mxs_spi.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Freescale i.MX28 SPI driver
  4. *
  5. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  6. * on behalf of DENX Software Engineering GmbH
  7. *
  8. * NOTE: This driver only supports the SPI-controller chipselects,
  9. * GPIO driven chipselects are not supported.
  10. */
  11. #include <common.h>
  12. #include <malloc.h>
  13. #include <memalign.h>
  14. #include <spi.h>
  15. #include <linux/errno.h>
  16. #include <asm/io.h>
  17. #include <asm/arch/clock.h>
  18. #include <asm/arch/imx-regs.h>
  19. #include <asm/arch/sys_proto.h>
  20. #include <asm/mach-imx/dma.h>
  21. #define MXS_SPI_MAX_TIMEOUT 1000000
  22. #define MXS_SPI_PORT_OFFSET 0x2000
  23. #define MXS_SSP_CHIPSELECT_MASK 0x00300000
  24. #define MXS_SSP_CHIPSELECT_SHIFT 20
  25. #define MXSSSP_SMALL_TRANSFER 512
  26. struct mxs_spi_slave {
  27. struct spi_slave slave;
  28. uint32_t max_khz;
  29. uint32_t mode;
  30. struct mxs_ssp_regs *regs;
  31. };
  32. static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
  33. {
  34. return container_of(slave, struct mxs_spi_slave, slave);
  35. }
  36. void spi_init(void)
  37. {
  38. }
  39. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  40. {
  41. /* MXS SPI: 4 ports and 3 chip selects maximum */
  42. if (!mxs_ssp_bus_id_valid(bus) || cs > 2)
  43. return 0;
  44. else
  45. return 1;
  46. }
  47. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  48. unsigned int max_hz, unsigned int mode)
  49. {
  50. struct mxs_spi_slave *mxs_slave;
  51. if (!spi_cs_is_valid(bus, cs)) {
  52. printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
  53. return NULL;
  54. }
  55. mxs_slave = spi_alloc_slave(struct mxs_spi_slave, bus, cs);
  56. if (!mxs_slave)
  57. return NULL;
  58. if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus))
  59. goto err_init;
  60. mxs_slave->max_khz = max_hz / 1000;
  61. mxs_slave->mode = mode;
  62. mxs_slave->regs = mxs_ssp_regs_by_bus(bus);
  63. return &mxs_slave->slave;
  64. err_init:
  65. free(mxs_slave);
  66. return NULL;
  67. }
  68. void spi_free_slave(struct spi_slave *slave)
  69. {
  70. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  71. free(mxs_slave);
  72. }
  73. int spi_claim_bus(struct spi_slave *slave)
  74. {
  75. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  76. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  77. uint32_t reg = 0;
  78. mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
  79. writel((slave->cs << MXS_SSP_CHIPSELECT_SHIFT) |
  80. SSP_CTRL0_BUS_WIDTH_ONE_BIT,
  81. &ssp_regs->hw_ssp_ctrl0);
  82. reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
  83. reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
  84. reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
  85. writel(reg, &ssp_regs->hw_ssp_ctrl1);
  86. writel(0, &ssp_regs->hw_ssp_cmd0);
  87. mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
  88. return 0;
  89. }
  90. void spi_release_bus(struct spi_slave *slave)
  91. {
  92. }
  93. static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
  94. {
  95. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
  96. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
  97. }
  98. static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
  99. {
  100. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
  101. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
  102. }
  103. static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
  104. char *data, int length, int write, unsigned long flags)
  105. {
  106. struct mxs_ssp_regs *ssp_regs = slave->regs;
  107. if (flags & SPI_XFER_BEGIN)
  108. mxs_spi_start_xfer(ssp_regs);
  109. while (length--) {
  110. /* We transfer 1 byte */
  111. #if defined(CONFIG_MX23)
  112. writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
  113. writel(1, &ssp_regs->hw_ssp_ctrl0_set);
  114. #elif defined(CONFIG_MX28)
  115. writel(1, &ssp_regs->hw_ssp_xfer_size);
  116. #endif
  117. if ((flags & SPI_XFER_END) && !length)
  118. mxs_spi_end_xfer(ssp_regs);
  119. if (write)
  120. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
  121. else
  122. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
  123. writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
  124. if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
  125. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  126. printf("MXS SPI: Timeout waiting for start\n");
  127. return -ETIMEDOUT;
  128. }
  129. if (write)
  130. writel(*data++, &ssp_regs->hw_ssp_data);
  131. writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
  132. if (!write) {
  133. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
  134. SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
  135. printf("MXS SPI: Timeout waiting for data\n");
  136. return -ETIMEDOUT;
  137. }
  138. *data = readl(&ssp_regs->hw_ssp_data);
  139. data++;
  140. }
  141. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
  142. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  143. printf("MXS SPI: Timeout waiting for finish\n");
  144. return -ETIMEDOUT;
  145. }
  146. }
  147. return 0;
  148. }
  149. static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
  150. char *data, int length, int write, unsigned long flags)
  151. {
  152. const int xfer_max_sz = 0xff00;
  153. const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
  154. struct mxs_ssp_regs *ssp_regs = slave->regs;
  155. struct mxs_dma_desc *dp;
  156. uint32_t ctrl0;
  157. uint32_t cache_data_count;
  158. const uint32_t dstart = (uint32_t)data;
  159. int dmach;
  160. int tl;
  161. int ret = 0;
  162. #if defined(CONFIG_MX23)
  163. const int mxs_spi_pio_words = 1;
  164. #elif defined(CONFIG_MX28)
  165. const int mxs_spi_pio_words = 4;
  166. #endif
  167. ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
  168. memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
  169. ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
  170. ctrl0 |= SSP_CTRL0_DATA_XFER;
  171. if (flags & SPI_XFER_BEGIN)
  172. ctrl0 |= SSP_CTRL0_LOCK_CS;
  173. if (!write)
  174. ctrl0 |= SSP_CTRL0_READ;
  175. if (length % ARCH_DMA_MINALIGN)
  176. cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
  177. else
  178. cache_data_count = length;
  179. /* Flush data to DRAM so DMA can pick them up */
  180. if (write)
  181. flush_dcache_range(dstart, dstart + cache_data_count);
  182. /* Invalidate the area, so no writeback into the RAM races with DMA */
  183. invalidate_dcache_range(dstart, dstart + cache_data_count);
  184. dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
  185. dp = desc;
  186. while (length) {
  187. dp->address = (dma_addr_t)dp;
  188. dp->cmd.address = (dma_addr_t)data;
  189. /*
  190. * This is correct, even though it does indeed look insane.
  191. * I hereby have to, wholeheartedly, thank Freescale Inc.,
  192. * for always inventing insane hardware and keeping me busy
  193. * and employed ;-)
  194. */
  195. if (write)
  196. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
  197. else
  198. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
  199. /*
  200. * The DMA controller can transfer large chunks (64kB) at
  201. * time by setting the transfer length to 0. Setting tl to
  202. * 0x10000 will overflow below and make .data contain 0.
  203. * Otherwise, 0xff00 is the transfer maximum.
  204. */
  205. if (length >= 0x10000)
  206. tl = 0x10000;
  207. else
  208. tl = min(length, xfer_max_sz);
  209. dp->cmd.data |=
  210. ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
  211. (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  212. MXS_DMA_DESC_HALT_ON_TERMINATE |
  213. MXS_DMA_DESC_TERMINATE_FLUSH;
  214. data += tl;
  215. length -= tl;
  216. if (!length) {
  217. dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
  218. if (flags & SPI_XFER_END) {
  219. ctrl0 &= ~SSP_CTRL0_LOCK_CS;
  220. ctrl0 |= SSP_CTRL0_IGNORE_CRC;
  221. }
  222. }
  223. /*
  224. * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
  225. * case of MX28, write only CTRL0 in case of MX23 due
  226. * to the difference in register layout. It is utterly
  227. * essential that the XFER_SIZE register is written on
  228. * a per-descriptor basis with the same size as is the
  229. * descriptor!
  230. */
  231. dp->cmd.pio_words[0] = ctrl0;
  232. #ifdef CONFIG_MX28
  233. dp->cmd.pio_words[1] = 0;
  234. dp->cmd.pio_words[2] = 0;
  235. dp->cmd.pio_words[3] = tl;
  236. #endif
  237. mxs_dma_desc_append(dmach, dp);
  238. dp++;
  239. }
  240. if (mxs_dma_go(dmach))
  241. ret = -EINVAL;
  242. /* The data arrived into DRAM, invalidate cache over them */
  243. if (!write)
  244. invalidate_dcache_range(dstart, dstart + cache_data_count);
  245. return ret;
  246. }
  247. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  248. const void *dout, void *din, unsigned long flags)
  249. {
  250. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  251. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  252. int len = bitlen / 8;
  253. char dummy;
  254. int write = 0;
  255. char *data = NULL;
  256. int dma = 1;
  257. if (bitlen == 0) {
  258. if (flags & SPI_XFER_END) {
  259. din = (void *)&dummy;
  260. len = 1;
  261. } else
  262. return 0;
  263. }
  264. /* Half-duplex only */
  265. if (din && dout)
  266. return -EINVAL;
  267. /* No data */
  268. if (!din && !dout)
  269. return 0;
  270. if (dout) {
  271. data = (char *)dout;
  272. write = 1;
  273. } else if (din) {
  274. data = (char *)din;
  275. write = 0;
  276. }
  277. /*
  278. * Check for alignment, if the buffer is aligned, do DMA transfer,
  279. * PIO otherwise. This is a temporary workaround until proper bounce
  280. * buffer is in place.
  281. */
  282. if (dma) {
  283. if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
  284. dma = 0;
  285. if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
  286. dma = 0;
  287. }
  288. if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
  289. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
  290. return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
  291. } else {
  292. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
  293. return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
  294. }
  295. }