omap_hsmmc.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813
  1. /*
  2. * (C) Copyright 2008
  3. * Texas Instruments, <www.ti.com>
  4. * Sukumar Ghorai <s-ghorai@ti.com>
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation's version 2 of
  12. * the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <config.h>
  25. #include <common.h>
  26. #include <malloc.h>
  27. #include <memalign.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <i2c.h>
  31. #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
  32. #include <palmas.h>
  33. #endif
  34. #include <asm/io.h>
  35. #include <asm/arch/mmc_host_def.h>
  36. #ifdef CONFIG_OMAP54XX
  37. #include <asm/arch/mux_dra7xx.h>
  38. #include <asm/arch/dra7xx_iodelay.h>
  39. #endif
  40. #if !defined(CONFIG_SOC_KEYSTONE)
  41. #include <asm/gpio.h>
  42. #include <asm/arch/sys_proto.h>
  43. #endif
  44. #ifdef CONFIG_MMC_OMAP36XX_PINS
  45. #include <asm/arch/mux.h>
  46. #endif
  47. #include <dm.h>
  48. #include <power/regulator.h>
  49. DECLARE_GLOBAL_DATA_PTR;
  50. /* simplify defines to OMAP_HSMMC_USE_GPIO */
  51. #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
  52. (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
  53. #define OMAP_HSMMC_USE_GPIO
  54. #else
  55. #undef OMAP_HSMMC_USE_GPIO
  56. #endif
  57. /* common definitions for all OMAPs */
  58. #define SYSCTL_SRC (1 << 25)
  59. #define SYSCTL_SRD (1 << 26)
  60. #ifdef CONFIG_IODELAY_RECALIBRATION
  61. struct omap_hsmmc_pinctrl_state {
  62. struct pad_conf_entry *padconf;
  63. int npads;
  64. struct iodelay_cfg_entry *iodelay;
  65. int niodelays;
  66. };
  67. #endif
  68. struct omap_hsmmc_data {
  69. struct hsmmc *base_addr;
  70. #if !CONFIG_IS_ENABLED(DM_MMC)
  71. struct mmc_config cfg;
  72. #endif
  73. uint bus_width;
  74. uint clock;
  75. #ifdef OMAP_HSMMC_USE_GPIO
  76. #if CONFIG_IS_ENABLED(DM_MMC)
  77. struct gpio_desc cd_gpio; /* Change Detect GPIO */
  78. struct gpio_desc wp_gpio; /* Write Protect GPIO */
  79. bool cd_inverted;
  80. #else
  81. int cd_gpio;
  82. int wp_gpio;
  83. #endif
  84. #endif
  85. #if CONFIG_IS_ENABLED(DM_MMC)
  86. uint iov;
  87. enum bus_mode mode;
  88. #endif
  89. u8 controller_flags;
  90. #ifndef CONFIG_OMAP34XX
  91. struct omap_hsmmc_adma_desc *adma_desc_table;
  92. uint desc_slot;
  93. #endif
  94. const char *hw_rev;
  95. #ifdef CONFIG_IODELAY_RECALIBRATION
  96. struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
  97. struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
  98. struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
  99. struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
  100. struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
  101. struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
  102. struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
  103. struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
  104. struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
  105. #endif
  106. };
  107. struct omap_mmc_of_data {
  108. u8 controller_flags;
  109. };
  110. #ifndef CONFIG_OMAP34XX
  111. struct omap_hsmmc_adma_desc {
  112. u8 attr;
  113. u8 reserved;
  114. u16 len;
  115. u32 addr;
  116. };
  117. #define ADMA_MAX_LEN 63488
  118. /* Decriptor table defines */
  119. #define ADMA_DESC_ATTR_VALID BIT(0)
  120. #define ADMA_DESC_ATTR_END BIT(1)
  121. #define ADMA_DESC_ATTR_INT BIT(2)
  122. #define ADMA_DESC_ATTR_ACT1 BIT(4)
  123. #define ADMA_DESC_ATTR_ACT2 BIT(5)
  124. #define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
  125. #define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
  126. #endif
  127. /* If we fail after 1 second wait, something is really bad */
  128. #define MAX_RETRY_MS 1000
  129. #define MMC_TIMEOUT_MS 20
  130. /* DMA transfers can take a long time if a lot a data is transferred.
  131. * The timeout must take in account the amount of data. Let's assume
  132. * that the time will never exceed 333 ms per MB (in other word we assume
  133. * that the bandwidth is always above 3MB/s).
  134. */
  135. #define DMA_TIMEOUT_PER_MB 333
  136. #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0)
  137. #define OMAP_HSMMC_NO_1_8_V BIT(1)
  138. #define OMAP_HSMMC_USE_ADMA BIT(2)
  139. #define OMAP_HSMMC_REQUIRE_IODELAY BIT(3)
  140. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
  141. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  142. unsigned int siz);
  143. static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
  144. static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
  145. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
  146. static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
  147. {
  148. #if CONFIG_IS_ENABLED(DM_MMC)
  149. return dev_get_priv(mmc->dev);
  150. #else
  151. return (struct omap_hsmmc_data *)mmc->priv;
  152. #endif
  153. }
  154. static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
  155. {
  156. #if CONFIG_IS_ENABLED(DM_MMC)
  157. struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
  158. return &plat->cfg;
  159. #else
  160. return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
  161. #endif
  162. }
  163. #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
  164. static int omap_mmc_setup_gpio_in(int gpio, const char *label)
  165. {
  166. int ret;
  167. #ifndef CONFIG_DM_GPIO
  168. if (!gpio_is_valid(gpio))
  169. return -1;
  170. #endif
  171. ret = gpio_request(gpio, label);
  172. if (ret)
  173. return ret;
  174. ret = gpio_direction_input(gpio);
  175. if (ret)
  176. return ret;
  177. return gpio;
  178. }
  179. #endif
  180. static unsigned char mmc_board_init(struct mmc *mmc)
  181. {
  182. #if defined(CONFIG_OMAP34XX)
  183. struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
  184. t2_t *t2_base = (t2_t *)T2_BASE;
  185. struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
  186. u32 pbias_lite;
  187. #ifdef CONFIG_MMC_OMAP36XX_PINS
  188. u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
  189. #endif
  190. pbias_lite = readl(&t2_base->pbias_lite);
  191. pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
  192. #ifdef CONFIG_TARGET_OMAP3_CAIRO
  193. /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
  194. pbias_lite &= ~PBIASLITEVMODE0;
  195. #endif
  196. #ifdef CONFIG_MMC_OMAP36XX_PINS
  197. if (get_cpu_family() == CPU_OMAP36XX) {
  198. /* Disable extended drain IO before changing PBIAS */
  199. wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
  200. writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
  201. }
  202. #endif
  203. writel(pbias_lite, &t2_base->pbias_lite);
  204. writel(pbias_lite | PBIASLITEPWRDNZ1 |
  205. PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
  206. &t2_base->pbias_lite);
  207. #ifdef CONFIG_MMC_OMAP36XX_PINS
  208. if (get_cpu_family() == CPU_OMAP36XX)
  209. /* Enable extended drain IO after changing PBIAS */
  210. writel(wkup_ctrl |
  211. OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
  212. OMAP34XX_CTRL_WKUP_CTRL);
  213. #endif
  214. writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
  215. &t2_base->devconf0);
  216. writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
  217. &t2_base->devconf1);
  218. /* Change from default of 52MHz to 26MHz if necessary */
  219. if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
  220. writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
  221. &t2_base->ctl_prog_io1);
  222. writel(readl(&prcm_base->fclken1_core) |
  223. EN_MMC1 | EN_MMC2 | EN_MMC3,
  224. &prcm_base->fclken1_core);
  225. writel(readl(&prcm_base->iclken1_core) |
  226. EN_MMC1 | EN_MMC2 | EN_MMC3,
  227. &prcm_base->iclken1_core);
  228. #endif
  229. #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
  230. /* PBIAS config needed for MMC1 only */
  231. if (mmc_get_blk_desc(mmc)->devnum == 0)
  232. vmmc_pbias_config(LDO_VOLT_3V0);
  233. #endif
  234. return 0;
  235. }
  236. void mmc_init_stream(struct hsmmc *mmc_base)
  237. {
  238. ulong start;
  239. writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
  240. writel(MMC_CMD0, &mmc_base->cmd);
  241. start = get_timer(0);
  242. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  243. if (get_timer(0) - start > MAX_RETRY_MS) {
  244. printf("%s: timedout waiting for cc!\n", __func__);
  245. return;
  246. }
  247. }
  248. writel(CC_MASK, &mmc_base->stat)
  249. ;
  250. writel(MMC_CMD0, &mmc_base->cmd)
  251. ;
  252. start = get_timer(0);
  253. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  254. if (get_timer(0) - start > MAX_RETRY_MS) {
  255. printf("%s: timedout waiting for cc2!\n", __func__);
  256. return;
  257. }
  258. }
  259. writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
  260. }
  261. #if CONFIG_IS_ENABLED(DM_MMC)
  262. #ifdef CONFIG_IODELAY_RECALIBRATION
  263. static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
  264. {
  265. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  266. struct omap_hsmmc_pinctrl_state *pinctrl_state;
  267. switch (priv->mode) {
  268. case MMC_HS_200:
  269. pinctrl_state = priv->hs200_1_8v_pinctrl_state;
  270. break;
  271. case UHS_SDR104:
  272. pinctrl_state = priv->sdr104_pinctrl_state;
  273. break;
  274. case UHS_SDR50:
  275. pinctrl_state = priv->sdr50_pinctrl_state;
  276. break;
  277. case UHS_DDR50:
  278. pinctrl_state = priv->ddr50_pinctrl_state;
  279. break;
  280. case UHS_SDR25:
  281. pinctrl_state = priv->sdr25_pinctrl_state;
  282. break;
  283. case UHS_SDR12:
  284. pinctrl_state = priv->sdr12_pinctrl_state;
  285. break;
  286. case SD_HS:
  287. case MMC_HS:
  288. case MMC_HS_52:
  289. pinctrl_state = priv->hs_pinctrl_state;
  290. break;
  291. case MMC_DDR_52:
  292. pinctrl_state = priv->ddr_1_8v_pinctrl_state;
  293. default:
  294. pinctrl_state = priv->default_pinctrl_state;
  295. break;
  296. }
  297. if (!pinctrl_state)
  298. pinctrl_state = priv->default_pinctrl_state;
  299. if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
  300. if (pinctrl_state->iodelay)
  301. late_recalibrate_iodelay(pinctrl_state->padconf,
  302. pinctrl_state->npads,
  303. pinctrl_state->iodelay,
  304. pinctrl_state->niodelays);
  305. else
  306. do_set_mux32((*ctrl)->control_padconf_core_base,
  307. pinctrl_state->padconf,
  308. pinctrl_state->npads);
  309. }
  310. }
  311. #endif
  312. static void omap_hsmmc_set_timing(struct mmc *mmc)
  313. {
  314. u32 val;
  315. struct hsmmc *mmc_base;
  316. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  317. mmc_base = priv->base_addr;
  318. omap_hsmmc_stop_clock(mmc_base);
  319. val = readl(&mmc_base->ac12);
  320. val &= ~AC12_UHSMC_MASK;
  321. priv->mode = mmc->selected_mode;
  322. if (mmc_is_mode_ddr(priv->mode))
  323. writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
  324. else
  325. writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
  326. switch (priv->mode) {
  327. case MMC_HS_200:
  328. case UHS_SDR104:
  329. val |= AC12_UHSMC_SDR104;
  330. break;
  331. case UHS_SDR50:
  332. val |= AC12_UHSMC_SDR50;
  333. break;
  334. case MMC_DDR_52:
  335. case UHS_DDR50:
  336. val |= AC12_UHSMC_DDR50;
  337. break;
  338. case SD_HS:
  339. case MMC_HS_52:
  340. case UHS_SDR25:
  341. val |= AC12_UHSMC_SDR25;
  342. break;
  343. case MMC_LEGACY:
  344. case MMC_HS:
  345. case SD_LEGACY:
  346. case UHS_SDR12:
  347. val |= AC12_UHSMC_SDR12;
  348. break;
  349. default:
  350. val |= AC12_UHSMC_RES;
  351. break;
  352. }
  353. writel(val, &mmc_base->ac12);
  354. #ifdef CONFIG_IODELAY_RECALIBRATION
  355. omap_hsmmc_io_recalibrate(mmc);
  356. #endif
  357. omap_hsmmc_start_clock(mmc_base);
  358. }
  359. static void omap_hsmmc_conf_bus_power(struct mmc *mmc)
  360. {
  361. struct hsmmc *mmc_base;
  362. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  363. u32 val;
  364. mmc_base = priv->base_addr;
  365. val = readl(&mmc_base->hctl) & ~SDVS_MASK;
  366. switch (priv->iov) {
  367. case IOV_3V3:
  368. val |= SDVS_3V3;
  369. break;
  370. case IOV_3V0:
  371. val |= SDVS_3V0;
  372. break;
  373. case IOV_1V8:
  374. val |= SDVS_1V8;
  375. break;
  376. }
  377. writel(val, &mmc_base->hctl);
  378. }
  379. static void omap_hsmmc_set_capabilities(struct mmc *mmc)
  380. {
  381. struct hsmmc *mmc_base;
  382. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  383. u32 val;
  384. mmc_base = priv->base_addr;
  385. val = readl(&mmc_base->capa);
  386. if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
  387. val |= (VS30_3V0SUP | VS18_1V8SUP);
  388. priv->iov = IOV_3V0;
  389. } else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
  390. val |= VS30_3V0SUP;
  391. val &= ~VS18_1V8SUP;
  392. priv->iov = IOV_3V0;
  393. } else {
  394. val |= VS18_1V8SUP;
  395. val &= ~VS30_3V0SUP;
  396. priv->iov = IOV_1V8;
  397. }
  398. writel(val, &mmc_base->capa);
  399. }
  400. #ifdef MMC_SUPPORTS_TUNING
  401. static void omap_hsmmc_disable_tuning(struct mmc *mmc)
  402. {
  403. struct hsmmc *mmc_base;
  404. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  405. u32 val;
  406. mmc_base = priv->base_addr;
  407. val = readl(&mmc_base->ac12);
  408. val &= ~(AC12_SCLK_SEL);
  409. writel(val, &mmc_base->ac12);
  410. val = readl(&mmc_base->dll);
  411. val &= ~(DLL_FORCE_VALUE | DLL_SWT);
  412. writel(val, &mmc_base->dll);
  413. }
  414. static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
  415. {
  416. int i;
  417. struct hsmmc *mmc_base;
  418. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  419. u32 val;
  420. mmc_base = priv->base_addr;
  421. val = readl(&mmc_base->dll);
  422. val |= DLL_FORCE_VALUE;
  423. val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
  424. val |= (count << DLL_FORCE_SR_C_SHIFT);
  425. writel(val, &mmc_base->dll);
  426. val |= DLL_CALIB;
  427. writel(val, &mmc_base->dll);
  428. for (i = 0; i < 1000; i++) {
  429. if (readl(&mmc_base->dll) & DLL_CALIB)
  430. break;
  431. }
  432. val &= ~DLL_CALIB;
  433. writel(val, &mmc_base->dll);
  434. }
  435. static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
  436. {
  437. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  438. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  439. struct mmc *mmc = upriv->mmc;
  440. struct hsmmc *mmc_base;
  441. u32 val;
  442. u8 cur_match, prev_match = 0;
  443. int ret;
  444. u32 phase_delay = 0;
  445. u32 start_window = 0, max_window = 0;
  446. u32 length = 0, max_len = 0;
  447. mmc_base = priv->base_addr;
  448. val = readl(&mmc_base->capa2);
  449. /* clock tuning is not needed for upto 52MHz */
  450. if (!((mmc->selected_mode == MMC_HS_200) ||
  451. (mmc->selected_mode == UHS_SDR104) ||
  452. ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
  453. return 0;
  454. val = readl(&mmc_base->dll);
  455. val |= DLL_SWT;
  456. writel(val, &mmc_base->dll);
  457. while (phase_delay <= MAX_PHASE_DELAY) {
  458. omap_hsmmc_set_dll(mmc, phase_delay);
  459. cur_match = !mmc_send_tuning(mmc, opcode, NULL);
  460. if (cur_match) {
  461. if (prev_match) {
  462. length++;
  463. } else {
  464. start_window = phase_delay;
  465. length = 1;
  466. }
  467. }
  468. if (length > max_len) {
  469. max_window = start_window;
  470. max_len = length;
  471. }
  472. prev_match = cur_match;
  473. phase_delay += 4;
  474. }
  475. if (!max_len) {
  476. ret = -EIO;
  477. goto tuning_error;
  478. }
  479. val = readl(&mmc_base->ac12);
  480. if (!(val & AC12_SCLK_SEL)) {
  481. ret = -EIO;
  482. goto tuning_error;
  483. }
  484. phase_delay = max_window + 4 * ((3 * max_len) >> 2);
  485. omap_hsmmc_set_dll(mmc, phase_delay);
  486. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  487. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  488. return 0;
  489. tuning_error:
  490. omap_hsmmc_disable_tuning(mmc);
  491. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  492. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  493. return ret;
  494. }
  495. #endif
  496. static void omap_hsmmc_send_init_stream(struct udevice *dev)
  497. {
  498. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  499. struct hsmmc *mmc_base = priv->base_addr;
  500. mmc_init_stream(mmc_base);
  501. }
  502. #endif
  503. static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
  504. {
  505. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  506. struct hsmmc *mmc_base = priv->base_addr;
  507. u32 irq_mask = INT_EN_MASK;
  508. /*
  509. * TODO: Errata i802 indicates only DCRC interrupts can occur during
  510. * tuning procedure and DCRC should be disabled. But see occurences
  511. * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
  512. * interrupts occur along with BRR, so the data is actually in the
  513. * buffer. It has to be debugged why these interrutps occur
  514. */
  515. if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
  516. irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
  517. writel(irq_mask, &mmc_base->ie);
  518. }
  519. static int omap_hsmmc_init_setup(struct mmc *mmc)
  520. {
  521. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  522. struct hsmmc *mmc_base;
  523. unsigned int reg_val;
  524. unsigned int dsor;
  525. ulong start;
  526. mmc_base = priv->base_addr;
  527. mmc_board_init(mmc);
  528. writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
  529. &mmc_base->sysconfig);
  530. start = get_timer(0);
  531. while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
  532. if (get_timer(0) - start > MAX_RETRY_MS) {
  533. printf("%s: timedout waiting for cc2!\n", __func__);
  534. return -ETIMEDOUT;
  535. }
  536. }
  537. writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
  538. start = get_timer(0);
  539. while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
  540. if (get_timer(0) - start > MAX_RETRY_MS) {
  541. printf("%s: timedout waiting for softresetall!\n",
  542. __func__);
  543. return -ETIMEDOUT;
  544. }
  545. }
  546. #ifndef CONFIG_OMAP34XX
  547. reg_val = readl(&mmc_base->hl_hwinfo);
  548. if (reg_val & MADMA_EN)
  549. priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
  550. #endif
  551. #if CONFIG_IS_ENABLED(DM_MMC)
  552. omap_hsmmc_set_capabilities(mmc);
  553. omap_hsmmc_conf_bus_power(mmc);
  554. #else
  555. writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
  556. writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
  557. &mmc_base->capa);
  558. #endif
  559. reg_val = readl(&mmc_base->con) & RESERVED_MASK;
  560. writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
  561. MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
  562. HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
  563. dsor = 240;
  564. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  565. (ICE_STOP | DTO_15THDTO));
  566. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  567. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  568. start = get_timer(0);
  569. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  570. if (get_timer(0) - start > MAX_RETRY_MS) {
  571. printf("%s: timedout waiting for ics!\n", __func__);
  572. return -ETIMEDOUT;
  573. }
  574. }
  575. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  576. writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
  577. mmc_enable_irq(mmc, NULL);
  578. #if !CONFIG_IS_ENABLED(DM_MMC)
  579. mmc_init_stream(mmc_base);
  580. #endif
  581. return 0;
  582. }
  583. /*
  584. * MMC controller internal finite state machine reset
  585. *
  586. * Used to reset command or data internal state machines, using respectively
  587. * SRC or SRD bit of SYSCTL register
  588. */
  589. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
  590. {
  591. ulong start;
  592. mmc_reg_out(&mmc_base->sysctl, bit, bit);
  593. /*
  594. * CMD(DAT) lines reset procedures are slightly different
  595. * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
  596. * According to OMAP3 TRM:
  597. * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
  598. * returns to 0x0.
  599. * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
  600. * procedure steps must be as follows:
  601. * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
  602. * MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
  603. * 2. Poll the SRC(SRD) bit until it is set to 0x1.
  604. * 3. Wait until the SRC (SRD) bit returns to 0x0
  605. * (reset procedure is completed).
  606. */
  607. #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  608. defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
  609. if (!(readl(&mmc_base->sysctl) & bit)) {
  610. start = get_timer(0);
  611. while (!(readl(&mmc_base->sysctl) & bit)) {
  612. if (get_timer(0) - start > MMC_TIMEOUT_MS)
  613. return;
  614. }
  615. }
  616. #endif
  617. start = get_timer(0);
  618. while ((readl(&mmc_base->sysctl) & bit) != 0) {
  619. if (get_timer(0) - start > MAX_RETRY_MS) {
  620. printf("%s: timedout waiting for sysctl %x to clear\n",
  621. __func__, bit);
  622. return;
  623. }
  624. }
  625. }
  626. #ifndef CONFIG_OMAP34XX
  627. static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
  628. {
  629. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  630. struct omap_hsmmc_adma_desc *desc;
  631. u8 attr;
  632. desc = &priv->adma_desc_table[priv->desc_slot];
  633. attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
  634. if (!end)
  635. priv->desc_slot++;
  636. else
  637. attr |= ADMA_DESC_ATTR_END;
  638. desc->len = len;
  639. desc->addr = (u32)buf;
  640. desc->reserved = 0;
  641. desc->attr = attr;
  642. }
  643. static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
  644. struct mmc_data *data)
  645. {
  646. uint total_len = data->blocksize * data->blocks;
  647. uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
  648. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  649. int i = desc_count;
  650. char *buf;
  651. priv->desc_slot = 0;
  652. priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
  653. memalign(ARCH_DMA_MINALIGN, desc_count *
  654. sizeof(struct omap_hsmmc_adma_desc));
  655. if (data->flags & MMC_DATA_READ)
  656. buf = data->dest;
  657. else
  658. buf = (char *)data->src;
  659. while (--i) {
  660. omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
  661. buf += ADMA_MAX_LEN;
  662. total_len -= ADMA_MAX_LEN;
  663. }
  664. omap_hsmmc_adma_desc(mmc, buf, total_len, true);
  665. flush_dcache_range((long)priv->adma_desc_table,
  666. (long)priv->adma_desc_table +
  667. ROUND(desc_count *
  668. sizeof(struct omap_hsmmc_adma_desc),
  669. ARCH_DMA_MINALIGN));
  670. }
  671. static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
  672. {
  673. struct hsmmc *mmc_base;
  674. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  675. u32 val;
  676. char *buf;
  677. mmc_base = priv->base_addr;
  678. omap_hsmmc_prepare_adma_table(mmc, data);
  679. if (data->flags & MMC_DATA_READ)
  680. buf = data->dest;
  681. else
  682. buf = (char *)data->src;
  683. val = readl(&mmc_base->hctl);
  684. val |= DMA_SELECT;
  685. writel(val, &mmc_base->hctl);
  686. val = readl(&mmc_base->con);
  687. val |= DMA_MASTER;
  688. writel(val, &mmc_base->con);
  689. writel((u32)priv->adma_desc_table, &mmc_base->admasal);
  690. flush_dcache_range((u32)buf,
  691. (u32)buf +
  692. ROUND(data->blocksize * data->blocks,
  693. ARCH_DMA_MINALIGN));
  694. }
  695. static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
  696. {
  697. struct hsmmc *mmc_base;
  698. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  699. u32 val;
  700. mmc_base = priv->base_addr;
  701. val = readl(&mmc_base->con);
  702. val &= ~DMA_MASTER;
  703. writel(val, &mmc_base->con);
  704. val = readl(&mmc_base->hctl);
  705. val &= ~DMA_SELECT;
  706. writel(val, &mmc_base->hctl);
  707. kfree(priv->adma_desc_table);
  708. }
  709. #else
  710. #define omap_hsmmc_adma_desc
  711. #define omap_hsmmc_prepare_adma_table
  712. #define omap_hsmmc_prepare_data
  713. #define omap_hsmmc_dma_cleanup
  714. #endif
  715. #if !CONFIG_IS_ENABLED(DM_MMC)
  716. static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
  717. struct mmc_data *data)
  718. {
  719. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  720. #else
  721. static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
  722. struct mmc_data *data)
  723. {
  724. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  725. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  726. struct mmc *mmc = upriv->mmc;
  727. #endif
  728. struct hsmmc *mmc_base;
  729. unsigned int flags, mmc_stat;
  730. ulong start;
  731. mmc_base = priv->base_addr;
  732. if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
  733. return 0;
  734. start = get_timer(0);
  735. while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
  736. if (get_timer(0) - start > MAX_RETRY_MS) {
  737. printf("%s: timedout waiting on cmd inhibit to clear\n",
  738. __func__);
  739. return -ETIMEDOUT;
  740. }
  741. }
  742. writel(0xFFFFFFFF, &mmc_base->stat);
  743. start = get_timer(0);
  744. while (readl(&mmc_base->stat)) {
  745. if (get_timer(0) - start > MAX_RETRY_MS) {
  746. printf("%s: timedout waiting for STAT (%x) to clear\n",
  747. __func__, readl(&mmc_base->stat));
  748. return -ETIMEDOUT;
  749. }
  750. }
  751. /*
  752. * CMDREG
  753. * CMDIDX[13:8] : Command index
  754. * DATAPRNT[5] : Data Present Select
  755. * ENCMDIDX[4] : Command Index Check Enable
  756. * ENCMDCRC[3] : Command CRC Check Enable
  757. * RSPTYP[1:0]
  758. * 00 = No Response
  759. * 01 = Length 136
  760. * 10 = Length 48
  761. * 11 = Length 48 Check busy after response
  762. */
  763. /* Delay added before checking the status of frq change
  764. * retry not supported by mmc.c(core file)
  765. */
  766. if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
  767. udelay(50000); /* wait 50 ms */
  768. if (!(cmd->resp_type & MMC_RSP_PRESENT))
  769. flags = 0;
  770. else if (cmd->resp_type & MMC_RSP_136)
  771. flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
  772. else if (cmd->resp_type & MMC_RSP_BUSY)
  773. flags = RSP_TYPE_LGHT48B;
  774. else
  775. flags = RSP_TYPE_LGHT48;
  776. /* enable default flags */
  777. flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
  778. MSBS_SGLEBLK);
  779. flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
  780. if (cmd->resp_type & MMC_RSP_CRC)
  781. flags |= CCCE_CHECK;
  782. if (cmd->resp_type & MMC_RSP_OPCODE)
  783. flags |= CICE_CHECK;
  784. if (data) {
  785. if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
  786. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
  787. flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
  788. data->blocksize = 512;
  789. writel(data->blocksize | (data->blocks << 16),
  790. &mmc_base->blk);
  791. } else
  792. writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
  793. if (data->flags & MMC_DATA_READ)
  794. flags |= (DP_DATA | DDIR_READ);
  795. else
  796. flags |= (DP_DATA | DDIR_WRITE);
  797. #ifndef CONFIG_OMAP34XX
  798. if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
  799. !mmc_is_tuning_cmd(cmd->cmdidx)) {
  800. omap_hsmmc_prepare_data(mmc, data);
  801. flags |= DE_ENABLE;
  802. }
  803. #endif
  804. }
  805. mmc_enable_irq(mmc, cmd);
  806. writel(cmd->cmdarg, &mmc_base->arg);
  807. udelay(20); /* To fix "No status update" error on eMMC */
  808. writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
  809. start = get_timer(0);
  810. do {
  811. mmc_stat = readl(&mmc_base->stat);
  812. if (get_timer(start) > MAX_RETRY_MS) {
  813. printf("%s : timeout: No status update\n", __func__);
  814. return -ETIMEDOUT;
  815. }
  816. } while (!mmc_stat);
  817. if ((mmc_stat & IE_CTO) != 0) {
  818. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  819. return -ETIMEDOUT;
  820. } else if ((mmc_stat & ERRI_MASK) != 0)
  821. return -1;
  822. if (mmc_stat & CC_MASK) {
  823. writel(CC_MASK, &mmc_base->stat);
  824. if (cmd->resp_type & MMC_RSP_PRESENT) {
  825. if (cmd->resp_type & MMC_RSP_136) {
  826. /* response type 2 */
  827. cmd->response[3] = readl(&mmc_base->rsp10);
  828. cmd->response[2] = readl(&mmc_base->rsp32);
  829. cmd->response[1] = readl(&mmc_base->rsp54);
  830. cmd->response[0] = readl(&mmc_base->rsp76);
  831. } else
  832. /* response types 1, 1b, 3, 4, 5, 6 */
  833. cmd->response[0] = readl(&mmc_base->rsp10);
  834. }
  835. }
  836. #ifndef CONFIG_OMAP34XX
  837. if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
  838. !mmc_is_tuning_cmd(cmd->cmdidx)) {
  839. u32 sz_mb, timeout;
  840. if (mmc_stat & IE_ADMAE) {
  841. omap_hsmmc_dma_cleanup(mmc);
  842. return -EIO;
  843. }
  844. sz_mb = DIV_ROUND_UP(data->blocksize * data->blocks, 1 << 20);
  845. timeout = sz_mb * DMA_TIMEOUT_PER_MB;
  846. if (timeout < MAX_RETRY_MS)
  847. timeout = MAX_RETRY_MS;
  848. start = get_timer(0);
  849. do {
  850. mmc_stat = readl(&mmc_base->stat);
  851. if (mmc_stat & TC_MASK) {
  852. writel(readl(&mmc_base->stat) | TC_MASK,
  853. &mmc_base->stat);
  854. break;
  855. }
  856. if (get_timer(start) > timeout) {
  857. printf("%s : DMA timeout: No status update\n",
  858. __func__);
  859. return -ETIMEDOUT;
  860. }
  861. } while (1);
  862. omap_hsmmc_dma_cleanup(mmc);
  863. return 0;
  864. }
  865. #endif
  866. if (data && (data->flags & MMC_DATA_READ)) {
  867. mmc_read_data(mmc_base, data->dest,
  868. data->blocksize * data->blocks);
  869. } else if (data && (data->flags & MMC_DATA_WRITE)) {
  870. mmc_write_data(mmc_base, data->src,
  871. data->blocksize * data->blocks);
  872. }
  873. return 0;
  874. }
  875. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
  876. {
  877. unsigned int *output_buf = (unsigned int *)buf;
  878. unsigned int mmc_stat;
  879. unsigned int count;
  880. /*
  881. * Start Polled Read
  882. */
  883. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  884. count /= 4;
  885. while (size) {
  886. ulong start = get_timer(0);
  887. do {
  888. mmc_stat = readl(&mmc_base->stat);
  889. if (get_timer(0) - start > MAX_RETRY_MS) {
  890. printf("%s: timedout waiting for status!\n",
  891. __func__);
  892. return -ETIMEDOUT;
  893. }
  894. } while (mmc_stat == 0);
  895. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  896. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  897. if ((mmc_stat & ERRI_MASK) != 0)
  898. return 1;
  899. if (mmc_stat & BRR_MASK) {
  900. unsigned int k;
  901. writel(readl(&mmc_base->stat) | BRR_MASK,
  902. &mmc_base->stat);
  903. for (k = 0; k < count; k++) {
  904. *output_buf = readl(&mmc_base->data);
  905. output_buf++;
  906. }
  907. size -= (count*4);
  908. }
  909. if (mmc_stat & BWR_MASK)
  910. writel(readl(&mmc_base->stat) | BWR_MASK,
  911. &mmc_base->stat);
  912. if (mmc_stat & TC_MASK) {
  913. writel(readl(&mmc_base->stat) | TC_MASK,
  914. &mmc_base->stat);
  915. break;
  916. }
  917. }
  918. return 0;
  919. }
  920. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  921. unsigned int size)
  922. {
  923. unsigned int *input_buf = (unsigned int *)buf;
  924. unsigned int mmc_stat;
  925. unsigned int count;
  926. /*
  927. * Start Polled Write
  928. */
  929. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  930. count /= 4;
  931. while (size) {
  932. ulong start = get_timer(0);
  933. do {
  934. mmc_stat = readl(&mmc_base->stat);
  935. if (get_timer(0) - start > MAX_RETRY_MS) {
  936. printf("%s: timedout waiting for status!\n",
  937. __func__);
  938. return -ETIMEDOUT;
  939. }
  940. } while (mmc_stat == 0);
  941. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  942. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  943. if ((mmc_stat & ERRI_MASK) != 0)
  944. return 1;
  945. if (mmc_stat & BWR_MASK) {
  946. unsigned int k;
  947. writel(readl(&mmc_base->stat) | BWR_MASK,
  948. &mmc_base->stat);
  949. for (k = 0; k < count; k++) {
  950. writel(*input_buf, &mmc_base->data);
  951. input_buf++;
  952. }
  953. size -= (count*4);
  954. }
  955. if (mmc_stat & BRR_MASK)
  956. writel(readl(&mmc_base->stat) | BRR_MASK,
  957. &mmc_base->stat);
  958. if (mmc_stat & TC_MASK) {
  959. writel(readl(&mmc_base->stat) | TC_MASK,
  960. &mmc_base->stat);
  961. break;
  962. }
  963. }
  964. return 0;
  965. }
  966. static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
  967. {
  968. writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
  969. }
  970. static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
  971. {
  972. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  973. }
  974. static void omap_hsmmc_set_clock(struct mmc *mmc)
  975. {
  976. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  977. struct hsmmc *mmc_base;
  978. unsigned int dsor = 0;
  979. ulong start;
  980. mmc_base = priv->base_addr;
  981. omap_hsmmc_stop_clock(mmc_base);
  982. /* TODO: Is setting DTO required here? */
  983. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
  984. (ICE_STOP | DTO_15THDTO));
  985. if (mmc->clock != 0) {
  986. dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
  987. if (dsor > CLKD_MAX)
  988. dsor = CLKD_MAX;
  989. } else {
  990. dsor = CLKD_MAX;
  991. }
  992. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  993. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  994. start = get_timer(0);
  995. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  996. if (get_timer(0) - start > MAX_RETRY_MS) {
  997. printf("%s: timedout waiting for ics!\n", __func__);
  998. return;
  999. }
  1000. }
  1001. priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
  1002. mmc->clock = priv->clock;
  1003. omap_hsmmc_start_clock(mmc_base);
  1004. }
  1005. static void omap_hsmmc_set_bus_width(struct mmc *mmc)
  1006. {
  1007. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1008. struct hsmmc *mmc_base;
  1009. mmc_base = priv->base_addr;
  1010. /* configue bus width */
  1011. switch (mmc->bus_width) {
  1012. case 8:
  1013. writel(readl(&mmc_base->con) | DTW_8_BITMODE,
  1014. &mmc_base->con);
  1015. break;
  1016. case 4:
  1017. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  1018. &mmc_base->con);
  1019. writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
  1020. &mmc_base->hctl);
  1021. break;
  1022. case 1:
  1023. default:
  1024. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  1025. &mmc_base->con);
  1026. writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
  1027. &mmc_base->hctl);
  1028. break;
  1029. }
  1030. priv->bus_width = mmc->bus_width;
  1031. }
  1032. #if !CONFIG_IS_ENABLED(DM_MMC)
  1033. static int omap_hsmmc_set_ios(struct mmc *mmc)
  1034. {
  1035. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1036. #else
  1037. static int omap_hsmmc_set_ios(struct udevice *dev)
  1038. {
  1039. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1040. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  1041. struct mmc *mmc = upriv->mmc;
  1042. #endif
  1043. if (priv->bus_width != mmc->bus_width)
  1044. omap_hsmmc_set_bus_width(mmc);
  1045. if (priv->clock != mmc->clock)
  1046. omap_hsmmc_set_clock(mmc);
  1047. #if CONFIG_IS_ENABLED(DM_MMC)
  1048. if (priv->mode != mmc->selected_mode)
  1049. omap_hsmmc_set_timing(mmc);
  1050. #endif
  1051. return 0;
  1052. }
  1053. #ifdef OMAP_HSMMC_USE_GPIO
  1054. #if CONFIG_IS_ENABLED(DM_MMC)
  1055. static int omap_hsmmc_getcd(struct udevice *dev)
  1056. {
  1057. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1058. int value;
  1059. value = dm_gpio_get_value(&priv->cd_gpio);
  1060. /* if no CD return as 1 */
  1061. if (value < 0)
  1062. return 1;
  1063. if (priv->cd_inverted)
  1064. return !value;
  1065. return value;
  1066. }
  1067. static int omap_hsmmc_getwp(struct udevice *dev)
  1068. {
  1069. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1070. int value;
  1071. value = dm_gpio_get_value(&priv->wp_gpio);
  1072. /* if no WP return as 0 */
  1073. if (value < 0)
  1074. return 0;
  1075. return value;
  1076. }
  1077. #else
  1078. static int omap_hsmmc_getcd(struct mmc *mmc)
  1079. {
  1080. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1081. int cd_gpio;
  1082. /* if no CD return as 1 */
  1083. cd_gpio = priv->cd_gpio;
  1084. if (cd_gpio < 0)
  1085. return 1;
  1086. /* NOTE: assumes card detect signal is active-low */
  1087. return !gpio_get_value(cd_gpio);
  1088. }
  1089. static int omap_hsmmc_getwp(struct mmc *mmc)
  1090. {
  1091. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1092. int wp_gpio;
  1093. /* if no WP return as 0 */
  1094. wp_gpio = priv->wp_gpio;
  1095. if (wp_gpio < 0)
  1096. return 0;
  1097. /* NOTE: assumes write protect signal is active-high */
  1098. return gpio_get_value(wp_gpio);
  1099. }
  1100. #endif
  1101. #endif
  1102. #if CONFIG_IS_ENABLED(DM_MMC)
  1103. static const struct dm_mmc_ops omap_hsmmc_ops = {
  1104. .send_cmd = omap_hsmmc_send_cmd,
  1105. .set_ios = omap_hsmmc_set_ios,
  1106. #ifdef OMAP_HSMMC_USE_GPIO
  1107. .get_cd = omap_hsmmc_getcd,
  1108. .get_wp = omap_hsmmc_getwp,
  1109. #endif
  1110. #ifdef MMC_SUPPORTS_TUNING
  1111. .execute_tuning = omap_hsmmc_execute_tuning,
  1112. #endif
  1113. .send_init_stream = omap_hsmmc_send_init_stream,
  1114. };
  1115. #else
  1116. static const struct mmc_ops omap_hsmmc_ops = {
  1117. .send_cmd = omap_hsmmc_send_cmd,
  1118. .set_ios = omap_hsmmc_set_ios,
  1119. .init = omap_hsmmc_init_setup,
  1120. #ifdef OMAP_HSMMC_USE_GPIO
  1121. .getcd = omap_hsmmc_getcd,
  1122. .getwp = omap_hsmmc_getwp,
  1123. #endif
  1124. };
  1125. #endif
  1126. #if !CONFIG_IS_ENABLED(DM_MMC)
  1127. int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
  1128. int wp_gpio)
  1129. {
  1130. struct mmc *mmc;
  1131. struct omap_hsmmc_data *priv;
  1132. struct mmc_config *cfg;
  1133. uint host_caps_val;
  1134. priv = malloc(sizeof(*priv));
  1135. if (priv == NULL)
  1136. return -1;
  1137. host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
  1138. switch (dev_index) {
  1139. case 0:
  1140. priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  1141. break;
  1142. #ifdef OMAP_HSMMC2_BASE
  1143. case 1:
  1144. priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
  1145. #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  1146. defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
  1147. defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
  1148. defined(CONFIG_HSMMC2_8BIT)
  1149. /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
  1150. host_caps_val |= MMC_MODE_8BIT;
  1151. #endif
  1152. break;
  1153. #endif
  1154. #ifdef OMAP_HSMMC3_BASE
  1155. case 2:
  1156. priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
  1157. #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
  1158. /* Enable 8-bit interface for eMMC on DRA7XX */
  1159. host_caps_val |= MMC_MODE_8BIT;
  1160. #endif
  1161. break;
  1162. #endif
  1163. default:
  1164. priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  1165. return 1;
  1166. }
  1167. #ifdef OMAP_HSMMC_USE_GPIO
  1168. /* on error gpio values are set to -1, which is what we want */
  1169. priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
  1170. priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
  1171. #endif
  1172. cfg = &priv->cfg;
  1173. cfg->name = "OMAP SD/MMC";
  1174. cfg->ops = &omap_hsmmc_ops;
  1175. cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  1176. cfg->host_caps = host_caps_val & ~host_caps_mask;
  1177. cfg->f_min = 400000;
  1178. if (f_max != 0)
  1179. cfg->f_max = f_max;
  1180. else {
  1181. if (cfg->host_caps & MMC_MODE_HS) {
  1182. if (cfg->host_caps & MMC_MODE_HS_52MHz)
  1183. cfg->f_max = 52000000;
  1184. else
  1185. cfg->f_max = 26000000;
  1186. } else
  1187. cfg->f_max = 20000000;
  1188. }
  1189. cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1190. #if defined(CONFIG_OMAP34XX)
  1191. /*
  1192. * Silicon revs 2.1 and older do not support multiblock transfers.
  1193. */
  1194. if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
  1195. cfg->b_max = 1;
  1196. #endif
  1197. mmc = mmc_create(cfg, priv);
  1198. if (mmc == NULL)
  1199. return -1;
  1200. return 0;
  1201. }
  1202. #else
  1203. #ifdef CONFIG_IODELAY_RECALIBRATION
  1204. static struct pad_conf_entry *
  1205. omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
  1206. {
  1207. int index = 0;
  1208. struct pad_conf_entry *padconf;
  1209. padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
  1210. if (!padconf) {
  1211. debug("failed to allocate memory\n");
  1212. return 0;
  1213. }
  1214. while (index < count) {
  1215. padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
  1216. padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
  1217. index++;
  1218. }
  1219. return padconf;
  1220. }
  1221. static struct iodelay_cfg_entry *
  1222. omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
  1223. {
  1224. int index = 0;
  1225. struct iodelay_cfg_entry *iodelay;
  1226. iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
  1227. if (!iodelay) {
  1228. debug("failed to allocate memory\n");
  1229. return 0;
  1230. }
  1231. while (index < count) {
  1232. iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
  1233. iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
  1234. iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
  1235. index++;
  1236. }
  1237. return iodelay;
  1238. }
  1239. static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32 phandle,
  1240. const char *name, int *len)
  1241. {
  1242. const void *fdt = gd->fdt_blob;
  1243. int offset;
  1244. const fdt32_t *pinctrl;
  1245. offset = fdt_node_offset_by_phandle(fdt, phandle);
  1246. if (offset < 0) {
  1247. debug("failed to get pinctrl node %s.\n",
  1248. fdt_strerror(offset));
  1249. return 0;
  1250. }
  1251. pinctrl = fdt_getprop(fdt, offset, name, len);
  1252. if (!pinctrl) {
  1253. debug("failed to get property %s\n", name);
  1254. return 0;
  1255. }
  1256. return pinctrl;
  1257. }
  1258. static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
  1259. char *prop_name)
  1260. {
  1261. const void *fdt = gd->fdt_blob;
  1262. const __be32 *phandle;
  1263. int node = dev_of_offset(mmc->dev);
  1264. phandle = fdt_getprop(fdt, node, prop_name, NULL);
  1265. if (!phandle) {
  1266. debug("failed to get property %s\n", prop_name);
  1267. return 0;
  1268. }
  1269. return fdt32_to_cpu(*phandle);
  1270. }
  1271. static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
  1272. char *prop_name)
  1273. {
  1274. const void *fdt = gd->fdt_blob;
  1275. const __be32 *phandle;
  1276. int len;
  1277. int count;
  1278. int node = dev_of_offset(mmc->dev);
  1279. phandle = fdt_getprop(fdt, node, prop_name, &len);
  1280. if (!phandle) {
  1281. debug("failed to get property %s\n", prop_name);
  1282. return 0;
  1283. }
  1284. /* No manual mode iodelay values if count < 2 */
  1285. count = len / sizeof(*phandle);
  1286. if (count < 2)
  1287. return 0;
  1288. return fdt32_to_cpu(*(phandle + 1));
  1289. }
  1290. static struct pad_conf_entry *
  1291. omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
  1292. {
  1293. int len;
  1294. int count;
  1295. struct pad_conf_entry *padconf;
  1296. u32 phandle;
  1297. const fdt32_t *pinctrl;
  1298. phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
  1299. if (!phandle)
  1300. return ERR_PTR(-EINVAL);
  1301. pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
  1302. &len);
  1303. if (!pinctrl)
  1304. return ERR_PTR(-EINVAL);
  1305. count = (len / sizeof(*pinctrl)) / 2;
  1306. padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
  1307. if (!padconf)
  1308. return ERR_PTR(-EINVAL);
  1309. *npads = count;
  1310. return padconf;
  1311. }
  1312. static struct iodelay_cfg_entry *
  1313. omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
  1314. {
  1315. int len;
  1316. int count;
  1317. struct iodelay_cfg_entry *iodelay;
  1318. u32 phandle;
  1319. const fdt32_t *pinctrl;
  1320. phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
  1321. /* Not all modes have manual mode iodelay values. So its not fatal */
  1322. if (!phandle)
  1323. return 0;
  1324. pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
  1325. &len);
  1326. if (!pinctrl)
  1327. return ERR_PTR(-EINVAL);
  1328. count = (len / sizeof(*pinctrl)) / 3;
  1329. iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
  1330. if (!iodelay)
  1331. return ERR_PTR(-EINVAL);
  1332. *niodelay = count;
  1333. return iodelay;
  1334. }
  1335. static struct omap_hsmmc_pinctrl_state *
  1336. omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
  1337. {
  1338. int index;
  1339. int npads = 0;
  1340. int niodelays = 0;
  1341. const void *fdt = gd->fdt_blob;
  1342. int node = dev_of_offset(mmc->dev);
  1343. char prop_name[11];
  1344. struct omap_hsmmc_pinctrl_state *pinctrl_state;
  1345. pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
  1346. malloc(sizeof(*pinctrl_state));
  1347. if (!pinctrl_state) {
  1348. debug("failed to allocate memory\n");
  1349. return 0;
  1350. }
  1351. index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
  1352. if (index < 0) {
  1353. debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
  1354. goto err_pinctrl_state;
  1355. }
  1356. sprintf(prop_name, "pinctrl-%d", index);
  1357. pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
  1358. &npads);
  1359. if (IS_ERR(pinctrl_state->padconf))
  1360. goto err_pinctrl_state;
  1361. pinctrl_state->npads = npads;
  1362. pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
  1363. &niodelays);
  1364. if (IS_ERR(pinctrl_state->iodelay))
  1365. goto err_padconf;
  1366. pinctrl_state->niodelays = niodelays;
  1367. return pinctrl_state;
  1368. err_padconf:
  1369. kfree(pinctrl_state->padconf);
  1370. err_pinctrl_state:
  1371. kfree(pinctrl_state);
  1372. return 0;
  1373. }
  1374. #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional) \
  1375. do { \
  1376. struct omap_hsmmc_pinctrl_state *s = NULL; \
  1377. char str[20]; \
  1378. if (!(cfg->host_caps & capmask)) \
  1379. break; \
  1380. \
  1381. if (priv->hw_rev) { \
  1382. sprintf(str, "%s-%s", #mode, priv->hw_rev); \
  1383. s = omap_hsmmc_get_pinctrl_by_mode(mmc, str); \
  1384. } \
  1385. \
  1386. if (!s) \
  1387. s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \
  1388. \
  1389. if (!s && !optional) { \
  1390. debug("%s: no pinctrl for %s\n", \
  1391. mmc->dev->name, #mode); \
  1392. cfg->host_caps &= ~(capmask); \
  1393. } else { \
  1394. priv->mode##_pinctrl_state = s; \
  1395. } \
  1396. } while (0)
  1397. static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
  1398. {
  1399. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1400. struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
  1401. struct omap_hsmmc_pinctrl_state *default_pinctrl;
  1402. if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
  1403. return 0;
  1404. default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
  1405. if (!default_pinctrl) {
  1406. printf("no pinctrl state for default mode\n");
  1407. return -EINVAL;
  1408. }
  1409. priv->default_pinctrl_state = default_pinctrl;
  1410. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
  1411. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
  1412. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
  1413. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
  1414. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
  1415. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
  1416. OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
  1417. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
  1418. return 0;
  1419. }
  1420. #endif
  1421. #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
  1422. #ifdef CONFIG_OMAP54XX
  1423. __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
  1424. {
  1425. return NULL;
  1426. }
  1427. #endif
  1428. static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
  1429. {
  1430. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1431. struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
  1432. struct mmc_config *cfg = &plat->cfg;
  1433. #ifdef CONFIG_OMAP54XX
  1434. const struct mmc_platform_fixups *fixups;
  1435. #endif
  1436. const void *fdt = gd->fdt_blob;
  1437. int node = dev_of_offset(dev);
  1438. int ret;
  1439. plat->base_addr = map_physmem(devfdt_get_addr(dev),
  1440. sizeof(struct hsmmc *),
  1441. MAP_NOCACHE);
  1442. ret = mmc_of_parse(dev, cfg);
  1443. if (ret < 0)
  1444. return ret;
  1445. cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  1446. cfg->f_min = 400000;
  1447. cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  1448. cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1449. if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
  1450. plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
  1451. if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
  1452. plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
  1453. if (of_data)
  1454. plat->controller_flags |= of_data->controller_flags;
  1455. #ifdef CONFIG_OMAP54XX
  1456. fixups = platform_fixups_mmc(devfdt_get_addr(dev));
  1457. if (fixups) {
  1458. plat->hw_rev = fixups->hw_rev;
  1459. cfg->host_caps &= ~fixups->unsupported_caps;
  1460. cfg->f_max = fixups->max_freq;
  1461. }
  1462. #endif
  1463. #ifdef OMAP_HSMMC_USE_GPIO
  1464. plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
  1465. #endif
  1466. return 0;
  1467. }
  1468. #endif
  1469. #ifdef CONFIG_BLK
  1470. static int omap_hsmmc_bind(struct udevice *dev)
  1471. {
  1472. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1473. return mmc_bind(dev, &plat->mmc, &plat->cfg);
  1474. }
  1475. #endif
  1476. static int omap_hsmmc_probe(struct udevice *dev)
  1477. {
  1478. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1479. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  1480. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1481. struct mmc_config *cfg = &plat->cfg;
  1482. struct mmc *mmc;
  1483. #ifdef CONFIG_IODELAY_RECALIBRATION
  1484. int ret;
  1485. #endif
  1486. cfg->name = "OMAP SD/MMC";
  1487. priv->base_addr = plat->base_addr;
  1488. priv->controller_flags = plat->controller_flags;
  1489. priv->hw_rev = plat->hw_rev;
  1490. #ifdef OMAP_HSMMC_USE_GPIO
  1491. priv->cd_inverted = plat->cd_inverted;
  1492. #endif
  1493. #ifdef CONFIG_BLK
  1494. mmc = &plat->mmc;
  1495. #else
  1496. mmc = mmc_create(cfg, priv);
  1497. if (mmc == NULL)
  1498. return -1;
  1499. #endif
  1500. #if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL)
  1501. gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
  1502. gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
  1503. #endif
  1504. mmc->dev = dev;
  1505. upriv->mmc = mmc;
  1506. #ifdef CONFIG_IODELAY_RECALIBRATION
  1507. ret = omap_hsmmc_get_pinctrl_state(mmc);
  1508. /*
  1509. * disable high speed modes for the platforms that require IO delay
  1510. * and for which we don't have this information
  1511. */
  1512. if ((ret < 0) &&
  1513. (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
  1514. priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
  1515. cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
  1516. UHS_CAPS);
  1517. }
  1518. #endif
  1519. return omap_hsmmc_init_setup(mmc);
  1520. }
  1521. #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
  1522. static const struct omap_mmc_of_data dra7_mmc_of_data = {
  1523. .controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
  1524. };
  1525. static const struct udevice_id omap_hsmmc_ids[] = {
  1526. { .compatible = "ti,omap3-hsmmc" },
  1527. { .compatible = "ti,omap4-hsmmc" },
  1528. { .compatible = "ti,am33xx-hsmmc" },
  1529. { .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
  1530. { }
  1531. };
  1532. #endif
  1533. U_BOOT_DRIVER(omap_hsmmc) = {
  1534. .name = "omap_hsmmc",
  1535. .id = UCLASS_MMC,
  1536. #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
  1537. .of_match = omap_hsmmc_ids,
  1538. .ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
  1539. .platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
  1540. #endif
  1541. #ifdef CONFIG_BLK
  1542. .bind = omap_hsmmc_bind,
  1543. #endif
  1544. .ops = &omap_hsmmc_ops,
  1545. .probe = omap_hsmmc_probe,
  1546. .priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
  1547. .flags = DM_FLAG_PRE_RELOC,
  1548. };
  1549. #endif