clock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744
  1. /*
  2. * Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* Tegra30 Clock control functions */
  17. #include <common.h>
  18. #include <errno.h>
  19. #include <asm/io.h>
  20. #include <asm/arch/clock.h>
  21. #include <asm/arch/tegra.h>
  22. #include <asm/arch-tegra/clk_rst.h>
  23. #include <asm/arch-tegra/timer.h>
  24. #include <div64.h>
  25. #include <fdtdec.h>
  26. /*
  27. * Clock types that we can use as a source. The Tegra30 has muxes for the
  28. * peripheral clocks, and in most cases there are four options for the clock
  29. * source. This gives us a clock 'type' and exploits what commonality exists
  30. * in the device.
  31. *
  32. * Letters are obvious, except for T which means CLK_M, and S which means the
  33. * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  34. * datasheet) and PLL_M are different things. The former is the basic
  35. * clock supplied to the SOC from an external oscillator. The latter is the
  36. * memory clock PLL.
  37. *
  38. * See definitions in clock_id in the header file.
  39. */
  40. enum clock_type_id {
  41. CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
  42. CLOCK_TYPE_MCPA, /* and so on */
  43. CLOCK_TYPE_MCPT,
  44. CLOCK_TYPE_PCM,
  45. CLOCK_TYPE_PCMT,
  46. CLOCK_TYPE_PCMT16,
  47. CLOCK_TYPE_PDCT,
  48. CLOCK_TYPE_ACPT,
  49. CLOCK_TYPE_ASPTE,
  50. CLOCK_TYPE_PMDACD2T,
  51. CLOCK_TYPE_PCST,
  52. CLOCK_TYPE_COUNT,
  53. CLOCK_TYPE_NONE = -1, /* invalid clock type */
  54. };
  55. enum {
  56. CLOCK_MAX_MUX = 8 /* number of source options for each clock */
  57. };
  58. /*
  59. * Clock source mux for each clock type. This just converts our enum into
  60. * a list of mux sources for use by the code.
  61. *
  62. * Note:
  63. * The extra column in each clock source array is used to store the mask
  64. * bits in its register for the source.
  65. */
  66. #define CLK(x) CLOCK_ID_ ## x
  67. static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
  68. { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
  69. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  70. MASK_BITS_31_30},
  71. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
  72. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  73. MASK_BITS_31_30},
  74. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  75. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  76. MASK_BITS_31_30},
  77. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
  78. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  79. MASK_BITS_31_30},
  80. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
  81. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  82. MASK_BITS_31_30},
  83. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
  84. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  85. MASK_BITS_31_30},
  86. { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
  87. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  88. MASK_BITS_31_30},
  89. { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  90. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  91. MASK_BITS_31_30},
  92. { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
  93. CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
  94. MASK_BITS_31_29},
  95. { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
  96. CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
  97. MASK_BITS_31_29},
  98. { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
  99. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  100. MASK_BITS_31_28}
  101. };
  102. /*
  103. * Clock type for each peripheral clock source. We put the name in each
  104. * record just so it is easy to match things up
  105. */
  106. #define TYPE(name, type) type
  107. static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
  108. /* 0x00 */
  109. TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
  110. TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
  111. TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
  112. TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
  113. TYPE(PERIPHC_PWM, CLOCK_TYPE_PCST), /* only PWM uses b29:28 */
  114. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  115. TYPE(PERIPHC_SBC2, CLOCK_TYPE_PCMT),
  116. TYPE(PERIPHC_SBC3, CLOCK_TYPE_PCMT),
  117. /* 0x08 */
  118. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  119. TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
  120. TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
  121. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  122. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  123. TYPE(PERIPHC_SBC1, CLOCK_TYPE_PCMT),
  124. TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
  125. TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
  126. /* 0x10 */
  127. TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
  128. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  129. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  130. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  131. TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
  132. TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
  133. TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
  134. TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
  135. /* 0x18 */
  136. TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
  137. TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
  138. TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
  139. TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
  140. TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
  141. TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), /* MIPI base-band HSI */
  142. TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
  143. TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
  144. /* 0x20 */
  145. TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
  146. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  147. TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
  148. TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
  149. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  150. TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
  151. TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
  152. TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
  153. /* 0x28 */
  154. TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
  155. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  156. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  157. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  158. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  159. TYPE(PERIPHC_SBC4, CLOCK_TYPE_PCMT),
  160. TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
  161. TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
  162. /* 0x30 */
  163. TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
  164. TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
  165. TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
  166. TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
  167. TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
  168. TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
  169. TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
  170. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  171. /* 0x38h */ /* Jumps to reg offset 0x3B0h - new for T30 */
  172. TYPE(PERIPHC_G3D2, CLOCK_TYPE_MCPA),
  173. TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PCMT),
  174. TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PCST), /* s/b PCTS */
  175. TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
  176. TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
  177. TYPE(PERIPHC_I2C4, CLOCK_TYPE_PCMT16),
  178. TYPE(PERIPHC_SBC5, CLOCK_TYPE_PCMT),
  179. TYPE(PERIPHC_SBC6, CLOCK_TYPE_PCMT),
  180. /* 0x40 */
  181. TYPE(PERIPHC_AUDIO, CLOCK_TYPE_ACPT),
  182. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  183. TYPE(PERIPHC_DAM0, CLOCK_TYPE_ACPT),
  184. TYPE(PERIPHC_DAM1, CLOCK_TYPE_ACPT),
  185. TYPE(PERIPHC_DAM2, CLOCK_TYPE_ACPT),
  186. TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
  187. TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PCST), /* MASK 31:30 */
  188. TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
  189. /* 0x48 */
  190. TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
  191. TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
  192. TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
  193. TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PCST), /* MASK 31:30 */
  194. TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
  195. TYPE(PERIPHC_SPEEDO, CLOCK_TYPE_PCMT),
  196. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  197. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  198. /* 0x50 */
  199. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  200. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  201. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  202. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  203. TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), /* offset 0x420h */
  204. TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
  205. TYPE(PERIPHC_HDA, CLOCK_TYPE_PCMT),
  206. };
  207. /*
  208. * This array translates a periph_id to a periphc_internal_id
  209. *
  210. * Not present/matched up:
  211. * uint vi_sensor; _VI_SENSOR_0, 0x1A8
  212. * SPDIF - which is both 0x08 and 0x0c
  213. *
  214. */
  215. #define NONE(name) (-1)
  216. #define OFFSET(name, value) PERIPHC_ ## name
  217. static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
  218. /* Low word: 31:0 */
  219. NONE(CPU),
  220. NONE(COP),
  221. NONE(TRIGSYS),
  222. NONE(RESERVED3),
  223. NONE(RESERVED4),
  224. NONE(TMR),
  225. PERIPHC_UART1,
  226. PERIPHC_UART2, /* and vfir 0x68 */
  227. /* 8 */
  228. NONE(GPIO),
  229. PERIPHC_SDMMC2,
  230. NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
  231. PERIPHC_I2S1,
  232. PERIPHC_I2C1,
  233. PERIPHC_NDFLASH,
  234. PERIPHC_SDMMC1,
  235. PERIPHC_SDMMC4,
  236. /* 16 */
  237. NONE(RESERVED16),
  238. PERIPHC_PWM,
  239. PERIPHC_I2S2,
  240. PERIPHC_EPP,
  241. PERIPHC_VI,
  242. PERIPHC_G2D,
  243. NONE(USBD),
  244. NONE(ISP),
  245. /* 24 */
  246. PERIPHC_G3D,
  247. NONE(RESERVED25),
  248. PERIPHC_DISP2,
  249. PERIPHC_DISP1,
  250. PERIPHC_HOST1X,
  251. NONE(VCP),
  252. PERIPHC_I2S0,
  253. NONE(CACHE2),
  254. /* Middle word: 63:32 */
  255. NONE(MEM),
  256. NONE(AHBDMA),
  257. NONE(APBDMA),
  258. NONE(RESERVED35),
  259. NONE(RESERVED36),
  260. NONE(STAT_MON),
  261. NONE(RESERVED38),
  262. NONE(RESERVED39),
  263. /* 40 */
  264. NONE(KFUSE),
  265. PERIPHC_SBC1,
  266. PERIPHC_NOR,
  267. NONE(RESERVED43),
  268. PERIPHC_SBC2,
  269. NONE(RESERVED45),
  270. PERIPHC_SBC3,
  271. PERIPHC_DVC_I2C,
  272. /* 48 */
  273. NONE(DSI),
  274. PERIPHC_TVO, /* also CVE 0x40 */
  275. PERIPHC_MIPI,
  276. PERIPHC_HDMI,
  277. NONE(CSI),
  278. PERIPHC_TVDAC,
  279. PERIPHC_I2C2,
  280. PERIPHC_UART3,
  281. /* 56 */
  282. NONE(RESERVED56),
  283. PERIPHC_EMC,
  284. NONE(USB2),
  285. NONE(USB3),
  286. PERIPHC_MPE,
  287. PERIPHC_VDE,
  288. NONE(BSEA),
  289. NONE(BSEV),
  290. /* Upper word 95:64 */
  291. PERIPHC_SPEEDO,
  292. PERIPHC_UART4,
  293. PERIPHC_UART5,
  294. PERIPHC_I2C3,
  295. PERIPHC_SBC4,
  296. PERIPHC_SDMMC3,
  297. NONE(PCIE),
  298. PERIPHC_OWR,
  299. /* 72 */
  300. NONE(AFI),
  301. PERIPHC_CSITE,
  302. NONE(PCIEXCLK),
  303. NONE(AVPUCQ),
  304. NONE(RESERVED76),
  305. NONE(RESERVED77),
  306. NONE(RESERVED78),
  307. NONE(DTV),
  308. /* 80 */
  309. PERIPHC_NANDSPEED,
  310. PERIPHC_I2CSLOW,
  311. NONE(DSIB),
  312. NONE(RESERVED83),
  313. NONE(IRAMA),
  314. NONE(IRAMB),
  315. NONE(IRAMC),
  316. NONE(IRAMD),
  317. /* 88 */
  318. NONE(CRAM2),
  319. NONE(RESERVED89),
  320. NONE(MDOUBLER),
  321. NONE(RESERVED91),
  322. NONE(SUSOUT),
  323. NONE(RESERVED93),
  324. NONE(RESERVED94),
  325. NONE(RESERVED95),
  326. /* V word: 31:0 */
  327. NONE(CPUG),
  328. NONE(CPULP),
  329. PERIPHC_G3D2,
  330. PERIPHC_MSELECT,
  331. PERIPHC_TSENSOR,
  332. PERIPHC_I2S3,
  333. PERIPHC_I2S4,
  334. PERIPHC_I2C4,
  335. /* 08 */
  336. PERIPHC_SBC5,
  337. PERIPHC_SBC6,
  338. PERIPHC_AUDIO,
  339. NONE(APBIF),
  340. PERIPHC_DAM0,
  341. PERIPHC_DAM1,
  342. PERIPHC_DAM2,
  343. PERIPHC_HDA2CODEC2X,
  344. /* 16 */
  345. NONE(ATOMICS),
  346. NONE(RESERVED17),
  347. NONE(RESERVED18),
  348. NONE(RESERVED19),
  349. NONE(RESERVED20),
  350. NONE(RESERVED21),
  351. NONE(RESERVED22),
  352. PERIPHC_ACTMON,
  353. /* 24 */
  354. NONE(RESERVED24),
  355. NONE(RESERVED25),
  356. NONE(RESERVED26),
  357. NONE(RESERVED27),
  358. PERIPHC_SATA,
  359. PERIPHC_HDA,
  360. NONE(RESERVED30),
  361. NONE(RESERVED31),
  362. /* W word: 31:0 */
  363. NONE(HDA2HDMICODEC),
  364. NONE(SATACOLD),
  365. NONE(RESERVED0_PCIERX0),
  366. NONE(RESERVED1_PCIERX1),
  367. NONE(RESERVED2_PCIERX2),
  368. NONE(RESERVED3_PCIERX3),
  369. NONE(RESERVED4_PCIERX4),
  370. NONE(RESERVED5_PCIERX5),
  371. /* 40 */
  372. NONE(CEC),
  373. NONE(RESERVED6_PCIE2),
  374. NONE(RESERVED7_EMC),
  375. NONE(RESERVED8_HDMI),
  376. NONE(RESERVED9_SATA),
  377. NONE(RESERVED10_MIPI),
  378. NONE(EX_RESERVED46),
  379. NONE(EX_RESERVED47),
  380. };
  381. /*
  382. * Get the oscillator frequency, from the corresponding hardware configuration
  383. * field. Note that T30 supports 3 new higher freqs, but we map back
  384. * to the old T20 freqs. Support for the higher oscillators is TBD.
  385. */
  386. enum clock_osc_freq clock_get_osc_freq(void)
  387. {
  388. struct clk_rst_ctlr *clkrst =
  389. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  390. u32 reg;
  391. reg = readl(&clkrst->crc_osc_ctrl);
  392. reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
  393. if (reg & 1) /* one of the newer freqs */
  394. printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
  395. return reg >> 2; /* Map to most common (T20) freqs */
  396. }
  397. /* Returns a pointer to the clock source register for a peripheral */
  398. u32 *get_periph_source_reg(enum periph_id periph_id)
  399. {
  400. struct clk_rst_ctlr *clkrst =
  401. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  402. enum periphc_internal_id internal_id;
  403. /* Coresight is a special case */
  404. if (periph_id == PERIPH_ID_CSI)
  405. return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
  406. assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
  407. internal_id = periph_id_to_internal_id[periph_id];
  408. assert(internal_id != -1);
  409. if (internal_id >= PERIPHC_VW_FIRST) {
  410. internal_id -= PERIPHC_VW_FIRST;
  411. return &clkrst->crc_clk_src_vw[internal_id];
  412. } else
  413. return &clkrst->crc_clk_src[internal_id];
  414. }
  415. /**
  416. * Given a peripheral ID and the required source clock, this returns which
  417. * value should be programmed into the source mux for that peripheral.
  418. *
  419. * There is special code here to handle the one source type with 5 sources.
  420. *
  421. * @param periph_id peripheral to start
  422. * @param source PLL id of required parent clock
  423. * @param mux_bits Set to number of bits in mux register: 2 or 4
  424. * @param divider_bits Set to number of divider bits (8 or 16)
  425. * @return mux value (0-4, or -1 if not found)
  426. */
  427. int get_periph_clock_source(enum periph_id periph_id,
  428. enum clock_id parent, int *mux_bits, int *divider_bits)
  429. {
  430. enum clock_type_id type;
  431. enum periphc_internal_id internal_id;
  432. int mux;
  433. assert(clock_periph_id_isvalid(periph_id));
  434. internal_id = periph_id_to_internal_id[periph_id];
  435. assert(periphc_internal_id_isvalid(internal_id));
  436. type = clock_periph_type[internal_id];
  437. assert(clock_type_id_isvalid(type));
  438. *mux_bits = clock_source[type][CLOCK_MAX_MUX];
  439. if (type == CLOCK_TYPE_PCMT16)
  440. *divider_bits = 16;
  441. else
  442. *divider_bits = 8;
  443. for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
  444. if (clock_source[type][mux] == parent)
  445. return mux;
  446. /* if we get here, either us or the caller has made a mistake */
  447. printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
  448. parent);
  449. return -1;
  450. }
  451. void clock_set_enable(enum periph_id periph_id, int enable)
  452. {
  453. struct clk_rst_ctlr *clkrst =
  454. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  455. u32 *clk;
  456. u32 reg;
  457. /* Enable/disable the clock to this peripheral */
  458. assert(clock_periph_id_isvalid(periph_id));
  459. if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
  460. clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
  461. else
  462. clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
  463. reg = readl(clk);
  464. if (enable)
  465. reg |= PERIPH_MASK(periph_id);
  466. else
  467. reg &= ~PERIPH_MASK(periph_id);
  468. writel(reg, clk);
  469. }
  470. void reset_set_enable(enum periph_id periph_id, int enable)
  471. {
  472. struct clk_rst_ctlr *clkrst =
  473. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  474. u32 *reset;
  475. u32 reg;
  476. /* Enable/disable reset to the peripheral */
  477. assert(clock_periph_id_isvalid(periph_id));
  478. if (periph_id < PERIPH_ID_VW_FIRST)
  479. reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
  480. else
  481. reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
  482. reg = readl(reset);
  483. if (enable)
  484. reg |= PERIPH_MASK(periph_id);
  485. else
  486. reg &= ~PERIPH_MASK(periph_id);
  487. writel(reg, reset);
  488. }
  489. #ifdef CONFIG_OF_CONTROL
  490. /*
  491. * Convert a device tree clock ID to our peripheral ID. They are mostly
  492. * the same but we are very cautious so we check that a valid clock ID is
  493. * provided.
  494. *
  495. * @param clk_id Clock ID according to tegra30 device tree binding
  496. * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
  497. */
  498. enum periph_id clk_id_to_periph_id(int clk_id)
  499. {
  500. if (clk_id > PERIPH_ID_COUNT)
  501. return PERIPH_ID_NONE;
  502. switch (clk_id) {
  503. case PERIPH_ID_RESERVED3:
  504. case PERIPH_ID_RESERVED4:
  505. case PERIPH_ID_RESERVED16:
  506. case PERIPH_ID_RESERVED24:
  507. case PERIPH_ID_RESERVED35:
  508. case PERIPH_ID_RESERVED43:
  509. case PERIPH_ID_RESERVED45:
  510. case PERIPH_ID_RESERVED56:
  511. case PERIPH_ID_PCIEXCLK:
  512. case PERIPH_ID_RESERVED76:
  513. case PERIPH_ID_RESERVED77:
  514. case PERIPH_ID_RESERVED78:
  515. case PERIPH_ID_RESERVED83:
  516. case PERIPH_ID_RESERVED89:
  517. case PERIPH_ID_RESERVED91:
  518. case PERIPH_ID_RESERVED93:
  519. case PERIPH_ID_RESERVED94:
  520. case PERIPH_ID_RESERVED95:
  521. return PERIPH_ID_NONE;
  522. default:
  523. return clk_id;
  524. }
  525. }
  526. #endif /* CONFIG_OF_CONTROL */
  527. void clock_early_init(void)
  528. {
  529. tegra30_set_up_pllp();
  530. }
  531. void arch_timer_init(void)
  532. {
  533. }
  534. #define PMC_SATA_PWRGT 0x1ac
  535. #define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
  536. #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
  537. #define PLLE_SS_CNTL 0x68
  538. #define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
  539. #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
  540. #define PLLE_SS_CNTL_SSCBYP (1 << 12)
  541. #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
  542. #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
  543. #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
  544. #define PLLE_BASE 0x0e8
  545. #define PLLE_BASE_ENABLE_CML (1 << 31)
  546. #define PLLE_BASE_ENABLE (1 << 30)
  547. #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
  548. #define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
  549. #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
  550. #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
  551. #define PLLE_MISC 0x0ec
  552. #define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
  553. #define PLLE_MISC_PLL_READY (1 << 15)
  554. #define PLLE_MISC_LOCK (1 << 11)
  555. #define PLLE_MISC_LOCK_ENABLE (1 << 9)
  556. #define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
  557. static int tegra_plle_train(void)
  558. {
  559. unsigned int timeout = 2000;
  560. unsigned long value;
  561. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  562. value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  563. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  564. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  565. value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
  566. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  567. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  568. value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  569. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  570. do {
  571. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  572. if (value & PLLE_MISC_PLL_READY)
  573. break;
  574. udelay(100);
  575. } while (--timeout);
  576. if (timeout == 0) {
  577. error("timeout waiting for PLLE to become ready");
  578. return -ETIMEDOUT;
  579. }
  580. return 0;
  581. }
  582. int tegra_plle_enable(void)
  583. {
  584. unsigned int cpcon = 11, p = 18, n = 150, m = 1, timeout = 1000;
  585. u32 value;
  586. int err;
  587. /* disable PLLE clock */
  588. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  589. value &= ~PLLE_BASE_ENABLE_CML;
  590. value &= ~PLLE_BASE_ENABLE;
  591. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  592. /* clear lock enable and setup field */
  593. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  594. value &= ~PLLE_MISC_LOCK_ENABLE;
  595. value &= ~PLLE_MISC_SETUP_BASE(0xffff);
  596. value &= ~PLLE_MISC_SETUP_EXT(0x3);
  597. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  598. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  599. if ((value & PLLE_MISC_PLL_READY) == 0) {
  600. err = tegra_plle_train();
  601. if (err < 0) {
  602. error("failed to train PLLE: %d", err);
  603. return err;
  604. }
  605. }
  606. /* configure PLLE */
  607. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  608. value &= ~PLLE_BASE_PLDIV_CML(0x0f);
  609. value |= PLLE_BASE_PLDIV_CML(cpcon);
  610. value &= ~PLLE_BASE_PLDIV(0x3f);
  611. value |= PLLE_BASE_PLDIV(p);
  612. value &= ~PLLE_BASE_NDIV(0xff);
  613. value |= PLLE_BASE_NDIV(n);
  614. value &= ~PLLE_BASE_MDIV(0xff);
  615. value |= PLLE_BASE_MDIV(m);
  616. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  617. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  618. value |= PLLE_MISC_SETUP_BASE(0x7);
  619. value |= PLLE_MISC_LOCK_ENABLE;
  620. value |= PLLE_MISC_SETUP_EXT(0);
  621. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  622. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  623. value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
  624. PLLE_SS_CNTL_BYPASS_SS;
  625. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  626. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  627. value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
  628. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  629. do {
  630. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  631. if (value & PLLE_MISC_LOCK)
  632. break;
  633. udelay(2);
  634. } while (--timeout);
  635. if (timeout == 0) {
  636. error("timeout waiting for PLLE to lock");
  637. return -ETIMEDOUT;
  638. }
  639. udelay(50);
  640. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  641. value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
  642. value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
  643. value &= ~PLLE_SS_CNTL_SSCINC(0xff);
  644. value |= PLLE_SS_CNTL_SSCINC(0x01);
  645. value &= ~PLLE_SS_CNTL_SSCBYP;
  646. value &= ~PLLE_SS_CNTL_INTERP_RESET;
  647. value &= ~PLLE_SS_CNTL_BYPASS_SS;
  648. value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
  649. value |= PLLE_SS_CNTL_SSCMAX(0x24);
  650. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  651. return 0;
  652. }