mtdpart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. *
  10. */
  11. #ifndef __UBOOT__
  12. #include <linux/module.h>
  13. #include <linux/types.h>
  14. #include <linux/kernel.h>
  15. #include <linux/slab.h>
  16. #include <linux/list.h>
  17. #include <linux/kmod.h>
  18. #endif
  19. #include <common.h>
  20. #include <malloc.h>
  21. #include <asm/errno.h>
  22. #include <linux/compat.h>
  23. #include <ubi_uboot.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/err.h>
  27. #include "mtdcore.h"
  28. /* Our partition linked list */
  29. static LIST_HEAD(mtd_partitions);
  30. #ifndef __UBOOT__
  31. static DEFINE_MUTEX(mtd_partitions_mutex);
  32. #else
  33. DEFINE_MUTEX(mtd_partitions_mutex);
  34. #endif
  35. /* Our partition node structure */
  36. struct mtd_part {
  37. struct mtd_info mtd;
  38. struct mtd_info *master;
  39. uint64_t offset;
  40. struct list_head list;
  41. };
  42. /*
  43. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  44. * the pointer to that structure with this macro.
  45. */
  46. #define PART(x) ((struct mtd_part *)(x))
  47. #ifdef __UBOOT__
  48. /* from mm/util.c */
  49. /**
  50. * kstrdup - allocate space for and copy an existing string
  51. * @s: the string to duplicate
  52. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  53. */
  54. char *kstrdup(const char *s, gfp_t gfp)
  55. {
  56. size_t len;
  57. char *buf;
  58. if (!s)
  59. return NULL;
  60. len = strlen(s) + 1;
  61. buf = kmalloc(len, gfp);
  62. if (buf)
  63. memcpy(buf, s, len);
  64. return buf;
  65. }
  66. #endif
  67. /*
  68. * MTD methods which simply translate the effective address and pass through
  69. * to the _real_ device.
  70. */
  71. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  72. size_t *retlen, u_char *buf)
  73. {
  74. struct mtd_part *part = PART(mtd);
  75. struct mtd_ecc_stats stats;
  76. int res;
  77. stats = part->master->ecc_stats;
  78. res = part->master->_read(part->master, from + part->offset, len,
  79. retlen, buf);
  80. if (unlikely(mtd_is_eccerr(res)))
  81. mtd->ecc_stats.failed +=
  82. part->master->ecc_stats.failed - stats.failed;
  83. else
  84. mtd->ecc_stats.corrected +=
  85. part->master->ecc_stats.corrected - stats.corrected;
  86. return res;
  87. }
  88. #ifndef __UBOOT__
  89. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  90. size_t *retlen, void **virt, resource_size_t *phys)
  91. {
  92. struct mtd_part *part = PART(mtd);
  93. return part->master->_point(part->master, from + part->offset, len,
  94. retlen, virt, phys);
  95. }
  96. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  97. {
  98. struct mtd_part *part = PART(mtd);
  99. return part->master->_unpoint(part->master, from + part->offset, len);
  100. }
  101. #endif
  102. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  103. unsigned long len,
  104. unsigned long offset,
  105. unsigned long flags)
  106. {
  107. struct mtd_part *part = PART(mtd);
  108. offset += part->offset;
  109. return part->master->_get_unmapped_area(part->master, len, offset,
  110. flags);
  111. }
  112. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  113. struct mtd_oob_ops *ops)
  114. {
  115. struct mtd_part *part = PART(mtd);
  116. int res;
  117. if (from >= mtd->size)
  118. return -EINVAL;
  119. if (ops->datbuf && from + ops->len > mtd->size)
  120. return -EINVAL;
  121. /*
  122. * If OOB is also requested, make sure that we do not read past the end
  123. * of this partition.
  124. */
  125. if (ops->oobbuf) {
  126. size_t len, pages;
  127. if (ops->mode == MTD_OPS_AUTO_OOB)
  128. len = mtd->oobavail;
  129. else
  130. len = mtd->oobsize;
  131. pages = mtd_div_by_ws(mtd->size, mtd);
  132. pages -= mtd_div_by_ws(from, mtd);
  133. if (ops->ooboffs + ops->ooblen > pages * len)
  134. return -EINVAL;
  135. }
  136. res = part->master->_read_oob(part->master, from + part->offset, ops);
  137. if (unlikely(res)) {
  138. if (mtd_is_bitflip(res))
  139. mtd->ecc_stats.corrected++;
  140. if (mtd_is_eccerr(res))
  141. mtd->ecc_stats.failed++;
  142. }
  143. return res;
  144. }
  145. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  146. size_t len, size_t *retlen, u_char *buf)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. return part->master->_read_user_prot_reg(part->master, from, len,
  150. retlen, buf);
  151. }
  152. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  153. size_t *retlen, struct otp_info *buf)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return part->master->_get_user_prot_info(part->master, len, retlen,
  157. buf);
  158. }
  159. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  160. size_t len, size_t *retlen, u_char *buf)
  161. {
  162. struct mtd_part *part = PART(mtd);
  163. return part->master->_read_fact_prot_reg(part->master, from, len,
  164. retlen, buf);
  165. }
  166. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  167. size_t *retlen, struct otp_info *buf)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. return part->master->_get_fact_prot_info(part->master, len, retlen,
  171. buf);
  172. }
  173. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  174. size_t *retlen, const u_char *buf)
  175. {
  176. struct mtd_part *part = PART(mtd);
  177. return part->master->_write(part->master, to + part->offset, len,
  178. retlen, buf);
  179. }
  180. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  181. size_t *retlen, const u_char *buf)
  182. {
  183. struct mtd_part *part = PART(mtd);
  184. return part->master->_panic_write(part->master, to + part->offset, len,
  185. retlen, buf);
  186. }
  187. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  188. struct mtd_oob_ops *ops)
  189. {
  190. struct mtd_part *part = PART(mtd);
  191. if (to >= mtd->size)
  192. return -EINVAL;
  193. if (ops->datbuf && to + ops->len > mtd->size)
  194. return -EINVAL;
  195. return part->master->_write_oob(part->master, to + part->offset, ops);
  196. }
  197. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  198. size_t len, size_t *retlen, u_char *buf)
  199. {
  200. struct mtd_part *part = PART(mtd);
  201. return part->master->_write_user_prot_reg(part->master, from, len,
  202. retlen, buf);
  203. }
  204. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  205. size_t len)
  206. {
  207. struct mtd_part *part = PART(mtd);
  208. return part->master->_lock_user_prot_reg(part->master, from, len);
  209. }
  210. #ifndef __UBOOT__
  211. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  212. unsigned long count, loff_t to, size_t *retlen)
  213. {
  214. struct mtd_part *part = PART(mtd);
  215. return part->master->_writev(part->master, vecs, count,
  216. to + part->offset, retlen);
  217. }
  218. #endif
  219. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  220. {
  221. struct mtd_part *part = PART(mtd);
  222. int ret;
  223. instr->addr += part->offset;
  224. ret = part->master->_erase(part->master, instr);
  225. if (ret) {
  226. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  227. instr->fail_addr -= part->offset;
  228. instr->addr -= part->offset;
  229. }
  230. return ret;
  231. }
  232. void mtd_erase_callback(struct erase_info *instr)
  233. {
  234. if (instr->mtd->_erase == part_erase) {
  235. struct mtd_part *part = PART(instr->mtd);
  236. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  237. instr->fail_addr -= part->offset;
  238. instr->addr -= part->offset;
  239. }
  240. if (instr->callback)
  241. instr->callback(instr);
  242. }
  243. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  244. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. return part->master->_lock(part->master, ofs + part->offset, len);
  248. }
  249. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  250. {
  251. struct mtd_part *part = PART(mtd);
  252. return part->master->_unlock(part->master, ofs + part->offset, len);
  253. }
  254. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  255. {
  256. struct mtd_part *part = PART(mtd);
  257. return part->master->_is_locked(part->master, ofs + part->offset, len);
  258. }
  259. static void part_sync(struct mtd_info *mtd)
  260. {
  261. struct mtd_part *part = PART(mtd);
  262. part->master->_sync(part->master);
  263. }
  264. #ifndef __UBOOT__
  265. static int part_suspend(struct mtd_info *mtd)
  266. {
  267. struct mtd_part *part = PART(mtd);
  268. return part->master->_suspend(part->master);
  269. }
  270. static void part_resume(struct mtd_info *mtd)
  271. {
  272. struct mtd_part *part = PART(mtd);
  273. part->master->_resume(part->master);
  274. }
  275. #endif
  276. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  277. {
  278. struct mtd_part *part = PART(mtd);
  279. ofs += part->offset;
  280. return part->master->_block_isbad(part->master, ofs);
  281. }
  282. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  283. {
  284. struct mtd_part *part = PART(mtd);
  285. int res;
  286. ofs += part->offset;
  287. res = part->master->_block_markbad(part->master, ofs);
  288. if (!res)
  289. mtd->ecc_stats.badblocks++;
  290. return res;
  291. }
  292. static inline void free_partition(struct mtd_part *p)
  293. {
  294. kfree(p->mtd.name);
  295. kfree(p);
  296. }
  297. /*
  298. * This function unregisters and destroy all slave MTD objects which are
  299. * attached to the given master MTD object.
  300. */
  301. int del_mtd_partitions(struct mtd_info *master)
  302. {
  303. struct mtd_part *slave, *next;
  304. int ret, err = 0;
  305. mutex_lock(&mtd_partitions_mutex);
  306. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  307. if (slave->master == master) {
  308. ret = del_mtd_device(&slave->mtd);
  309. if (ret < 0) {
  310. err = ret;
  311. continue;
  312. }
  313. list_del(&slave->list);
  314. free_partition(slave);
  315. }
  316. mutex_unlock(&mtd_partitions_mutex);
  317. return err;
  318. }
  319. static struct mtd_part *allocate_partition(struct mtd_info *master,
  320. const struct mtd_partition *part, int partno,
  321. uint64_t cur_offset)
  322. {
  323. struct mtd_part *slave;
  324. char *name;
  325. /* allocate the partition structure */
  326. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  327. name = kstrdup(part->name, GFP_KERNEL);
  328. if (!name || !slave) {
  329. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  330. master->name);
  331. kfree(name);
  332. kfree(slave);
  333. return ERR_PTR(-ENOMEM);
  334. }
  335. /* set up the MTD object for this partition */
  336. slave->mtd.type = master->type;
  337. slave->mtd.flags = master->flags & ~part->mask_flags;
  338. slave->mtd.size = part->size;
  339. slave->mtd.writesize = master->writesize;
  340. slave->mtd.writebufsize = master->writebufsize;
  341. slave->mtd.oobsize = master->oobsize;
  342. slave->mtd.oobavail = master->oobavail;
  343. slave->mtd.subpage_sft = master->subpage_sft;
  344. slave->mtd.name = name;
  345. slave->mtd.owner = master->owner;
  346. #ifndef __UBOOT__
  347. slave->mtd.backing_dev_info = master->backing_dev_info;
  348. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  349. * to have the same data be in two different partitions.
  350. */
  351. slave->mtd.dev.parent = master->dev.parent;
  352. #endif
  353. slave->mtd._read = part_read;
  354. slave->mtd._write = part_write;
  355. if (master->_panic_write)
  356. slave->mtd._panic_write = part_panic_write;
  357. #ifndef __UBOOT__
  358. if (master->_point && master->_unpoint) {
  359. slave->mtd._point = part_point;
  360. slave->mtd._unpoint = part_unpoint;
  361. }
  362. #endif
  363. if (master->_get_unmapped_area)
  364. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  365. if (master->_read_oob)
  366. slave->mtd._read_oob = part_read_oob;
  367. if (master->_write_oob)
  368. slave->mtd._write_oob = part_write_oob;
  369. if (master->_read_user_prot_reg)
  370. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  371. if (master->_read_fact_prot_reg)
  372. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  373. if (master->_write_user_prot_reg)
  374. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  375. if (master->_lock_user_prot_reg)
  376. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  377. if (master->_get_user_prot_info)
  378. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  379. if (master->_get_fact_prot_info)
  380. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  381. if (master->_sync)
  382. slave->mtd._sync = part_sync;
  383. #ifndef __UBOOT__
  384. if (!partno && !master->dev.class && master->_suspend &&
  385. master->_resume) {
  386. slave->mtd._suspend = part_suspend;
  387. slave->mtd._resume = part_resume;
  388. }
  389. if (master->_writev)
  390. slave->mtd._writev = part_writev;
  391. #endif
  392. if (master->_lock)
  393. slave->mtd._lock = part_lock;
  394. if (master->_unlock)
  395. slave->mtd._unlock = part_unlock;
  396. if (master->_is_locked)
  397. slave->mtd._is_locked = part_is_locked;
  398. if (master->_block_isbad)
  399. slave->mtd._block_isbad = part_block_isbad;
  400. if (master->_block_markbad)
  401. slave->mtd._block_markbad = part_block_markbad;
  402. slave->mtd._erase = part_erase;
  403. slave->master = master;
  404. slave->offset = part->offset;
  405. if (slave->offset == MTDPART_OFS_APPEND)
  406. slave->offset = cur_offset;
  407. if (slave->offset == MTDPART_OFS_NXTBLK) {
  408. slave->offset = cur_offset;
  409. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  410. /* Round up to next erasesize */
  411. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  412. debug("Moving partition %d: "
  413. "0x%012llx -> 0x%012llx\n", partno,
  414. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  415. }
  416. }
  417. if (slave->offset == MTDPART_OFS_RETAIN) {
  418. slave->offset = cur_offset;
  419. if (master->size - slave->offset >= slave->mtd.size) {
  420. slave->mtd.size = master->size - slave->offset
  421. - slave->mtd.size;
  422. } else {
  423. debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  424. part->name, master->size - slave->offset,
  425. slave->mtd.size);
  426. /* register to preserve ordering */
  427. goto out_register;
  428. }
  429. }
  430. if (slave->mtd.size == MTDPART_SIZ_FULL)
  431. slave->mtd.size = master->size - slave->offset;
  432. debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  433. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  434. /* let's do some sanity checks */
  435. if (slave->offset >= master->size) {
  436. /* let's register it anyway to preserve ordering */
  437. slave->offset = 0;
  438. slave->mtd.size = 0;
  439. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  440. part->name);
  441. goto out_register;
  442. }
  443. if (slave->offset + slave->mtd.size > master->size) {
  444. slave->mtd.size = master->size - slave->offset;
  445. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  446. part->name, master->name, (unsigned long long)slave->mtd.size);
  447. }
  448. if (master->numeraseregions > 1) {
  449. /* Deal with variable erase size stuff */
  450. int i, max = master->numeraseregions;
  451. u64 end = slave->offset + slave->mtd.size;
  452. struct mtd_erase_region_info *regions = master->eraseregions;
  453. /* Find the first erase regions which is part of this
  454. * partition. */
  455. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  456. ;
  457. /* The loop searched for the region _behind_ the first one */
  458. if (i > 0)
  459. i--;
  460. /* Pick biggest erasesize */
  461. for (; i < max && regions[i].offset < end; i++) {
  462. if (slave->mtd.erasesize < regions[i].erasesize) {
  463. slave->mtd.erasesize = regions[i].erasesize;
  464. }
  465. }
  466. BUG_ON(slave->mtd.erasesize == 0);
  467. } else {
  468. /* Single erase size */
  469. slave->mtd.erasesize = master->erasesize;
  470. }
  471. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  472. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  473. /* Doesn't start on a boundary of major erase size */
  474. /* FIXME: Let it be writable if it is on a boundary of
  475. * _minor_ erase size though */
  476. slave->mtd.flags &= ~MTD_WRITEABLE;
  477. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  478. part->name);
  479. }
  480. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  481. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  482. slave->mtd.flags &= ~MTD_WRITEABLE;
  483. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  484. part->name);
  485. }
  486. slave->mtd.ecclayout = master->ecclayout;
  487. slave->mtd.ecc_step_size = master->ecc_step_size;
  488. slave->mtd.ecc_strength = master->ecc_strength;
  489. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  490. if (master->_block_isbad) {
  491. uint64_t offs = 0;
  492. while (offs < slave->mtd.size) {
  493. if (mtd_block_isbad(master, offs + slave->offset))
  494. slave->mtd.ecc_stats.badblocks++;
  495. offs += slave->mtd.erasesize;
  496. }
  497. }
  498. out_register:
  499. return slave;
  500. }
  501. #ifndef __UBOOT__
  502. int mtd_add_partition(struct mtd_info *master, const char *name,
  503. long long offset, long long length)
  504. {
  505. struct mtd_partition part;
  506. struct mtd_part *p, *new;
  507. uint64_t start, end;
  508. int ret = 0;
  509. /* the direct offset is expected */
  510. if (offset == MTDPART_OFS_APPEND ||
  511. offset == MTDPART_OFS_NXTBLK)
  512. return -EINVAL;
  513. if (length == MTDPART_SIZ_FULL)
  514. length = master->size - offset;
  515. if (length <= 0)
  516. return -EINVAL;
  517. part.name = name;
  518. part.size = length;
  519. part.offset = offset;
  520. part.mask_flags = 0;
  521. part.ecclayout = NULL;
  522. new = allocate_partition(master, &part, -1, offset);
  523. if (IS_ERR(new))
  524. return PTR_ERR(new);
  525. start = offset;
  526. end = offset + length;
  527. mutex_lock(&mtd_partitions_mutex);
  528. list_for_each_entry(p, &mtd_partitions, list)
  529. if (p->master == master) {
  530. if ((start >= p->offset) &&
  531. (start < (p->offset + p->mtd.size)))
  532. goto err_inv;
  533. if ((end >= p->offset) &&
  534. (end < (p->offset + p->mtd.size)))
  535. goto err_inv;
  536. }
  537. list_add(&new->list, &mtd_partitions);
  538. mutex_unlock(&mtd_partitions_mutex);
  539. add_mtd_device(&new->mtd);
  540. return ret;
  541. err_inv:
  542. mutex_unlock(&mtd_partitions_mutex);
  543. free_partition(new);
  544. return -EINVAL;
  545. }
  546. EXPORT_SYMBOL_GPL(mtd_add_partition);
  547. int mtd_del_partition(struct mtd_info *master, int partno)
  548. {
  549. struct mtd_part *slave, *next;
  550. int ret = -EINVAL;
  551. mutex_lock(&mtd_partitions_mutex);
  552. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  553. if ((slave->master == master) &&
  554. (slave->mtd.index == partno)) {
  555. ret = del_mtd_device(&slave->mtd);
  556. if (ret < 0)
  557. break;
  558. list_del(&slave->list);
  559. free_partition(slave);
  560. break;
  561. }
  562. mutex_unlock(&mtd_partitions_mutex);
  563. return ret;
  564. }
  565. EXPORT_SYMBOL_GPL(mtd_del_partition);
  566. #endif
  567. /*
  568. * This function, given a master MTD object and a partition table, creates
  569. * and registers slave MTD objects which are bound to the master according to
  570. * the partition definitions.
  571. *
  572. * We don't register the master, or expect the caller to have done so,
  573. * for reasons of data integrity.
  574. */
  575. int add_mtd_partitions(struct mtd_info *master,
  576. const struct mtd_partition *parts,
  577. int nbparts)
  578. {
  579. struct mtd_part *slave;
  580. uint64_t cur_offset = 0;
  581. int i;
  582. #ifdef __UBOOT__
  583. /*
  584. * Need to init the list here, since LIST_INIT() does not
  585. * work on platforms where relocation has problems (like MIPS
  586. * & PPC).
  587. */
  588. if (mtd_partitions.next == NULL)
  589. INIT_LIST_HEAD(&mtd_partitions);
  590. #endif
  591. debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  592. for (i = 0; i < nbparts; i++) {
  593. slave = allocate_partition(master, parts + i, i, cur_offset);
  594. if (IS_ERR(slave))
  595. return PTR_ERR(slave);
  596. mutex_lock(&mtd_partitions_mutex);
  597. list_add(&slave->list, &mtd_partitions);
  598. mutex_unlock(&mtd_partitions_mutex);
  599. add_mtd_device(&slave->mtd);
  600. cur_offset = slave->offset + slave->mtd.size;
  601. }
  602. return 0;
  603. }
  604. #ifndef __UBOOT__
  605. static DEFINE_SPINLOCK(part_parser_lock);
  606. static LIST_HEAD(part_parsers);
  607. static struct mtd_part_parser *get_partition_parser(const char *name)
  608. {
  609. struct mtd_part_parser *p, *ret = NULL;
  610. spin_lock(&part_parser_lock);
  611. list_for_each_entry(p, &part_parsers, list)
  612. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  613. ret = p;
  614. break;
  615. }
  616. spin_unlock(&part_parser_lock);
  617. return ret;
  618. }
  619. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  620. void register_mtd_parser(struct mtd_part_parser *p)
  621. {
  622. spin_lock(&part_parser_lock);
  623. list_add(&p->list, &part_parsers);
  624. spin_unlock(&part_parser_lock);
  625. }
  626. EXPORT_SYMBOL_GPL(register_mtd_parser);
  627. void deregister_mtd_parser(struct mtd_part_parser *p)
  628. {
  629. spin_lock(&part_parser_lock);
  630. list_del(&p->list);
  631. spin_unlock(&part_parser_lock);
  632. }
  633. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  634. /*
  635. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  636. * are changing this array!
  637. */
  638. static const char * const default_mtd_part_types[] = {
  639. "cmdlinepart",
  640. "ofpart",
  641. NULL
  642. };
  643. /**
  644. * parse_mtd_partitions - parse MTD partitions
  645. * @master: the master partition (describes whole MTD device)
  646. * @types: names of partition parsers to try or %NULL
  647. * @pparts: array of partitions found is returned here
  648. * @data: MTD partition parser-specific data
  649. *
  650. * This function tries to find partition on MTD device @master. It uses MTD
  651. * partition parsers, specified in @types. However, if @types is %NULL, then
  652. * the default list of parsers is used. The default list contains only the
  653. * "cmdlinepart" and "ofpart" parsers ATM.
  654. * Note: If there are more then one parser in @types, the kernel only takes the
  655. * partitions parsed out by the first parser.
  656. *
  657. * This function may return:
  658. * o a negative error code in case of failure
  659. * o zero if no partitions were found
  660. * o a positive number of found partitions, in which case on exit @pparts will
  661. * point to an array containing this number of &struct mtd_info objects.
  662. */
  663. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  664. struct mtd_partition **pparts,
  665. struct mtd_part_parser_data *data)
  666. {
  667. struct mtd_part_parser *parser;
  668. int ret = 0;
  669. if (!types)
  670. types = default_mtd_part_types;
  671. for ( ; ret <= 0 && *types; types++) {
  672. parser = get_partition_parser(*types);
  673. if (!parser && !request_module("%s", *types))
  674. parser = get_partition_parser(*types);
  675. if (!parser)
  676. continue;
  677. ret = (*parser->parse_fn)(master, pparts, data);
  678. put_partition_parser(parser);
  679. if (ret > 0) {
  680. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  681. ret, parser->name, master->name);
  682. break;
  683. }
  684. }
  685. return ret;
  686. }
  687. #endif
  688. int mtd_is_partition(const struct mtd_info *mtd)
  689. {
  690. struct mtd_part *part;
  691. int ispart = 0;
  692. mutex_lock(&mtd_partitions_mutex);
  693. list_for_each_entry(part, &mtd_partitions, list)
  694. if (&part->mtd == mtd) {
  695. ispart = 1;
  696. break;
  697. }
  698. mutex_unlock(&mtd_partitions_mutex);
  699. return ispart;
  700. }
  701. EXPORT_SYMBOL_GPL(mtd_is_partition);
  702. /* Returns the size of the entire flash chip */
  703. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  704. {
  705. if (!mtd_is_partition(mtd))
  706. return mtd->size;
  707. return PART(mtd)->master->size;
  708. }
  709. EXPORT_SYMBOL_GPL(mtd_get_device_size);