denom;
  404. } else {
  405. return 0;
  406. }
  407. return (safe_hz / clk_hz) * (cnt + 1) * (((clk >> shift) & mask) + 1) *
  408. (1 + denom) - 1;
  409. }
  410. /*
  411. * Calculate the new PLL numerator which is based on existing DTS hand off and
  412. * intended safe frequency (safe_hz). Note that PLL ramp is only modifying the
  413. * numerator while maintaining denominator as denominator will influence the
  414. * jitter condition. Please refer A10 HPS TRM for the jitter guide. Note final
  415. * value for numerator is minus with 1 to cater our register value
  416. * representation.
  417. */
  418. static unsigned int cm_calc_safe_pll_numer(int main0periph1,
  419. struct mainpll_cfg *main_cfg,
  420. struct perpll_cfg *per_cfg,
  421. unsigned int safe_hz)
  422. {
  423. unsigned int clk_hz = 0;
  424. /* Check for main PLL */
  425. if (main0periph1 == 0) {
  426. /* Check main VCO clock source: eosc, intosc or f2s? */
  427. switch (main_cfg->vco0_psrc) {
  428. case CLKMGR_MAINPLL_VCO0_PSRC_EOSC:
  429. clk_hz = eosc1_hz;
  430. break;
  431. case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC:
  432. clk_hz = cb_intosc_hz;
  433. break;
  434. case CLKMGR_MAINPLL_VCO0_PSRC_F2S:
  435. clk_hz = f2s_free_hz;
  436. break;
  437. default:
  438. return 0;
  439. }
  440. } else if (main0periph1 == 1) {
  441. /* Check periph VCO clock source: eosc, intosc, f2s, mainpll */
  442. switch (per_cfg->vco0_psrc) {
  443. case CLKMGR_PERPLL_VCO0_PSRC_EOSC:
  444. clk_hz = eosc1_hz;
  445. break;
  446. case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC:
  447. clk_hz = cb_intosc_hz;
  448. break;
  449. case CLKMGR_PERPLL_VCO0_PSRC_F2S:
  450. clk_hz = f2s_free_hz;
  451. break;
  452. case CLKMGR_PERPLL_VCO0_PSRC_MAIN:
  453. clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg);
  454. clk_hz /= main_cfg->cntr15clk_cnt;
  455. break;
  456. default:
  457. return 0;
  458. }
  459. } else {
  460. return 0;
  461. }
  462. return cm_calculate_numer(main_cfg, per_cfg, safe_hz, clk_hz);
  463. }
  464. /* ramping the main PLL to final value */
  465. static void cm_pll_ramp_main(struct mainpll_cfg *main_cfg,
  466. struct perpll_cfg *per_cfg,
  467. unsigned int pll_ramp_main_hz)
  468. {
  469. unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
  470. /* find out the increment value */
  471. if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) {
  472. clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
  473. clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
  474. } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) {
  475. clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
  476. clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
  477. }
  478. /* execute the ramping here */
  479. for (clk_hz = pll_ramp_main_hz + clk_incr_hz;
  480. clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
  481. writel((main_cfg->vco1_denom <<
  482. CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
  483. cm_calc_safe_pll_numer(0, main_cfg, per_cfg, clk_hz),
  484. &clock_manager_base->main_pll.vco1);
  485. mdelay(1);
  486. cm_wait_for_lock(LOCKED_MASK);
  487. }
  488. writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
  489. main_cfg->vco1_numer, &clock_manager_base->main_pll.vco1);
  490. mdelay(1);
  491. cm_wait_for_lock(LOCKED_MASK);
  492. }
  493. /* ramping the periph PLL to final value */
  494. static void cm_pll_ramp_periph(struct mainpll_cfg *main_cfg,
  495. struct perpll_cfg *per_cfg,
  496. unsigned int pll_ramp_periph_hz)
  497. {
  498. unsigned int clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0;
  499. /* find out the increment value */
  500. if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) {
  501. clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ;
  502. clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg);
  503. } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) {
  504. clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ;
  505. clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg);
  506. }
  507. /* execute the ramping here */
  508. for (clk_hz = pll_ramp_periph_hz + clk_incr_hz;
  509. clk_hz < clk_final_hz; clk_hz += clk_incr_hz) {
  510. writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
  511. cm_calc_safe_pll_numer(1, main_cfg, per_cfg, clk_hz),
  512. &clock_manager_base->per_pll.vco1);
  513. mdelay(1);
  514. cm_wait_for_lock(LOCKED_MASK);
  515. }
  516. writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
  517. per_cfg->vco1_numer, &clock_manager_base->per_pll.vco1);
  518. mdelay(1);
  519. cm_wait_for_lock(LOCKED_MASK);
  520. }
  521. /*
  522. * Setup clocks while making no assumptions of the
  523. * previous state of the clocks.
  524. *
  525. * Start by being paranoid and gate all sw managed clocks
  526. *
  527. * Put all plls in bypass
  528. *
  529. * Put all plls VCO registers back to reset value (bgpwr dwn).
  530. *
  531. * Put peripheral and main pll src to reset value to avoid glitch.
  532. *
  533. * Delay 5 us.
  534. *
  535. * Deassert bg pwr dn and set numerator and denominator
  536. *
  537. * Start 7 us timer.
  538. *
  539. * set internal dividers
  540. *
  541. * Wait for 7 us timer.
  542. *
  543. * Enable plls
  544. *
  545. * Set external dividers while plls are locking
  546. *
  547. * Wait for pll lock
  548. *
  549. * Assert/deassert outreset all.
  550. *
  551. * Take all pll's out of bypass
  552. *
  553. * Clear safe mode
  554. *
  555. * set source main and peripheral clocks
  556. *
  557. * Ungate clocks
  558. */
  559. static int cm_full_cfg(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg)
  560. {
  561. unsigned int pll_ramp_main_hz = 0, pll_ramp_periph_hz = 0,
  562. ramp_required;
  563. /* gate off all mainpll clock excpet HW managed clock */
  564. writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
  565. CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
  566. &clock_manager_base->main_pll.enr);
  567. /* now we can gate off the rest of the peripheral clocks */
  568. writel(0, &clock_manager_base->per_pll.en);
  569. /* Put all plls in external bypass */
  570. writel(CLKMGR_MAINPLL_BYPASS_RESET,
  571. &clock_manager_base->main_pll.bypasss);
  572. writel(CLKMGR_PERPLL_BYPASS_RESET,
  573. &clock_manager_base->per_pll.bypasss);
  574. /*
  575. * Put all plls VCO registers back to reset value.
  576. * Some code might have messed with them. At same time set the
  577. * desired clock source
  578. */
  579. writel(CLKMGR_MAINPLL_VCO0_RESET |
  580. CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK |
  581. (main_cfg->vco0_psrc << CLKMGR_MAINPLL_VCO0_PSRC_LSB),
  582. &clock_manager_base->main_pll.vco0);
  583. writel(CLKMGR_PERPLL_VCO0_RESET |
  584. CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK |
  585. (per_cfg->vco0_psrc << CLKMGR_PERPLL_VCO0_PSRC_LSB),
  586. &clock_manager_base->per_pll.vco0);
  587. writel(CLKMGR_MAINPLL_VCO1_RESET, &clock_manager_base->main_pll.vco1);
  588. writel(CLKMGR_PERPLL_VCO1_RESET, &clock_manager_base->per_pll.vco1);
  589. /* clear the interrupt register status register */
  590. writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
  591. CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
  592. CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
  593. CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
  594. CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
  595. CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK |
  596. CLKMGR_CLKMGR_INTR_MAINPLLACHIEVED_SET_MSK |
  597. CLKMGR_CLKMGR_INTR_PERPLLACHIEVED_SET_MSK,
  598. &clock_manager_base->intr);
  599. /* Program VCO Numerator and Denominator for main PLL */
  600. ramp_required = cm_is_pll_ramp_required(0, main_cfg, per_cfg);
  601. if (ramp_required) {
  602. /* set main PLL to safe starting threshold frequency */
  603. if (ramp_required == 1)
  604. pll_ramp_main_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
  605. else if (ramp_required == 2)
  606. pll_ramp_main_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
  607. writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
  608. cm_calc_safe_pll_numer(0, main_cfg, per_cfg,
  609. pll_ramp_main_hz),
  610. &clock_manager_base->main_pll.vco1);
  611. } else
  612. writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) |
  613. main_cfg->vco1_numer,
  614. &clock_manager_base->main_pll.vco1);
  615. /* Program VCO Numerator and Denominator for periph PLL */
  616. ramp_required = cm_is_pll_ramp_required(1, main_cfg, per_cfg);
  617. if (ramp_required) {
  618. /* set periph PLL to safe starting threshold frequency */
  619. if (ramp_required == 1)
  620. pll_ramp_periph_hz =
  621. CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ;
  622. else if (ramp_required == 2)
  623. pll_ramp_periph_hz =
  624. CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ;
  625. writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
  626. cm_calc_safe_pll_numer(1, main_cfg, per_cfg,
  627. pll_ramp_periph_hz),
  628. &clock_manager_base->per_pll.vco1);
  629. } else
  630. writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) |
  631. per_cfg->vco1_numer,
  632. &clock_manager_base->per_pll.vco1);
  633. /* Wait for at least 5 us */
  634. udelay(5);
  635. /* Now deassert BGPWRDN and PWRDN */
  636. clrbits_le32(&clock_manager_base->main_pll.vco0,
  637. CLKMGR_MAINPLL_VCO0_BGPWRDN_SET_MSK |
  638. CLKMGR_MAINPLL_VCO0_PWRDN_SET_MSK);
  639. clrbits_le32(&clock_manager_base->per_pll.vco0,
  640. CLKMGR_PERPLL_VCO0_BGPWRDN_SET_MSK |
  641. CLKMGR_PERPLL_VCO0_PWRDN_SET_MSK);
  642. /* Wait for at least 7 us */
  643. udelay(7);
  644. /* enable the VCO and disable the external regulator to PLL */
  645. writel((readl(&clock_manager_base->main_pll.vco0) &
  646. ~CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK) |
  647. CLKMGR_MAINPLL_VCO0_EN_SET_MSK,
  648. &clock_manager_base->main_pll.vco0);
  649. writel((readl(&clock_manager_base->per_pll.vco0) &
  650. ~CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK) |
  651. CLKMGR_PERPLL_VCO0_EN_SET_MSK,
  652. &clock_manager_base->per_pll.vco0);
  653. /* setup all the main PLL counter and clock source */
  654. writel(main_cfg->nocclk,
  655. SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET);
  656. writel(main_cfg->mpuclk,
  657. SOCFPGA_CLKMGR_ADDRESS + CLKMGR_ALTERAGRP_MPU_CLK_OFFSET);
  658. /* main_emaca_clk divider */
  659. writel(main_cfg->cntr2clk_cnt, &clock_manager_base->main_pll.cntr2clk);
  660. /* main_emacb_clk divider */
  661. writel(main_cfg->cntr3clk_cnt, &clock_manager_base->main_pll.cntr3clk);
  662. /* main_emac_ptp_clk divider */
  663. writel(main_cfg->cntr4clk_cnt, &clock_manager_base->main_pll.cntr4clk);
  664. /* main_gpio_db_clk divider */
  665. writel(main_cfg->cntr5clk_cnt, &clock_manager_base->main_pll.cntr5clk);
  666. /* main_sdmmc_clk divider */
  667. writel(main_cfg->cntr6clk_cnt, &clock_manager_base->main_pll.cntr6clk);
  668. /* main_s2f_user0_clk divider */
  669. writel(main_cfg->cntr7clk_cnt |
  670. (main_cfg->cntr7clk_src << CLKMGR_MAINPLL_CNTR7CLK_SRC_LSB),
  671. &clock_manager_base->main_pll.cntr7clk);
  672. /* main_s2f_user1_clk divider */
  673. writel(main_cfg->cntr8clk_cnt, &clock_manager_base->main_pll.cntr8clk);
  674. /* main_hmc_pll_clk divider */
  675. writel(main_cfg->cntr9clk_cnt |
  676. (main_cfg->cntr9clk_src << CLKMGR_MAINPLL_CNTR9CLK_SRC_LSB),
  677. &clock_manager_base->main_pll.cntr9clk);
  678. /* main_periph_ref_clk divider */
  679. writel(main_cfg->cntr15clk_cnt,
  680. &clock_manager_base->main_pll.cntr15clk);
  681. /* setup all the peripheral PLL counter and clock source */
  682. /* peri_emaca_clk divider */
  683. writel(per_cfg->cntr2clk_cnt |
  684. (per_cfg->cntr2clk_src << CLKMGR_PERPLL_CNTR2CLK_SRC_LSB),
  685. &clock_manager_base->per_pll.cntr2clk);
  686. /* peri_emacb_clk divider */
  687. writel(per_cfg->cntr3clk_cnt |
  688. (per_cfg->cntr3clk_src << CLKMGR_PERPLL_CNTR3CLK_SRC_LSB),
  689. &clock_manager_base->per_pll.cntr3clk);
  690. /* peri_emac_ptp_clk divider */
  691. writel(per_cfg->cntr4clk_cnt |
  692. (per_cfg->cntr4clk_src << CLKMGR_PERPLL_CNTR4CLK_SRC_LSB),
  693. &clock_manager_base->per_pll.cntr4clk);
  694. /* peri_gpio_db_clk divider */
  695. writel(per_cfg->cntr5clk_cnt |
  696. (per_cfg->cntr5clk_src << CLKMGR_PERPLL_CNTR5CLK_SRC_LSB),
  697. &clock_manager_base->per_pll.cntr5clk);
  698. /* peri_sdmmc_clk divider */
  699. writel(per_cfg->cntr6clk_cnt |
  700. (per_cfg->cntr6clk_src << CLKMGR_PERPLL_CNTR6CLK_SRC_LSB),
  701. &clock_manager_base->per_pll.cntr6clk);
  702. /* peri_s2f_user0_clk divider */
  703. writel(per_cfg->cntr7clk_cnt, &clock_manager_base->per_pll.cntr7clk);
  704. /* peri_s2f_user1_clk divider */
  705. writel(per_cfg->cntr8clk_cnt |
  706. (per_cfg->cntr8clk_src << CLKMGR_PERPLL_CNTR8CLK_SRC_LSB),
  707. &clock_manager_base->per_pll.cntr8clk);
  708. /* peri_hmc_pll_clk divider */
  709. writel(per_cfg->cntr9clk_cnt, &clock_manager_base->per_pll.cntr9clk);
  710. /* setup all the external PLL counter */
  711. /* mpu wrapper / external divider */
  712. writel(main_cfg->mpuclk_cnt |
  713. (main_cfg->mpuclk_src << CLKMGR_MAINPLL_MPUCLK_SRC_LSB),
  714. &clock_manager_base->main_pll.mpuclk);
  715. /* NOC wrapper / external divider */
  716. writel(main_cfg->nocclk_cnt |
  717. (main_cfg->nocclk_src << CLKMGR_MAINPLL_NOCCLK_SRC_LSB),
  718. &clock_manager_base->main_pll.nocclk);
  719. /* NOC subclock divider such as l4 */
  720. writel(main_cfg->nocdiv_l4mainclk |
  721. (main_cfg->nocdiv_l4mpclk <<
  722. CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) |
  723. (main_cfg->nocdiv_l4spclk <<
  724. CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB) |
  725. (main_cfg->nocdiv_csatclk <<
  726. CLKMGR_MAINPLL_NOCDIV_CSATCLK_LSB) |
  727. (main_cfg->nocdiv_cstraceclk <<
  728. CLKMGR_MAINPLL_NOCDIV_CSTRACECLK_LSB) |
  729. (main_cfg->nocdiv_cspdbclk <<
  730. CLKMGR_MAINPLL_NOCDIV_CSPDBGCLK_LSB),
  731. &clock_manager_base->main_pll.nocdiv);
  732. /* gpio_db external divider */
  733. writel(per_cfg->gpiodiv_gpiodbclk,
  734. &clock_manager_base->per_pll.gpiodiv);
  735. /* setup the EMAC clock mux select */
  736. writel((per_cfg->emacctl_emac0sel <<
  737. CLKMGR_PERPLL_EMACCTL_EMAC0SEL_LSB) |
  738. (per_cfg->emacctl_emac1sel <<
  739. CLKMGR_PERPLL_EMACCTL_EMAC1SEL_LSB) |
  740. (per_cfg->emacctl_emac2sel <<
  741. CLKMGR_PERPLL_EMACCTL_EMAC2SEL_LSB),
  742. &clock_manager_base->per_pll.emacctl);
  743. /* at this stage, check for PLL lock status */
  744. cm_wait_for_lock(LOCKED_MASK);
  745. /*
  746. * after locking, but before taking out of bypass,
  747. * assert/deassert outresetall
  748. */
  749. /* assert mainpll outresetall */
  750. setbits_le32(&clock_manager_base->main_pll.vco0,
  751. CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
  752. /* assert perpll outresetall */
  753. setbits_le32(&clock_manager_base->per_pll.vco0,
  754. CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
  755. /* de-assert mainpll outresetall */
  756. clrbits_le32(&clock_manager_base->main_pll.vco0,
  757. CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK);
  758. /* de-assert perpll outresetall */
  759. clrbits_le32(&clock_manager_base->per_pll.vco0,
  760. CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK);
  761. /* Take all PLLs out of bypass when boot mode is cleared. */
  762. /* release mainpll from bypass */
  763. writel(CLKMGR_MAINPLL_BYPASS_RESET,
  764. &clock_manager_base->main_pll.bypassr);
  765. /* wait till Clock Manager is not busy */
  766. cm_wait_for_fsm();
  767. /* release perpll from bypass */
  768. writel(CLKMGR_PERPLL_BYPASS_RESET,
  769. &clock_manager_base->per_pll.bypassr);
  770. /* wait till Clock Manager is not busy */
  771. cm_wait_for_fsm();
  772. /* clear boot mode */
  773. clrbits_le32(&clock_manager_base->ctrl,
  774. CLKMGR_CLKMGR_CTL_BOOTMOD_SET_MSK);
  775. /* wait till Clock Manager is not busy */
  776. cm_wait_for_fsm();
  777. /* At here, we need to ramp to final value if needed */
  778. if (pll_ramp_main_hz != 0)
  779. cm_pll_ramp_main(main_cfg, per_cfg, pll_ramp_main_hz);
  780. if (pll_ramp_periph_hz != 0)
  781. cm_pll_ramp_periph(main_cfg, per_cfg, pll_ramp_periph_hz);
  782. /* Now ungate non-hw-managed clocks */
  783. writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK |
  784. CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK,
  785. &clock_manager_base->main_pll.ens);
  786. writel(CLKMGR_PERPLL_EN_RESET, &clock_manager_base->per_pll.ens);
  787. /* Clear the loss lock and slip bits as they might set during
  788. clock reconfiguration */
  789. writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK |
  790. CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK |
  791. CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK |
  792. CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK |
  793. CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK |
  794. CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK,
  795. &clock_manager_base->intr);
  796. return 0;
  797. }
  798. void cm_use_intosc(void)
  799. {
  800. setbits_le32(&clock_manager_base->ctrl,
  801. CLKMGR_CLKMGR_CTL_BOOTCLK_INTOSC_SET_MSK);
  802. }
  803. unsigned int cm_get_noc_clk_hz(void)
  804. {
  805. unsigned int clk_src, divisor, nocclk, src_hz;
  806. nocclk = readl(&clock_manager_base->main_pll.nocclk);
  807. clk_src = (nocclk >> CLKMGR_MAINPLL_NOCCLK_SRC_LSB) &
  808. CLKMGR_MAINPLL_NOCCLK_SRC_MSK;
  809. divisor = 1 + (nocclk & CLKMGR_MAINPLL_NOCDIV_MSK);
  810. if (clk_src == CLKMGR_PERPLLGRP_SRC_MAIN) {
  811. src_hz = cm_get_main_vco_clk_hz();
  812. src_hz /= 1 +
  813. (readl(SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET) &
  814. CLKMGR_MAINPLL_NOCCLK_CNT_MSK);
  815. } else if (clk_src == CLKMGR_PERPLLGRP_SRC_PERI) {
  816. src_hz = cm_get_per_vco_clk_hz();
  817. src_hz /= 1 +
  818. ((readl(SOCFPGA_CLKMGR_ADDRESS +
  819. CLKMGR_MAINPLL_NOC_CLK_OFFSET) >>
  820. CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) &
  821. CLKMGR_MAINPLL_NOCCLK_CNT_MSK);
  822. } else if (clk_src == CLKMGR_PERPLLGRP_SRC_OSC1) {
  823. src_hz = eosc1_hz;
  824. } else if (clk_src == CLKMGR_PERPLLGRP_SRC_INTOSC) {
  825. src_hz = cb_intosc_hz;
  826. } else if (clk_src == CLKMGR_PERPLLGRP_SRC_FPGA) {
  827. src_hz = f2s_free_hz;
  828. } else {
  829. src_hz = 0;
  830. }
  831. return src_hz / divisor;
  832. }
  833. unsigned int cm_get_l4_noc_hz(unsigned int nocdivshift)
  834. {
  835. unsigned int divisor2 = 1 <<
  836. ((readl(&clock_manager_base->main_pll.nocdiv) >>
  837. nocdivshift) & CLKMGR_MAINPLL_NOCDIV_MSK);
  838. return cm_get_noc_clk_hz() / divisor2;
  839. }
  840. int cm_basic_init(const void *blob)
  841. {
  842. struct mainpll_cfg main_cfg;
  843. struct perpll_cfg per_cfg;
  844. int rval;
  845. /* initialize to zero for use case of optional node */
  846. memset(&main_cfg, 0, sizeof(main_cfg));
  847. memset(&per_cfg, 0, sizeof(per_cfg));
  848. rval = of_get_clk_cfg(blob, &main_cfg, &per_cfg);
  849. if (rval)
  850. return rval;
  851. rval = cm_full_cfg(&main_cfg, &per_cfg);
  852. cm_l4_main_clk_hz =
  853. cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB);
  854. cm_l4_mp_clk_hz = cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB);
  855. cm_l4_sp_clk_hz = cm_get_l4_sp_clk_hz();
  856. cm_l4_sys_free_clk_hz = cm_get_noc_clk_hz() / 4;
  857. return rval;
  858. }
  859. unsigned long cm_get_mpu_clk_hz(void)
  860. {
  861. u32 reg, clk_hz;
  862. u32 clk_src, mainmpuclk_reg;
  863. mainmpuclk_reg = readl(&clock_manager_base->main_pll.mpuclk);
  864. clk_src = (mainmpuclk_reg >> CLKMGR_MAINPLL_MPUCLK_SRC_LSB) &
  865. CLKMGR_MAINPLL_MPUCLK_SRC_MSK;
  866. reg = readl(&clock_manager_base->altera.mpuclk);
  867. /* Check MPU clock source: main, periph, osc1, intosc or f2s? */
  868. switch (clk_src) {
  869. case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN:
  870. clk_hz = cm_get_main_vco_clk_hz();
  871. clk_hz /= (reg & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
  872. break;
  873. case CLKMGR_MAINPLL_MPUCLK_SRC_PERI:
  874. clk_hz = cm_get_per_vco_clk_hz();
  875. clk_hz /= (((reg >> CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) &
  876. CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1);
  877. break;
  878. case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1:
  879. clk_hz = eosc1_hz;
  880. break;
  881. case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC:
  882. clk_hz = cb_intosc_hz;
  883. break;
  884. case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA:
  885. clk_hz = f2s_free_hz;
  886. break;
  887. default:
  888. printf("cm_get_mpu_clk_hz invalid clk_src %d\n", clk_src);
  889. return 0;
  890. }
  891. clk_hz /= (mainmpuclk_reg & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1;
  892. return clk_hz;
  893. }
  894. unsigned int cm_get_per_vco_clk_hz(void)
  895. {
  896. u32 src_hz = 0;
  897. u32 clk_src = 0;
  898. u32 numer = 0;
  899. u32 denom = 0;
  900. u32 vco = 0;
  901. clk_src = readl(&clock_manager_base->per_pll.vco0);
  902. clk_src = (clk_src >> CLKMGR_PERPLL_VCO0_PSRC_LSB) &
  903. CLKMGR_PERPLL_VCO0_PSRC_MSK;
  904. if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_EOSC) {
  905. src_hz = eosc1_hz;
  906. } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC) {
  907. src_hz = cb_intosc_hz;
  908. } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_F2S) {
  909. src_hz = f2s_free_hz;
  910. } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_MAIN) {
  911. src_hz = cm_get_main_vco_clk_hz();
  912. src_hz /= (readl(&clock_manager_base->main_pll.cntr15clk) &
  913. CLKMGR_MAINPLL_CNTRCLK_MSK) + 1;
  914. } else {
  915. printf("cm_get_per_vco_clk_hz invalid clk_src %d\n", clk_src);
  916. return 0;
  917. }
  918. vco = readl(&clock_manager_base->per_pll.vco1);
  919. numer = vco & CLKMGR_PERPLL_VCO1_NUMER_MSK;
  920. denom = (vco >> CLKMGR_PERPLL_VCO1_DENOM_LSB) &
  921. CLKMGR_PERPLL_VCO1_DENOM_MSK;
  922. vco = src_hz;
  923. vco /= 1 + denom;
  924. vco *= 1 + numer;
  925. return vco;
  926. }
  927. unsigned int cm_get_main_vco_clk_hz(void)
  928. {
  929. u32 src_hz, numer, denom, vco;
  930. u32 clk_src = readl(&clock_manager_base->main_pll.vco0);
  931. clk_src = (clk_src >> CLKMGR_MAINPLL_VCO0_PSRC_LSB) &
  932. CLKMGR_MAINPLL_VCO0_PSRC_MSK;
  933. if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_EOSC) {
  934. src_hz = eosc1_hz;
  935. } else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC) {
  936. src_hz = cb_intosc_hz;
  937. } else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_F2S) {
  938. src_hz = f2s_free_hz;
  939. } else {
  940. printf("cm_get_main_vco_clk_hz invalid clk_src %d\n", clk_src);
  941. return 0;
  942. }
  943. vco = readl(&clock_manager_base->main_pll.vco1);
  944. numer = vco & CLKMGR_MAINPLL_VCO1_NUMER_MSK;
  945. denom = (vco >> CLKMGR_MAINPLL_VCO1_DENOM_LSB) &
  946. CLKMGR_MAINPLL_VCO1_DENOM_MSK;
  947. vco = src_hz;
  948. vco /= 1 + denom;
  949. vco *= 1 + numer;
  950. return vco;
  951. }
  952. unsigned int cm_get_l4_sp_clk_hz(void)
  953. {
  954. return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB);
  955. }
  956. unsigned int cm_get_mmc_controller_clk_hz(void)
  957. {
  958. u32 clk_hz = 0;
  959. u32 clk_input = 0;
  960. clk_input = readl(&clock_manager_base->per_pll.cntr6clk);
  961. clk_input = (clk_input >> CLKMGR_PERPLL_CNTR6CLK_SRC_LSB) &
  962. CLKMGR_PERPLLGRP_SRC_MSK;
  963. switch (clk_input) {
  964. case CLKMGR_PERPLLGRP_SRC_MAIN:
  965. clk_hz = cm_get_main_vco_clk_hz();
  966. clk_hz /= 1 + (readl(&clock_manager_base->main_pll.cntr6clk) &
  967. CLKMGR_MAINPLL_CNTRCLK_MSK);
  968. break;
  969. case CLKMGR_PERPLLGRP_SRC_PERI:
  970. clk_hz = cm_get_per_vco_clk_hz();
  971. clk_hz /= 1 + (readl(&clock_manager_base->per_pll.cntr6clk) &
  972. CLKMGR_PERPLL_CNTRCLK_MSK);
  973. break;
  974. case CLKMGR_PERPLLGRP_SRC_OSC1:
  975. clk_hz = eosc1_hz;
  976. break;
  977. case CLKMGR_PERPLLGRP_SRC_INTOSC:
  978. clk_hz = cb_intosc_hz;
  979. break;
  980. case CLKMGR_PERPLLGRP_SRC_FPGA:
  981. clk_hz = f2s_free_hz;
  982. break;
  983. }
  984. return clk_hz / 4;
  985. }
  986. unsigned int cm_get_spi_controller_clk_hz(void)
  987. {
  988. return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB);
  989. }
  990. unsigned int cm_get_qspi_controller_clk_hz(void)
  991. {
  992. return cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB);
  993. }
  994. /* Override weak dw_spi_get_clk implementation in designware_spi.c driver */
  995. int dw_spi_get_clk(struct udevice *bus, ulong *rate)
  996. {
  997. *rate = cm_get_spi_controller_clk_hz();
  998. return 0;
  999. }
  1000. void cm_print_clock_quick_summary(void)
  1001. {
  1002. printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
  1003. printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
  1004. printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
  1005. printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
  1006. printf("EOSC1 %8d kHz\n", eosc1_hz / 1000);
  1007. printf("cb_intosc %8d kHz\n", cb_intosc_hz / 1000);
  1008. printf("f2s_free %8d kHz\n", f2s_free_hz / 1000);
  1009. printf("Main VCO %8d kHz\n", cm_get_main_vco_clk_hz() / 1000);
  1010. printf("NOC %8d kHz\n", cm_get_noc_clk_hz() / 1000);
  1011. printf("L4 Main %8d kHz\n",
  1012. cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB) / 1000);
  1013. printf("L4 MP %8d kHz\n",
  1014. cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) / 1000);
  1015. printf("L4 SP %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
  1016. printf("L4 sys free %8d kHz\n", cm_l4_sys_free_clk_hz / 1000);
  1017. }