clock.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <asm/io.h>
  9. #include <asm/arch/clock.h>
  10. #include <asm/arch/clk.h>
  11. #include <asm/arch/periph.h>
  12. #define PLL_DIV_1024 1024
  13. #define PLL_DIV_65535 65535
  14. #define PLL_DIV_65536 65536
  15. /* *
  16. * This structure is to store the src bit, div bit and prediv bit
  17. * positions of the peripheral clocks of the src and div registers
  18. */
  19. struct clk_bit_info {
  20. int8_t src_bit;
  21. int8_t div_bit;
  22. int8_t prediv_bit;
  23. };
  24. /* src_bit div_bit prediv_bit */
  25. static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
  26. {0, 0, -1},
  27. {4, 4, -1},
  28. {8, 8, -1},
  29. {12, 12, -1},
  30. {0, 0, 8},
  31. {4, 16, 24},
  32. {8, 0, 8},
  33. {12, 16, 24},
  34. {-1, -1, -1},
  35. {16, 0, 8},
  36. {20, 16, 24},
  37. {24, 0, 8},
  38. {0, 0, 4},
  39. {4, 12, 16},
  40. {-1, -1, -1},
  41. {-1, -1, -1},
  42. {-1, 24, 0},
  43. {-1, 24, 0},
  44. {-1, 24, 0},
  45. {-1, 24, 0},
  46. {-1, 24, 0},
  47. {-1, 24, 0},
  48. {-1, 24, 0},
  49. {-1, 24, 0},
  50. {24, 0, -1},
  51. {24, 0, -1},
  52. {24, 0, -1},
  53. {24, 0, -1},
  54. {24, 0, -1},
  55. };
  56. /* Epll Clock division values to achive different frequency output */
  57. static struct set_epll_con_val exynos5_epll_div[] = {
  58. { 192000000, 0, 48, 3, 1, 0 },
  59. { 180000000, 0, 45, 3, 1, 0 },
  60. { 73728000, 1, 73, 3, 3, 47710 },
  61. { 67737600, 1, 90, 4, 3, 20762 },
  62. { 49152000, 0, 49, 3, 3, 9961 },
  63. { 45158400, 0, 45, 3, 3, 10381 },
  64. { 180633600, 0, 45, 3, 1, 10381 }
  65. };
  66. /* exynos: return pll clock frequency */
  67. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  68. {
  69. unsigned long m, p, s = 0, mask, fout;
  70. unsigned int div;
  71. unsigned int freq;
  72. /*
  73. * APLL_CON: MIDV [25:16]
  74. * MPLL_CON: MIDV [25:16]
  75. * EPLL_CON: MIDV [24:16]
  76. * VPLL_CON: MIDV [24:16]
  77. * BPLL_CON: MIDV [25:16]: Exynos5
  78. */
  79. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  80. mask = 0x3ff;
  81. else
  82. mask = 0x1ff;
  83. m = (r >> 16) & mask;
  84. /* PDIV [13:8] */
  85. p = (r >> 8) & 0x3f;
  86. /* SDIV [2:0] */
  87. s = r & 0x7;
  88. freq = CONFIG_SYS_CLK_FREQ;
  89. if (pllreg == EPLL) {
  90. k = k & 0xffff;
  91. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  92. fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s)));
  93. } else if (pllreg == VPLL) {
  94. k = k & 0xfff;
  95. /*
  96. * Exynos4210
  97. * FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV)
  98. *
  99. * Exynos4412
  100. * FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV)
  101. *
  102. * Exynos5250
  103. * FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV)
  104. */
  105. if (proid_is_exynos4210())
  106. div = PLL_DIV_1024;
  107. else if (proid_is_exynos4412())
  108. div = PLL_DIV_65535;
  109. else if (proid_is_exynos5250())
  110. div = PLL_DIV_65536;
  111. else
  112. return 0;
  113. fout = (m + k / div) * (freq / (p * (1 << s)));
  114. } else {
  115. /*
  116. * Exynos4412 / Exynos5250
  117. * FOUT = MDIV * FIN / (PDIV * 2^SDIV)
  118. *
  119. * Exynos4210
  120. * FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1))
  121. */
  122. if (proid_is_exynos4210())
  123. fout = m * (freq / (p * (1 << (s - 1))));
  124. else
  125. fout = m * (freq / (p * (1 << s)));
  126. }
  127. return fout;
  128. }
  129. /* exynos4: return pll clock frequency */
  130. static unsigned long exynos4_get_pll_clk(int pllreg)
  131. {
  132. struct exynos4_clock *clk =
  133. (struct exynos4_clock *)samsung_get_base_clock();
  134. unsigned long r, k = 0;
  135. switch (pllreg) {
  136. case APLL:
  137. r = readl(&clk->apll_con0);
  138. break;
  139. case MPLL:
  140. r = readl(&clk->mpll_con0);
  141. break;
  142. case EPLL:
  143. r = readl(&clk->epll_con0);
  144. k = readl(&clk->epll_con1);
  145. break;
  146. case VPLL:
  147. r = readl(&clk->vpll_con0);
  148. k = readl(&clk->vpll_con1);
  149. break;
  150. default:
  151. printf("Unsupported PLL (%d)\n", pllreg);
  152. return 0;
  153. }
  154. return exynos_get_pll_clk(pllreg, r, k);
  155. }
  156. /* exynos4x12: return pll clock frequency */
  157. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  158. {
  159. struct exynos4x12_clock *clk =
  160. (struct exynos4x12_clock *)samsung_get_base_clock();
  161. unsigned long r, k = 0;
  162. switch (pllreg) {
  163. case APLL:
  164. r = readl(&clk->apll_con0);
  165. break;
  166. case MPLL:
  167. r = readl(&clk->mpll_con0);
  168. break;
  169. case EPLL:
  170. r = readl(&clk->epll_con0);
  171. k = readl(&clk->epll_con1);
  172. break;
  173. case VPLL:
  174. r = readl(&clk->vpll_con0);
  175. k = readl(&clk->vpll_con1);
  176. break;
  177. default:
  178. printf("Unsupported PLL (%d)\n", pllreg);
  179. return 0;
  180. }
  181. return exynos_get_pll_clk(pllreg, r, k);
  182. }
  183. /* exynos5: return pll clock frequency */
  184. static unsigned long exynos5_get_pll_clk(int pllreg)
  185. {
  186. struct exynos5_clock *clk =
  187. (struct exynos5_clock *)samsung_get_base_clock();
  188. unsigned long r, k = 0, fout;
  189. unsigned int pll_div2_sel, fout_sel;
  190. switch (pllreg) {
  191. case APLL:
  192. r = readl(&clk->apll_con0);
  193. break;
  194. case MPLL:
  195. r = readl(&clk->mpll_con0);
  196. break;
  197. case EPLL:
  198. r = readl(&clk->epll_con0);
  199. k = readl(&clk->epll_con1);
  200. break;
  201. case VPLL:
  202. r = readl(&clk->vpll_con0);
  203. k = readl(&clk->vpll_con1);
  204. break;
  205. case BPLL:
  206. r = readl(&clk->bpll_con0);
  207. break;
  208. default:
  209. printf("Unsupported PLL (%d)\n", pllreg);
  210. return 0;
  211. }
  212. fout = exynos_get_pll_clk(pllreg, r, k);
  213. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  214. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  215. if (pllreg == MPLL || pllreg == BPLL) {
  216. pll_div2_sel = readl(&clk->pll_div2_sel);
  217. switch (pllreg) {
  218. case MPLL:
  219. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  220. & MPLL_FOUT_SEL_MASK;
  221. break;
  222. case BPLL:
  223. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  224. & BPLL_FOUT_SEL_MASK;
  225. break;
  226. default:
  227. fout_sel = -1;
  228. break;
  229. }
  230. if (fout_sel == 0)
  231. fout /= 2;
  232. }
  233. return fout;
  234. }
  235. static unsigned long exynos5_get_periph_rate(int peripheral)
  236. {
  237. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  238. unsigned long sclk, sub_clk;
  239. unsigned int src, div, sub_div;
  240. struct exynos5_clock *clk =
  241. (struct exynos5_clock *)samsung_get_base_clock();
  242. switch (peripheral) {
  243. case PERIPH_ID_UART0:
  244. case PERIPH_ID_UART1:
  245. case PERIPH_ID_UART2:
  246. case PERIPH_ID_UART3:
  247. src = readl(&clk->src_peric0);
  248. div = readl(&clk->div_peric0);
  249. break;
  250. case PERIPH_ID_PWM0:
  251. case PERIPH_ID_PWM1:
  252. case PERIPH_ID_PWM2:
  253. case PERIPH_ID_PWM3:
  254. case PERIPH_ID_PWM4:
  255. src = readl(&clk->src_peric0);
  256. div = readl(&clk->div_peric3);
  257. break;
  258. case PERIPH_ID_I2S0:
  259. src = readl(&clk->src_mau);
  260. div = readl(&clk->div_mau);
  261. case PERIPH_ID_SPI0:
  262. case PERIPH_ID_SPI1:
  263. src = readl(&clk->src_peric1);
  264. div = readl(&clk->div_peric1);
  265. break;
  266. case PERIPH_ID_SPI2:
  267. src = readl(&clk->src_peric1);
  268. div = readl(&clk->div_peric2);
  269. break;
  270. case PERIPH_ID_SPI3:
  271. case PERIPH_ID_SPI4:
  272. src = readl(&clk->sclk_src_isp);
  273. div = readl(&clk->sclk_div_isp);
  274. break;
  275. case PERIPH_ID_SDMMC0:
  276. case PERIPH_ID_SDMMC1:
  277. case PERIPH_ID_SDMMC2:
  278. case PERIPH_ID_SDMMC3:
  279. src = readl(&clk->src_fsys);
  280. div = readl(&clk->div_fsys1);
  281. break;
  282. case PERIPH_ID_I2C0:
  283. case PERIPH_ID_I2C1:
  284. case PERIPH_ID_I2C2:
  285. case PERIPH_ID_I2C3:
  286. case PERIPH_ID_I2C4:
  287. case PERIPH_ID_I2C5:
  288. case PERIPH_ID_I2C6:
  289. case PERIPH_ID_I2C7:
  290. sclk = exynos5_get_pll_clk(MPLL);
  291. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  292. & 0x7) + 1;
  293. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  294. & 0x7) + 1;
  295. return (sclk / sub_div) / div;
  296. default:
  297. debug("%s: invalid peripheral %d", __func__, peripheral);
  298. return -1;
  299. };
  300. src = (src >> bit_info->src_bit) & 0xf;
  301. switch (src) {
  302. case EXYNOS_SRC_MPLL:
  303. sclk = exynos5_get_pll_clk(MPLL);
  304. break;
  305. case EXYNOS_SRC_EPLL:
  306. sclk = exynos5_get_pll_clk(EPLL);
  307. break;
  308. case EXYNOS_SRC_VPLL:
  309. sclk = exynos5_get_pll_clk(VPLL);
  310. break;
  311. default:
  312. return 0;
  313. }
  314. /* Ratio clock division for this peripheral */
  315. sub_div = (div >> bit_info->div_bit) & 0xf;
  316. sub_clk = sclk / (sub_div + 1);
  317. /* Pre-ratio clock division for SDMMC0 and 2 */
  318. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  319. div = (div >> bit_info->prediv_bit) & 0xff;
  320. return sub_clk / (div + 1);
  321. }
  322. return sub_clk;
  323. }
  324. unsigned long clock_get_periph_rate(int peripheral)
  325. {
  326. if (cpu_is_exynos5())
  327. return exynos5_get_periph_rate(peripheral);
  328. else
  329. return 0;
  330. }
  331. /* exynos4: return ARM clock frequency */
  332. static unsigned long exynos4_get_arm_clk(void)
  333. {
  334. struct exynos4_clock *clk =
  335. (struct exynos4_clock *)samsung_get_base_clock();
  336. unsigned long div;
  337. unsigned long armclk;
  338. unsigned int core_ratio;
  339. unsigned int core2_ratio;
  340. div = readl(&clk->div_cpu0);
  341. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  342. core_ratio = (div >> 0) & 0x7;
  343. core2_ratio = (div >> 28) & 0x7;
  344. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  345. armclk /= (core2_ratio + 1);
  346. return armclk;
  347. }
  348. /* exynos4x12: return ARM clock frequency */
  349. static unsigned long exynos4x12_get_arm_clk(void)
  350. {
  351. struct exynos4x12_clock *clk =
  352. (struct exynos4x12_clock *)samsung_get_base_clock();
  353. unsigned long div;
  354. unsigned long armclk;
  355. unsigned int core_ratio;
  356. unsigned int core2_ratio;
  357. div = readl(&clk->div_cpu0);
  358. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  359. core_ratio = (div >> 0) & 0x7;
  360. core2_ratio = (div >> 28) & 0x7;
  361. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  362. armclk /= (core2_ratio + 1);
  363. return armclk;
  364. }
  365. /* exynos5: return ARM clock frequency */
  366. static unsigned long exynos5_get_arm_clk(void)
  367. {
  368. struct exynos5_clock *clk =
  369. (struct exynos5_clock *)samsung_get_base_clock();
  370. unsigned long div;
  371. unsigned long armclk;
  372. unsigned int arm_ratio;
  373. unsigned int arm2_ratio;
  374. div = readl(&clk->div_cpu0);
  375. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  376. arm_ratio = (div >> 0) & 0x7;
  377. arm2_ratio = (div >> 28) & 0x7;
  378. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  379. armclk /= (arm2_ratio + 1);
  380. return armclk;
  381. }
  382. /* exynos4: return pwm clock frequency */
  383. static unsigned long exynos4_get_pwm_clk(void)
  384. {
  385. struct exynos4_clock *clk =
  386. (struct exynos4_clock *)samsung_get_base_clock();
  387. unsigned long pclk, sclk;
  388. unsigned int sel;
  389. unsigned int ratio;
  390. if (s5p_get_cpu_rev() == 0) {
  391. /*
  392. * CLK_SRC_PERIL0
  393. * PWM_SEL [27:24]
  394. */
  395. sel = readl(&clk->src_peril0);
  396. sel = (sel >> 24) & 0xf;
  397. if (sel == 0x6)
  398. sclk = get_pll_clk(MPLL);
  399. else if (sel == 0x7)
  400. sclk = get_pll_clk(EPLL);
  401. else if (sel == 0x8)
  402. sclk = get_pll_clk(VPLL);
  403. else
  404. return 0;
  405. /*
  406. * CLK_DIV_PERIL3
  407. * PWM_RATIO [3:0]
  408. */
  409. ratio = readl(&clk->div_peril3);
  410. ratio = ratio & 0xf;
  411. } else if (s5p_get_cpu_rev() == 1) {
  412. sclk = get_pll_clk(MPLL);
  413. ratio = 8;
  414. } else
  415. return 0;
  416. pclk = sclk / (ratio + 1);
  417. return pclk;
  418. }
  419. /* exynos4x12: return pwm clock frequency */
  420. static unsigned long exynos4x12_get_pwm_clk(void)
  421. {
  422. unsigned long pclk, sclk;
  423. unsigned int ratio;
  424. sclk = get_pll_clk(MPLL);
  425. ratio = 8;
  426. pclk = sclk / (ratio + 1);
  427. return pclk;
  428. }
  429. /* exynos4: return uart clock frequency */
  430. static unsigned long exynos4_get_uart_clk(int dev_index)
  431. {
  432. struct exynos4_clock *clk =
  433. (struct exynos4_clock *)samsung_get_base_clock();
  434. unsigned long uclk, sclk;
  435. unsigned int sel;
  436. unsigned int ratio;
  437. /*
  438. * CLK_SRC_PERIL0
  439. * UART0_SEL [3:0]
  440. * UART1_SEL [7:4]
  441. * UART2_SEL [8:11]
  442. * UART3_SEL [12:15]
  443. * UART4_SEL [16:19]
  444. * UART5_SEL [23:20]
  445. */
  446. sel = readl(&clk->src_peril0);
  447. sel = (sel >> (dev_index << 2)) & 0xf;
  448. if (sel == 0x6)
  449. sclk = get_pll_clk(MPLL);
  450. else if (sel == 0x7)
  451. sclk = get_pll_clk(EPLL);
  452. else if (sel == 0x8)
  453. sclk = get_pll_clk(VPLL);
  454. else
  455. return 0;
  456. /*
  457. * CLK_DIV_PERIL0
  458. * UART0_RATIO [3:0]
  459. * UART1_RATIO [7:4]
  460. * UART2_RATIO [8:11]
  461. * UART3_RATIO [12:15]
  462. * UART4_RATIO [16:19]
  463. * UART5_RATIO [23:20]
  464. */
  465. ratio = readl(&clk->div_peril0);
  466. ratio = (ratio >> (dev_index << 2)) & 0xf;
  467. uclk = sclk / (ratio + 1);
  468. return uclk;
  469. }
  470. /* exynos4x12: return uart clock frequency */
  471. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  472. {
  473. struct exynos4x12_clock *clk =
  474. (struct exynos4x12_clock *)samsung_get_base_clock();
  475. unsigned long uclk, sclk;
  476. unsigned int sel;
  477. unsigned int ratio;
  478. /*
  479. * CLK_SRC_PERIL0
  480. * UART0_SEL [3:0]
  481. * UART1_SEL [7:4]
  482. * UART2_SEL [8:11]
  483. * UART3_SEL [12:15]
  484. * UART4_SEL [16:19]
  485. */
  486. sel = readl(&clk->src_peril0);
  487. sel = (sel >> (dev_index << 2)) & 0xf;
  488. if (sel == 0x6)
  489. sclk = get_pll_clk(MPLL);
  490. else if (sel == 0x7)
  491. sclk = get_pll_clk(EPLL);
  492. else if (sel == 0x8)
  493. sclk = get_pll_clk(VPLL);
  494. else
  495. return 0;
  496. /*
  497. * CLK_DIV_PERIL0
  498. * UART0_RATIO [3:0]
  499. * UART1_RATIO [7:4]
  500. * UART2_RATIO [8:11]
  501. * UART3_RATIO [12:15]
  502. * UART4_RATIO [16:19]
  503. */
  504. ratio = readl(&clk->div_peril0);
  505. ratio = (ratio >> (dev_index << 2)) & 0xf;
  506. uclk = sclk / (ratio + 1);
  507. return uclk;
  508. }
  509. /* exynos5: return uart clock frequency */
  510. static unsigned long exynos5_get_uart_clk(int dev_index)
  511. {
  512. struct exynos5_clock *clk =
  513. (struct exynos5_clock *)samsung_get_base_clock();
  514. unsigned long uclk, sclk;
  515. unsigned int sel;
  516. unsigned int ratio;
  517. /*
  518. * CLK_SRC_PERIC0
  519. * UART0_SEL [3:0]
  520. * UART1_SEL [7:4]
  521. * UART2_SEL [8:11]
  522. * UART3_SEL [12:15]
  523. * UART4_SEL [16:19]
  524. * UART5_SEL [23:20]
  525. */
  526. sel = readl(&clk->src_peric0);
  527. sel = (sel >> (dev_index << 2)) & 0xf;
  528. if (sel == 0x6)
  529. sclk = get_pll_clk(MPLL);
  530. else if (sel == 0x7)
  531. sclk = get_pll_clk(EPLL);
  532. else if (sel == 0x8)
  533. sclk = get_pll_clk(VPLL);
  534. else
  535. return 0;
  536. /*
  537. * CLK_DIV_PERIC0
  538. * UART0_RATIO [3:0]
  539. * UART1_RATIO [7:4]
  540. * UART2_RATIO [8:11]
  541. * UART3_RATIO [12:15]
  542. * UART4_RATIO [16:19]
  543. * UART5_RATIO [23:20]
  544. */
  545. ratio = readl(&clk->div_peric0);
  546. ratio = (ratio >> (dev_index << 2)) & 0xf;
  547. uclk = sclk / (ratio + 1);
  548. return uclk;
  549. }
  550. static unsigned long exynos4_get_mmc_clk(int dev_index)
  551. {
  552. struct exynos4_clock *clk =
  553. (struct exynos4_clock *)samsung_get_base_clock();
  554. unsigned long uclk, sclk;
  555. unsigned int sel, ratio, pre_ratio;
  556. int shift = 0;
  557. sel = readl(&clk->src_fsys);
  558. sel = (sel >> (dev_index << 2)) & 0xf;
  559. if (sel == 0x6)
  560. sclk = get_pll_clk(MPLL);
  561. else if (sel == 0x7)
  562. sclk = get_pll_clk(EPLL);
  563. else if (sel == 0x8)
  564. sclk = get_pll_clk(VPLL);
  565. else
  566. return 0;
  567. switch (dev_index) {
  568. case 0:
  569. case 1:
  570. ratio = readl(&clk->div_fsys1);
  571. pre_ratio = readl(&clk->div_fsys1);
  572. break;
  573. case 2:
  574. case 3:
  575. ratio = readl(&clk->div_fsys2);
  576. pre_ratio = readl(&clk->div_fsys2);
  577. break;
  578. case 4:
  579. ratio = readl(&clk->div_fsys3);
  580. pre_ratio = readl(&clk->div_fsys3);
  581. break;
  582. default:
  583. return 0;
  584. }
  585. if (dev_index == 1 || dev_index == 3)
  586. shift = 16;
  587. ratio = (ratio >> shift) & 0xf;
  588. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  589. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  590. return uclk;
  591. }
  592. static unsigned long exynos5_get_mmc_clk(int dev_index)
  593. {
  594. struct exynos5_clock *clk =
  595. (struct exynos5_clock *)samsung_get_base_clock();
  596. unsigned long uclk, sclk;
  597. unsigned int sel, ratio, pre_ratio;
  598. int shift = 0;
  599. sel = readl(&clk->src_fsys);
  600. sel = (sel >> (dev_index << 2)) & 0xf;
  601. if (sel == 0x6)
  602. sclk = get_pll_clk(MPLL);
  603. else if (sel == 0x7)
  604. sclk = get_pll_clk(EPLL);
  605. else if (sel == 0x8)
  606. sclk = get_pll_clk(VPLL);
  607. else
  608. return 0;
  609. switch (dev_index) {
  610. case 0:
  611. case 1:
  612. ratio = readl(&clk->div_fsys1);
  613. pre_ratio = readl(&clk->div_fsys1);
  614. break;
  615. case 2:
  616. case 3:
  617. ratio = readl(&clk->div_fsys2);
  618. pre_ratio = readl(&clk->div_fsys2);
  619. break;
  620. default:
  621. return 0;
  622. }
  623. if (dev_index == 1 || dev_index == 3)
  624. shift = 16;
  625. ratio = (ratio >> shift) & 0xf;
  626. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  627. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  628. return uclk;
  629. }
  630. /* exynos4: set the mmc clock */
  631. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  632. {
  633. struct exynos4_clock *clk =
  634. (struct exynos4_clock *)samsung_get_base_clock();
  635. unsigned int addr;
  636. unsigned int val;
  637. /*
  638. * CLK_DIV_FSYS1
  639. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  640. * CLK_DIV_FSYS2
  641. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  642. * CLK_DIV_FSYS3
  643. * MMC4_PRE_RATIO [15:8]
  644. */
  645. if (dev_index < 2) {
  646. addr = (unsigned int)&clk->div_fsys1;
  647. } else if (dev_index == 4) {
  648. addr = (unsigned int)&clk->div_fsys3;
  649. dev_index -= 4;
  650. } else {
  651. addr = (unsigned int)&clk->div_fsys2;
  652. dev_index -= 2;
  653. }
  654. val = readl(addr);
  655. val &= ~(0xff << ((dev_index << 4) + 8));
  656. val |= (div & 0xff) << ((dev_index << 4) + 8);
  657. writel(val, addr);
  658. }
  659. /* exynos4x12: set the mmc clock */
  660. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  661. {
  662. struct exynos4x12_clock *clk =
  663. (struct exynos4x12_clock *)samsung_get_base_clock();
  664. unsigned int addr;
  665. unsigned int val;
  666. /*
  667. * CLK_DIV_FSYS1
  668. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  669. * CLK_DIV_FSYS2
  670. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  671. */
  672. if (dev_index < 2) {
  673. addr = (unsigned int)&clk->div_fsys1;
  674. } else {
  675. addr = (unsigned int)&clk->div_fsys2;
  676. dev_index -= 2;
  677. }
  678. val = readl(addr);
  679. val &= ~(0xff << ((dev_index << 4) + 8));
  680. val |= (div & 0xff) << ((dev_index << 4) + 8);
  681. writel(val, addr);
  682. }
  683. /* exynos5: set the mmc clock */
  684. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  685. {
  686. struct exynos5_clock *clk =
  687. (struct exynos5_clock *)samsung_get_base_clock();
  688. unsigned int addr;
  689. unsigned int val;
  690. /*
  691. * CLK_DIV_FSYS1
  692. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  693. * CLK_DIV_FSYS2
  694. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  695. */
  696. if (dev_index < 2) {
  697. addr = (unsigned int)&clk->div_fsys1;
  698. } else {
  699. addr = (unsigned int)&clk->div_fsys2;
  700. dev_index -= 2;
  701. }
  702. val = readl(addr);
  703. val &= ~(0xff << ((dev_index << 4) + 8));
  704. val |= (div & 0xff) << ((dev_index << 4) + 8);
  705. writel(val, addr);
  706. }
  707. /* get_lcd_clk: return lcd clock frequency */
  708. static unsigned long exynos4_get_lcd_clk(void)
  709. {
  710. struct exynos4_clock *clk =
  711. (struct exynos4_clock *)samsung_get_base_clock();
  712. unsigned long pclk, sclk;
  713. unsigned int sel;
  714. unsigned int ratio;
  715. /*
  716. * CLK_SRC_LCD0
  717. * FIMD0_SEL [3:0]
  718. */
  719. sel = readl(&clk->src_lcd0);
  720. sel = sel & 0xf;
  721. /*
  722. * 0x6: SCLK_MPLL
  723. * 0x7: SCLK_EPLL
  724. * 0x8: SCLK_VPLL
  725. */
  726. if (sel == 0x6)
  727. sclk = get_pll_clk(MPLL);
  728. else if (sel == 0x7)
  729. sclk = get_pll_clk(EPLL);
  730. else if (sel == 0x8)
  731. sclk = get_pll_clk(VPLL);
  732. else
  733. return 0;
  734. /*
  735. * CLK_DIV_LCD0
  736. * FIMD0_RATIO [3:0]
  737. */
  738. ratio = readl(&clk->div_lcd0);
  739. ratio = ratio & 0xf;
  740. pclk = sclk / (ratio + 1);
  741. return pclk;
  742. }
  743. /* get_lcd_clk: return lcd clock frequency */
  744. static unsigned long exynos5_get_lcd_clk(void)
  745. {
  746. struct exynos5_clock *clk =
  747. (struct exynos5_clock *)samsung_get_base_clock();
  748. unsigned long pclk, sclk;
  749. unsigned int sel;
  750. unsigned int ratio;
  751. /*
  752. * CLK_SRC_LCD0
  753. * FIMD0_SEL [3:0]
  754. */
  755. sel = readl(&clk->src_disp1_0);
  756. sel = sel & 0xf;
  757. /*
  758. * 0x6: SCLK_MPLL
  759. * 0x7: SCLK_EPLL
  760. * 0x8: SCLK_VPLL
  761. */
  762. if (sel == 0x6)
  763. sclk = get_pll_clk(MPLL);
  764. else if (sel == 0x7)
  765. sclk = get_pll_clk(EPLL);
  766. else if (sel == 0x8)
  767. sclk = get_pll_clk(VPLL);
  768. else
  769. return 0;
  770. /*
  771. * CLK_DIV_LCD0
  772. * FIMD0_RATIO [3:0]
  773. */
  774. ratio = readl(&clk->div_disp1_0);
  775. ratio = ratio & 0xf;
  776. pclk = sclk / (ratio + 1);
  777. return pclk;
  778. }
  779. void exynos4_set_lcd_clk(void)
  780. {
  781. struct exynos4_clock *clk =
  782. (struct exynos4_clock *)samsung_get_base_clock();
  783. unsigned int cfg = 0;
  784. /*
  785. * CLK_GATE_BLOCK
  786. * CLK_CAM [0]
  787. * CLK_TV [1]
  788. * CLK_MFC [2]
  789. * CLK_G3D [3]
  790. * CLK_LCD0 [4]
  791. * CLK_LCD1 [5]
  792. * CLK_GPS [7]
  793. */
  794. cfg = readl(&clk->gate_block);
  795. cfg |= 1 << 4;
  796. writel(cfg, &clk->gate_block);
  797. /*
  798. * CLK_SRC_LCD0
  799. * FIMD0_SEL [3:0]
  800. * MDNIE0_SEL [7:4]
  801. * MDNIE_PWM0_SEL [8:11]
  802. * MIPI0_SEL [12:15]
  803. * set lcd0 src clock 0x6: SCLK_MPLL
  804. */
  805. cfg = readl(&clk->src_lcd0);
  806. cfg &= ~(0xf);
  807. cfg |= 0x6;
  808. writel(cfg, &clk->src_lcd0);
  809. /*
  810. * CLK_GATE_IP_LCD0
  811. * CLK_FIMD0 [0]
  812. * CLK_MIE0 [1]
  813. * CLK_MDNIE0 [2]
  814. * CLK_DSIM0 [3]
  815. * CLK_SMMUFIMD0 [4]
  816. * CLK_PPMULCD0 [5]
  817. * Gating all clocks for FIMD0
  818. */
  819. cfg = readl(&clk->gate_ip_lcd0);
  820. cfg |= 1 << 0;
  821. writel(cfg, &clk->gate_ip_lcd0);
  822. /*
  823. * CLK_DIV_LCD0
  824. * FIMD0_RATIO [3:0]
  825. * MDNIE0_RATIO [7:4]
  826. * MDNIE_PWM0_RATIO [11:8]
  827. * MDNIE_PWM_PRE_RATIO [15:12]
  828. * MIPI0_RATIO [19:16]
  829. * MIPI0_PRE_RATIO [23:20]
  830. * set fimd ratio
  831. */
  832. cfg &= ~(0xf);
  833. cfg |= 0x1;
  834. writel(cfg, &clk->div_lcd0);
  835. }
  836. void exynos5_set_lcd_clk(void)
  837. {
  838. struct exynos5_clock *clk =
  839. (struct exynos5_clock *)samsung_get_base_clock();
  840. unsigned int cfg = 0;
  841. /*
  842. * CLK_GATE_BLOCK
  843. * CLK_CAM [0]
  844. * CLK_TV [1]
  845. * CLK_MFC [2]
  846. * CLK_G3D [3]
  847. * CLK_LCD0 [4]
  848. * CLK_LCD1 [5]
  849. * CLK_GPS [7]
  850. */
  851. cfg = readl(&clk->gate_block);
  852. cfg |= 1 << 4;
  853. writel(cfg, &clk->gate_block);
  854. /*
  855. * CLK_SRC_LCD0
  856. * FIMD0_SEL [3:0]
  857. * MDNIE0_SEL [7:4]
  858. * MDNIE_PWM0_SEL [8:11]
  859. * MIPI0_SEL [12:15]
  860. * set lcd0 src clock 0x6: SCLK_MPLL
  861. */
  862. cfg = readl(&clk->src_disp1_0);
  863. cfg &= ~(0xf);
  864. cfg |= 0x6;
  865. writel(cfg, &clk->src_disp1_0);
  866. /*
  867. * CLK_GATE_IP_LCD0
  868. * CLK_FIMD0 [0]
  869. * CLK_MIE0 [1]
  870. * CLK_MDNIE0 [2]
  871. * CLK_DSIM0 [3]
  872. * CLK_SMMUFIMD0 [4]
  873. * CLK_PPMULCD0 [5]
  874. * Gating all clocks for FIMD0
  875. */
  876. cfg = readl(&clk->gate_ip_disp1);
  877. cfg |= 1 << 0;
  878. writel(cfg, &clk->gate_ip_disp1);
  879. /*
  880. * CLK_DIV_LCD0
  881. * FIMD0_RATIO [3:0]
  882. * MDNIE0_RATIO [7:4]
  883. * MDNIE_PWM0_RATIO [11:8]
  884. * MDNIE_PWM_PRE_RATIO [15:12]
  885. * MIPI0_RATIO [19:16]
  886. * MIPI0_PRE_RATIO [23:20]
  887. * set fimd ratio
  888. */
  889. cfg &= ~(0xf);
  890. cfg |= 0x0;
  891. writel(cfg, &clk->div_disp1_0);
  892. }
  893. void exynos4_set_mipi_clk(void)
  894. {
  895. struct exynos4_clock *clk =
  896. (struct exynos4_clock *)samsung_get_base_clock();
  897. unsigned int cfg = 0;
  898. /*
  899. * CLK_SRC_LCD0
  900. * FIMD0_SEL [3:0]
  901. * MDNIE0_SEL [7:4]
  902. * MDNIE_PWM0_SEL [8:11]
  903. * MIPI0_SEL [12:15]
  904. * set mipi0 src clock 0x6: SCLK_MPLL
  905. */
  906. cfg = readl(&clk->src_lcd0);
  907. cfg &= ~(0xf << 12);
  908. cfg |= (0x6 << 12);
  909. writel(cfg, &clk->src_lcd0);
  910. /*
  911. * CLK_SRC_MASK_LCD0
  912. * FIMD0_MASK [0]
  913. * MDNIE0_MASK [4]
  914. * MDNIE_PWM0_MASK [8]
  915. * MIPI0_MASK [12]
  916. * set src mask mipi0 0x1: Unmask
  917. */
  918. cfg = readl(&clk->src_mask_lcd0);
  919. cfg |= (0x1 << 12);
  920. writel(cfg, &clk->src_mask_lcd0);
  921. /*
  922. * CLK_GATE_IP_LCD0
  923. * CLK_FIMD0 [0]
  924. * CLK_MIE0 [1]
  925. * CLK_MDNIE0 [2]
  926. * CLK_DSIM0 [3]
  927. * CLK_SMMUFIMD0 [4]
  928. * CLK_PPMULCD0 [5]
  929. * Gating all clocks for MIPI0
  930. */
  931. cfg = readl(&clk->gate_ip_lcd0);
  932. cfg |= 1 << 3;
  933. writel(cfg, &clk->gate_ip_lcd0);
  934. /*
  935. * CLK_DIV_LCD0
  936. * FIMD0_RATIO [3:0]
  937. * MDNIE0_RATIO [7:4]
  938. * MDNIE_PWM0_RATIO [11:8]
  939. * MDNIE_PWM_PRE_RATIO [15:12]
  940. * MIPI0_RATIO [19:16]
  941. * MIPI0_PRE_RATIO [23:20]
  942. * set mipi ratio
  943. */
  944. cfg &= ~(0xf << 16);
  945. cfg |= (0x1 << 16);
  946. writel(cfg, &clk->div_lcd0);
  947. }
  948. /*
  949. * I2C
  950. *
  951. * exynos5: obtaining the I2C clock
  952. */
  953. static unsigned long exynos5_get_i2c_clk(void)
  954. {
  955. struct exynos5_clock *clk =
  956. (struct exynos5_clock *)samsung_get_base_clock();
  957. unsigned long aclk_66, aclk_66_pre, sclk;
  958. unsigned int ratio;
  959. sclk = get_pll_clk(MPLL);
  960. ratio = (readl(&clk->div_top1)) >> 24;
  961. ratio &= 0x7;
  962. aclk_66_pre = sclk / (ratio + 1);
  963. ratio = readl(&clk->div_top0);
  964. ratio &= 0x7;
  965. aclk_66 = aclk_66_pre / (ratio + 1);
  966. return aclk_66;
  967. }
  968. int exynos5_set_epll_clk(unsigned long rate)
  969. {
  970. unsigned int epll_con, epll_con_k;
  971. unsigned int i;
  972. unsigned int lockcnt;
  973. unsigned int start;
  974. struct exynos5_clock *clk =
  975. (struct exynos5_clock *)samsung_get_base_clock();
  976. epll_con = readl(&clk->epll_con0);
  977. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  978. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  979. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  980. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  981. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  982. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  983. if (exynos5_epll_div[i].freq_out == rate)
  984. break;
  985. }
  986. if (i == ARRAY_SIZE(exynos5_epll_div))
  987. return -1;
  988. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  989. epll_con |= exynos5_epll_div[i].en_lock_det <<
  990. EPLL_CON0_LOCK_DET_EN_SHIFT;
  991. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  992. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  993. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  994. /*
  995. * Required period ( in cycles) to genarate a stable clock output.
  996. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  997. * frequency input (as per spec)
  998. */
  999. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  1000. writel(lockcnt, &clk->epll_lock);
  1001. writel(epll_con, &clk->epll_con0);
  1002. writel(epll_con_k, &clk->epll_con1);
  1003. start = get_timer(0);
  1004. while (!(readl(&clk->epll_con0) &
  1005. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  1006. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  1007. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  1008. return -1;
  1009. }
  1010. }
  1011. return 0;
  1012. }
  1013. int exynos5_set_i2s_clk_source(unsigned int i2s_id)
  1014. {
  1015. struct exynos5_clock *clk =
  1016. (struct exynos5_clock *)samsung_get_base_clock();
  1017. unsigned int *audio_ass = (unsigned int *)samsung_get_base_audio_ass();
  1018. if (i2s_id == 0) {
  1019. setbits_le32(&clk->src_top2, CLK_SRC_MOUT_EPLL);
  1020. clrsetbits_le32(&clk->src_mau, AUDIO0_SEL_MASK,
  1021. (CLK_SRC_SCLK_EPLL));
  1022. setbits_le32(audio_ass, AUDIO_CLKMUX_ASS);
  1023. } else if (i2s_id == 1) {
  1024. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1025. (CLK_SRC_SCLK_EPLL));
  1026. } else {
  1027. return -1;
  1028. }
  1029. return 0;
  1030. }
  1031. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1032. unsigned int dst_frq,
  1033. unsigned int i2s_id)
  1034. {
  1035. struct exynos5_clock *clk =
  1036. (struct exynos5_clock *)samsung_get_base_clock();
  1037. unsigned int div;
  1038. if ((dst_frq == 0) || (src_frq == 0)) {
  1039. debug("%s: Invalid requency input for prescaler\n", __func__);
  1040. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1041. return -1;
  1042. }
  1043. div = (src_frq / dst_frq);
  1044. if (i2s_id == 0) {
  1045. if (div > AUDIO_0_RATIO_MASK) {
  1046. debug("%s: Frequency ratio is out of range\n",
  1047. __func__);
  1048. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1049. return -1;
  1050. }
  1051. clrsetbits_le32(&clk->div_mau, AUDIO_0_RATIO_MASK,
  1052. (div & AUDIO_0_RATIO_MASK));
  1053. } else if(i2s_id == 1) {
  1054. if (div > AUDIO_1_RATIO_MASK) {
  1055. debug("%s: Frequency ratio is out of range\n",
  1056. __func__);
  1057. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1058. return -1;
  1059. }
  1060. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1061. (div & AUDIO_1_RATIO_MASK));
  1062. } else {
  1063. return -1;
  1064. }
  1065. return 0;
  1066. }
  1067. /**
  1068. * Linearly searches for the most accurate main and fine stage clock scalars
  1069. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1070. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1071. * slower than target.
  1072. *
  1073. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1074. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1075. * @param input_freq Clock frequency to be scaled in Hz
  1076. * @param target_freq Desired clock frequency in Hz
  1077. * @param best_fine_scalar Pointer to store the fine stage divisor
  1078. *
  1079. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1080. * found
  1081. */
  1082. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1083. unsigned int fine_scalar_bits, unsigned int input_rate,
  1084. unsigned int target_rate, unsigned int *best_fine_scalar)
  1085. {
  1086. int i;
  1087. int best_main_scalar = -1;
  1088. unsigned int best_error = target_rate;
  1089. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1090. const unsigned int loops = 1 << main_scaler_bits;
  1091. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1092. target_rate, cap);
  1093. assert(best_fine_scalar != NULL);
  1094. assert(main_scaler_bits <= fine_scalar_bits);
  1095. *best_fine_scalar = 1;
  1096. if (input_rate == 0 || target_rate == 0)
  1097. return -1;
  1098. if (target_rate >= input_rate)
  1099. return 1;
  1100. for (i = 1; i <= loops; i++) {
  1101. const unsigned int effective_div = max(min(input_rate / i /
  1102. target_rate, cap), 1);
  1103. const unsigned int effective_rate = input_rate / i /
  1104. effective_div;
  1105. const int error = target_rate - effective_rate;
  1106. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1107. effective_rate, error);
  1108. if (error >= 0 && error <= best_error) {
  1109. best_error = error;
  1110. best_main_scalar = i;
  1111. *best_fine_scalar = effective_div;
  1112. }
  1113. }
  1114. return best_main_scalar;
  1115. }
  1116. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1117. unsigned int rate)
  1118. {
  1119. struct exynos5_clock *clk =
  1120. (struct exynos5_clock *)samsung_get_base_clock();
  1121. int main;
  1122. unsigned int fine;
  1123. unsigned shift, pre_shift;
  1124. unsigned mask = 0xff;
  1125. u32 *reg;
  1126. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1127. if (main < 0) {
  1128. debug("%s: Cannot set clock rate for periph %d",
  1129. __func__, periph_id);
  1130. return -1;
  1131. }
  1132. main = main - 1;
  1133. fine = fine - 1;
  1134. switch (periph_id) {
  1135. case PERIPH_ID_SPI0:
  1136. reg = &clk->div_peric1;
  1137. shift = 0;
  1138. pre_shift = 8;
  1139. break;
  1140. case PERIPH_ID_SPI1:
  1141. reg = &clk->div_peric1;
  1142. shift = 16;
  1143. pre_shift = 24;
  1144. break;
  1145. case PERIPH_ID_SPI2:
  1146. reg = &clk->div_peric2;
  1147. shift = 0;
  1148. pre_shift = 8;
  1149. break;
  1150. case PERIPH_ID_SPI3:
  1151. reg = &clk->sclk_div_isp;
  1152. shift = 0;
  1153. pre_shift = 4;
  1154. break;
  1155. case PERIPH_ID_SPI4:
  1156. reg = &clk->sclk_div_isp;
  1157. shift = 12;
  1158. pre_shift = 16;
  1159. break;
  1160. default:
  1161. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1162. periph_id);
  1163. return -1;
  1164. }
  1165. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1166. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1167. return 0;
  1168. }
  1169. static unsigned long exynos4_get_i2c_clk(void)
  1170. {
  1171. struct exynos4_clock *clk =
  1172. (struct exynos4_clock *)samsung_get_base_clock();
  1173. unsigned long sclk, aclk_100;
  1174. unsigned int ratio;
  1175. sclk = get_pll_clk(APLL);
  1176. ratio = (readl(&clk->div_top)) >> 4;
  1177. ratio &= 0xf;
  1178. aclk_100 = sclk / (ratio + 1);
  1179. return aclk_100;
  1180. }
  1181. unsigned long get_pll_clk(int pllreg)
  1182. {
  1183. if (cpu_is_exynos5())
  1184. return exynos5_get_pll_clk(pllreg);
  1185. else {
  1186. if (proid_is_exynos4412())
  1187. return exynos4x12_get_pll_clk(pllreg);
  1188. return exynos4_get_pll_clk(pllreg);
  1189. }
  1190. }
  1191. unsigned long get_arm_clk(void)
  1192. {
  1193. if (cpu_is_exynos5())
  1194. return exynos5_get_arm_clk();
  1195. else {
  1196. if (proid_is_exynos4412())
  1197. return exynos4x12_get_arm_clk();
  1198. return exynos4_get_arm_clk();
  1199. }
  1200. }
  1201. unsigned long get_i2c_clk(void)
  1202. {
  1203. if (cpu_is_exynos5()) {
  1204. return exynos5_get_i2c_clk();
  1205. } else if (cpu_is_exynos4()) {
  1206. return exynos4_get_i2c_clk();
  1207. } else {
  1208. debug("I2C clock is not set for this CPU\n");
  1209. return 0;
  1210. }
  1211. }
  1212. unsigned long get_pwm_clk(void)
  1213. {
  1214. if (cpu_is_exynos5())
  1215. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1216. else {
  1217. if (proid_is_exynos4412())
  1218. return exynos4x12_get_pwm_clk();
  1219. return exynos4_get_pwm_clk();
  1220. }
  1221. }
  1222. unsigned long get_uart_clk(int dev_index)
  1223. {
  1224. if (cpu_is_exynos5())
  1225. return exynos5_get_uart_clk(dev_index);
  1226. else {
  1227. if (proid_is_exynos4412())
  1228. return exynos4x12_get_uart_clk(dev_index);
  1229. return exynos4_get_uart_clk(dev_index);
  1230. }
  1231. }
  1232. unsigned long get_mmc_clk(int dev_index)
  1233. {
  1234. if (cpu_is_exynos5())
  1235. return exynos5_get_mmc_clk(dev_index);
  1236. else
  1237. return exynos4_get_mmc_clk(dev_index);
  1238. }
  1239. void set_mmc_clk(int dev_index, unsigned int div)
  1240. {
  1241. if (cpu_is_exynos5())
  1242. exynos5_set_mmc_clk(dev_index, div);
  1243. else {
  1244. if (proid_is_exynos4412())
  1245. exynos4x12_set_mmc_clk(dev_index, div);
  1246. exynos4_set_mmc_clk(dev_index, div);
  1247. }
  1248. }
  1249. unsigned long get_lcd_clk(void)
  1250. {
  1251. if (cpu_is_exynos4())
  1252. return exynos4_get_lcd_clk();
  1253. else
  1254. return exynos5_get_lcd_clk();
  1255. }
  1256. void set_lcd_clk(void)
  1257. {
  1258. if (cpu_is_exynos4())
  1259. exynos4_set_lcd_clk();
  1260. else
  1261. exynos5_set_lcd_clk();
  1262. }
  1263. void set_mipi_clk(void)
  1264. {
  1265. if (cpu_is_exynos4())
  1266. exynos4_set_mipi_clk();
  1267. }
  1268. int set_spi_clk(int periph_id, unsigned int rate)
  1269. {
  1270. if (cpu_is_exynos5())
  1271. return exynos5_set_spi_clk(periph_id, rate);
  1272. else
  1273. return 0;
  1274. }
  1275. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq,
  1276. unsigned int i2s_id)
  1277. {
  1278. if (cpu_is_exynos5())
  1279. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq, i2s_id);
  1280. else
  1281. return 0;
  1282. }
  1283. int set_i2s_clk_source(unsigned int i2s_id)
  1284. {
  1285. if (cpu_is_exynos5())
  1286. return exynos5_set_i2s_clk_source(i2s_id);
  1287. else
  1288. return 0;
  1289. }
  1290. int set_epll_clk(unsigned long rate)
  1291. {
  1292. if (cpu_is_exynos5())
  1293. return exynos5_set_epll_clk(rate);
  1294. else
  1295. return 0;
  1296. }