fsl_qspi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. /*
  2. * Copyright 2013-2015 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include <dm.h>
  14. #include <errno.h>
  15. #include <watchdog.h>
  16. #include <wait_bit.h>
  17. #include "fsl_qspi.h"
  18. DECLARE_GLOBAL_DATA_PTR;
  19. #define RX_BUFFER_SIZE 0x80
  20. #ifdef CONFIG_MX6SX
  21. #define TX_BUFFER_SIZE 0x200
  22. #else
  23. #define TX_BUFFER_SIZE 0x40
  24. #endif
  25. #define OFFSET_BITS_MASK GENMASK(23, 0)
  26. #define FLASH_STATUS_WEL 0x02
  27. /* SEQID */
  28. #define SEQID_WREN 1
  29. #define SEQID_FAST_READ 2
  30. #define SEQID_RDSR 3
  31. #define SEQID_SE 4
  32. #define SEQID_CHIP_ERASE 5
  33. #define SEQID_PP 6
  34. #define SEQID_RDID 7
  35. #define SEQID_BE_4K 8
  36. #ifdef CONFIG_SPI_FLASH_BAR
  37. #define SEQID_BRRD 9
  38. #define SEQID_BRWR 10
  39. #define SEQID_RDEAR 11
  40. #define SEQID_WREAR 12
  41. #endif
  42. #define SEQID_WRAR 13
  43. #define SEQID_RDAR 14
  44. /* QSPI CMD */
  45. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  46. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  47. #define QSPI_CMD_WREN 0x06 /* Write enable */
  48. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  49. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  50. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  51. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  52. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  53. /* Used for Micron, winbond and Macronix flashes */
  54. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  55. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  56. /* Used for Spansion flashes only. */
  57. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  58. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  59. /* Used for Spansion S25FS-S family flash only. */
  60. #define QSPI_CMD_RDAR 0x65 /* Read any device register */
  61. #define QSPI_CMD_WRAR 0x71 /* Write any device register */
  62. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  63. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  64. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  65. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  66. /* fsl_qspi_platdata flags */
  67. #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
  68. /* default SCK frequency, unit: HZ */
  69. #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
  70. /* QSPI max chipselect signals number */
  71. #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
  72. #ifdef CONFIG_DM_SPI
  73. /**
  74. * struct fsl_qspi_platdata - platform data for Freescale QSPI
  75. *
  76. * @flags: Flags for QSPI QSPI_FLAG_...
  77. * @speed_hz: Default SCK frequency
  78. * @reg_base: Base address of QSPI registers
  79. * @amba_base: Base address of QSPI memory mapping
  80. * @amba_total_size: size of QSPI memory mapping
  81. * @flash_num: Number of active slave devices
  82. * @num_chipselect: Number of QSPI chipselect signals
  83. */
  84. struct fsl_qspi_platdata {
  85. u32 flags;
  86. u32 speed_hz;
  87. fdt_addr_t reg_base;
  88. fdt_addr_t amba_base;
  89. fdt_size_t amba_total_size;
  90. u32 flash_num;
  91. u32 num_chipselect;
  92. };
  93. #endif
  94. /**
  95. * struct fsl_qspi_priv - private data for Freescale QSPI
  96. *
  97. * @flags: Flags for QSPI QSPI_FLAG_...
  98. * @bus_clk: QSPI input clk frequency
  99. * @speed_hz: Default SCK frequency
  100. * @cur_seqid: current LUT table sequence id
  101. * @sf_addr: flash access offset
  102. * @amba_base: Base address of QSPI memory mapping of every CS
  103. * @amba_total_size: size of QSPI memory mapping
  104. * @cur_amba_base: Base address of QSPI memory mapping of current CS
  105. * @flash_num: Number of active slave devices
  106. * @num_chipselect: Number of QSPI chipselect signals
  107. * @regs: Point to QSPI register structure for I/O access
  108. */
  109. struct fsl_qspi_priv {
  110. u32 flags;
  111. u32 bus_clk;
  112. u32 speed_hz;
  113. u32 cur_seqid;
  114. u32 sf_addr;
  115. u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
  116. u32 amba_total_size;
  117. u32 cur_amba_base;
  118. u32 flash_num;
  119. u32 num_chipselect;
  120. struct fsl_qspi_regs *regs;
  121. };
  122. #ifndef CONFIG_DM_SPI
  123. struct fsl_qspi {
  124. struct spi_slave slave;
  125. struct fsl_qspi_priv priv;
  126. };
  127. #endif
  128. static u32 qspi_read32(u32 flags, u32 *addr)
  129. {
  130. return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  131. in_be32(addr) : in_le32(addr);
  132. }
  133. static void qspi_write32(u32 flags, u32 *addr, u32 val)
  134. {
  135. flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  136. out_be32(addr, val) : out_le32(addr, val);
  137. }
  138. /* QSPI support swapping the flash read/write data
  139. * in hardware for LS102xA, but not for VF610 */
  140. static inline u32 qspi_endian_xchg(u32 data)
  141. {
  142. #ifdef CONFIG_VF610
  143. return swab32(data);
  144. #else
  145. return data;
  146. #endif
  147. }
  148. static void qspi_set_lut(struct fsl_qspi_priv *priv)
  149. {
  150. struct fsl_qspi_regs *regs = priv->regs;
  151. u32 lut_base;
  152. /* Unlock the LUT */
  153. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  154. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
  155. /* Write Enable */
  156. lut_base = SEQID_WREN * 4;
  157. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  158. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  159. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  160. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  161. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  162. /* Fast Read */
  163. lut_base = SEQID_FAST_READ * 4;
  164. #ifdef CONFIG_SPI_FLASH_BAR
  165. qspi_write32(priv->flags, &regs->lut[lut_base],
  166. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  167. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  168. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  169. #else
  170. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  171. qspi_write32(priv->flags, &regs->lut[lut_base],
  172. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  173. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  174. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  175. else
  176. qspi_write32(priv->flags, &regs->lut[lut_base],
  177. OPRND0(QSPI_CMD_FAST_READ_4B) |
  178. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  179. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  180. INSTR1(LUT_ADDR));
  181. #endif
  182. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  183. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  184. OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  185. INSTR1(LUT_READ));
  186. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  187. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  188. /* Read Status */
  189. lut_base = SEQID_RDSR * 4;
  190. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  191. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  192. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  193. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  194. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  195. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  196. /* Erase a sector */
  197. lut_base = SEQID_SE * 4;
  198. #ifdef CONFIG_SPI_FLASH_BAR
  199. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  200. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  201. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  202. #else
  203. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  204. qspi_write32(priv->flags, &regs->lut[lut_base],
  205. OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
  206. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  207. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  208. else
  209. qspi_write32(priv->flags, &regs->lut[lut_base],
  210. OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
  211. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  212. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  213. #endif
  214. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  215. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  216. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  217. /* Erase the whole chip */
  218. lut_base = SEQID_CHIP_ERASE * 4;
  219. qspi_write32(priv->flags, &regs->lut[lut_base],
  220. OPRND0(QSPI_CMD_CHIP_ERASE) |
  221. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  222. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  223. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  224. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  225. /* Page Program */
  226. lut_base = SEQID_PP * 4;
  227. #ifdef CONFIG_SPI_FLASH_BAR
  228. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  229. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  230. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  231. #else
  232. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  233. qspi_write32(priv->flags, &regs->lut[lut_base],
  234. OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
  235. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  236. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  237. else
  238. qspi_write32(priv->flags, &regs->lut[lut_base],
  239. OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
  240. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  241. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  242. #endif
  243. #ifdef CONFIG_MX6SX
  244. /*
  245. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  246. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  247. */
  248. qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
  249. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  250. #else
  251. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  252. OPRND0(TX_BUFFER_SIZE) |
  253. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  254. #endif
  255. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  256. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  257. /* READ ID */
  258. lut_base = SEQID_RDID * 4;
  259. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  260. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  261. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  262. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  263. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  264. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  265. /* SUB SECTOR 4K ERASE */
  266. lut_base = SEQID_BE_4K * 4;
  267. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  268. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  269. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  270. #ifdef CONFIG_SPI_FLASH_BAR
  271. /*
  272. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  273. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  274. * initialization.
  275. */
  276. lut_base = SEQID_BRRD * 4;
  277. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  278. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  279. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  280. lut_base = SEQID_BRWR * 4;
  281. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  282. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  283. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  284. lut_base = SEQID_RDEAR * 4;
  285. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  286. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  287. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  288. lut_base = SEQID_WREAR * 4;
  289. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  290. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  291. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  292. #endif
  293. /*
  294. * Read any device register.
  295. * Used for Spansion S25FS-S family flash only.
  296. */
  297. lut_base = SEQID_RDAR * 4;
  298. qspi_write32(priv->flags, &regs->lut[lut_base],
  299. OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
  300. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  301. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  302. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  303. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  304. OPRND1(1) | PAD1(LUT_PAD1) |
  305. INSTR1(LUT_READ));
  306. /*
  307. * Write any device register.
  308. * Used for Spansion S25FS-S family flash only.
  309. */
  310. lut_base = SEQID_WRAR * 4;
  311. qspi_write32(priv->flags, &regs->lut[lut_base],
  312. OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
  313. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  314. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  315. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  316. OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  317. /* Lock the LUT */
  318. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  319. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
  320. }
  321. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  322. /*
  323. * If we have changed the content of the flash by writing or erasing,
  324. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  325. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  326. * domain at the same time.
  327. */
  328. static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
  329. {
  330. struct fsl_qspi_regs *regs = priv->regs;
  331. u32 reg;
  332. reg = qspi_read32(priv->flags, &regs->mcr);
  333. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  334. qspi_write32(priv->flags, &regs->mcr, reg);
  335. /*
  336. * The minimum delay : 1 AHB + 2 SFCK clocks.
  337. * Delay 1 us is enough.
  338. */
  339. udelay(1);
  340. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  341. qspi_write32(priv->flags, &regs->mcr, reg);
  342. }
  343. /* Read out the data from the AHB buffer. */
  344. static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
  345. {
  346. struct fsl_qspi_regs *regs = priv->regs;
  347. u32 mcr_reg;
  348. void *rx_addr = NULL;
  349. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  350. qspi_write32(priv->flags, &regs->mcr,
  351. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  352. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  353. rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
  354. /* Read out the data directly from the AHB buffer. */
  355. memcpy(rxbuf, rx_addr, len);
  356. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  357. }
  358. static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
  359. {
  360. u32 reg, reg2;
  361. struct fsl_qspi_regs *regs = priv->regs;
  362. reg = qspi_read32(priv->flags, &regs->mcr);
  363. /* Disable the module */
  364. qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  365. /* Set the Sampling Register for DDR */
  366. reg2 = qspi_read32(priv->flags, &regs->smpr);
  367. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  368. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  369. qspi_write32(priv->flags, &regs->smpr, reg2);
  370. /* Enable the module again (enable the DDR too) */
  371. reg |= QSPI_MCR_DDR_EN_MASK;
  372. /* Enable bit 29 for imx6sx */
  373. reg |= BIT(29);
  374. qspi_write32(priv->flags, &regs->mcr, reg);
  375. }
  376. /*
  377. * There are two different ways to read out the data from the flash:
  378. * the "IP Command Read" and the "AHB Command Read".
  379. *
  380. * The IC guy suggests we use the "AHB Command Read" which is faster
  381. * then the "IP Command Read". (What's more is that there is a bug in
  382. * the "IP Command Read" in the Vybrid.)
  383. *
  384. * After we set up the registers for the "AHB Command Read", we can use
  385. * the memcpy to read the data directly. A "missed" access to the buffer
  386. * causes the controller to clear the buffer, and use the sequence pointed
  387. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  388. */
  389. static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
  390. {
  391. struct fsl_qspi_regs *regs = priv->regs;
  392. /* AHB configuration for access buffer 0/1/2 .*/
  393. qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  394. qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  395. qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  396. qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  397. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  398. /* We only use the buffer3 */
  399. qspi_write32(priv->flags, &regs->buf0ind, 0);
  400. qspi_write32(priv->flags, &regs->buf1ind, 0);
  401. qspi_write32(priv->flags, &regs->buf2ind, 0);
  402. /*
  403. * Set the default lut sequence for AHB Read.
  404. * Parallel mode is disabled.
  405. */
  406. qspi_write32(priv->flags, &regs->bfgencr,
  407. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  408. /*Enable DDR Mode*/
  409. qspi_enable_ddr_mode(priv);
  410. }
  411. #endif
  412. #ifdef CONFIG_SPI_FLASH_BAR
  413. /* Bank register read/write, EAR register read/write */
  414. static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
  415. {
  416. struct fsl_qspi_regs *regs = priv->regs;
  417. u32 reg, mcr_reg, data, seqid;
  418. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  419. qspi_write32(priv->flags, &regs->mcr,
  420. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  421. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  422. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  423. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  424. if (priv->cur_seqid == QSPI_CMD_BRRD)
  425. seqid = SEQID_BRRD;
  426. else
  427. seqid = SEQID_RDEAR;
  428. qspi_write32(priv->flags, &regs->ipcr,
  429. (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  430. /* Wait previous command complete */
  431. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  432. ;
  433. while (1) {
  434. WATCHDOG_RESET();
  435. reg = qspi_read32(priv->flags, &regs->rbsr);
  436. if (reg & QSPI_RBSR_RDBFL_MASK) {
  437. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  438. data = qspi_endian_xchg(data);
  439. memcpy(rxbuf, &data, len);
  440. qspi_write32(priv->flags, &regs->mcr,
  441. qspi_read32(priv->flags, &regs->mcr) |
  442. QSPI_MCR_CLR_RXF_MASK);
  443. break;
  444. }
  445. }
  446. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  447. }
  448. #endif
  449. static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  450. {
  451. struct fsl_qspi_regs *regs = priv->regs;
  452. u32 mcr_reg, rbsr_reg, data, size;
  453. int i;
  454. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  455. qspi_write32(priv->flags, &regs->mcr,
  456. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  457. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  458. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  459. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  460. qspi_write32(priv->flags, &regs->ipcr,
  461. (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  462. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  463. ;
  464. i = 0;
  465. while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
  466. WATCHDOG_RESET();
  467. rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
  468. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  469. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  470. data = qspi_endian_xchg(data);
  471. size = (len < 4) ? len : 4;
  472. memcpy(rxbuf, &data, size);
  473. len -= size;
  474. rxbuf++;
  475. i++;
  476. }
  477. }
  478. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  479. }
  480. /* If not use AHB read, read data from ip interface */
  481. static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  482. {
  483. struct fsl_qspi_regs *regs = priv->regs;
  484. u32 mcr_reg, data;
  485. int i, size;
  486. u32 to_or_from;
  487. u32 seqid;
  488. if (priv->cur_seqid == QSPI_CMD_RDAR)
  489. seqid = SEQID_RDAR;
  490. else
  491. seqid = SEQID_FAST_READ;
  492. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  493. qspi_write32(priv->flags, &regs->mcr,
  494. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  495. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  496. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  497. to_or_from = priv->sf_addr + priv->cur_amba_base;
  498. while (len > 0) {
  499. WATCHDOG_RESET();
  500. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  501. size = (len > RX_BUFFER_SIZE) ?
  502. RX_BUFFER_SIZE : len;
  503. qspi_write32(priv->flags, &regs->ipcr,
  504. (seqid << QSPI_IPCR_SEQID_SHIFT) |
  505. size);
  506. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  507. ;
  508. to_or_from += size;
  509. len -= size;
  510. i = 0;
  511. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  512. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  513. data = qspi_endian_xchg(data);
  514. if (size < 4)
  515. memcpy(rxbuf, &data, size);
  516. else
  517. memcpy(rxbuf, &data, 4);
  518. rxbuf++;
  519. size -= 4;
  520. i++;
  521. }
  522. qspi_write32(priv->flags, &regs->mcr,
  523. qspi_read32(priv->flags, &regs->mcr) |
  524. QSPI_MCR_CLR_RXF_MASK);
  525. }
  526. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  527. }
  528. static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
  529. {
  530. struct fsl_qspi_regs *regs = priv->regs;
  531. u32 mcr_reg, data, reg, status_reg, seqid;
  532. int i, size, tx_size;
  533. u32 to_or_from = 0;
  534. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  535. qspi_write32(priv->flags, &regs->mcr,
  536. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  537. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  538. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  539. status_reg = 0;
  540. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  541. WATCHDOG_RESET();
  542. qspi_write32(priv->flags, &regs->ipcr,
  543. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  544. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  545. ;
  546. qspi_write32(priv->flags, &regs->ipcr,
  547. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  548. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  549. ;
  550. reg = qspi_read32(priv->flags, &regs->rbsr);
  551. if (reg & QSPI_RBSR_RDBFL_MASK) {
  552. status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
  553. status_reg = qspi_endian_xchg(status_reg);
  554. }
  555. qspi_write32(priv->flags, &regs->mcr,
  556. qspi_read32(priv->flags, &regs->mcr) |
  557. QSPI_MCR_CLR_RXF_MASK);
  558. }
  559. /* Default is page programming */
  560. seqid = SEQID_PP;
  561. if (priv->cur_seqid == QSPI_CMD_WRAR)
  562. seqid = SEQID_WRAR;
  563. #ifdef CONFIG_SPI_FLASH_BAR
  564. if (priv->cur_seqid == QSPI_CMD_BRWR)
  565. seqid = SEQID_BRWR;
  566. else if (priv->cur_seqid == QSPI_CMD_WREAR)
  567. seqid = SEQID_WREAR;
  568. #endif
  569. to_or_from = priv->sf_addr + priv->cur_amba_base;
  570. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  571. tx_size = (len > TX_BUFFER_SIZE) ?
  572. TX_BUFFER_SIZE : len;
  573. size = tx_size / 16;
  574. /*
  575. * There must be atleast 128bit data
  576. * available in TX FIFO for any pop operation
  577. */
  578. if (tx_size % 16)
  579. size++;
  580. for (i = 0; i < size * 4; i++) {
  581. memcpy(&data, txbuf, 4);
  582. data = qspi_endian_xchg(data);
  583. qspi_write32(priv->flags, &regs->tbdr, data);
  584. txbuf += 4;
  585. }
  586. qspi_write32(priv->flags, &regs->ipcr,
  587. (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  588. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  589. ;
  590. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  591. }
  592. static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
  593. {
  594. struct fsl_qspi_regs *regs = priv->regs;
  595. u32 mcr_reg, reg, data;
  596. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  597. qspi_write32(priv->flags, &regs->mcr,
  598. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  599. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  600. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  601. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  602. qspi_write32(priv->flags, &regs->ipcr,
  603. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  604. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  605. ;
  606. while (1) {
  607. WATCHDOG_RESET();
  608. reg = qspi_read32(priv->flags, &regs->rbsr);
  609. if (reg & QSPI_RBSR_RDBFL_MASK) {
  610. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  611. data = qspi_endian_xchg(data);
  612. memcpy(rxbuf, &data, len);
  613. qspi_write32(priv->flags, &regs->mcr,
  614. qspi_read32(priv->flags, &regs->mcr) |
  615. QSPI_MCR_CLR_RXF_MASK);
  616. break;
  617. }
  618. }
  619. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  620. }
  621. static void qspi_op_erase(struct fsl_qspi_priv *priv)
  622. {
  623. struct fsl_qspi_regs *regs = priv->regs;
  624. u32 mcr_reg;
  625. u32 to_or_from = 0;
  626. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  627. qspi_write32(priv->flags, &regs->mcr,
  628. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  629. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  630. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  631. to_or_from = priv->sf_addr + priv->cur_amba_base;
  632. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  633. qspi_write32(priv->flags, &regs->ipcr,
  634. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  635. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  636. ;
  637. if (priv->cur_seqid == QSPI_CMD_SE) {
  638. qspi_write32(priv->flags, &regs->ipcr,
  639. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  640. } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
  641. qspi_write32(priv->flags, &regs->ipcr,
  642. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  643. }
  644. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  645. ;
  646. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  647. }
  648. int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
  649. const void *dout, void *din, unsigned long flags)
  650. {
  651. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  652. static u32 wr_sfaddr;
  653. u32 txbuf;
  654. WATCHDOG_RESET();
  655. if (dout) {
  656. if (flags & SPI_XFER_BEGIN) {
  657. priv->cur_seqid = *(u8 *)dout;
  658. memcpy(&txbuf, dout, 4);
  659. }
  660. if (flags == SPI_XFER_END) {
  661. priv->sf_addr = wr_sfaddr;
  662. qspi_op_write(priv, (u8 *)dout, bytes);
  663. return 0;
  664. }
  665. if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
  666. priv->cur_seqid == QSPI_CMD_RDAR) {
  667. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  668. } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
  669. (priv->cur_seqid == QSPI_CMD_BE_4K)) {
  670. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  671. qspi_op_erase(priv);
  672. } else if (priv->cur_seqid == QSPI_CMD_PP ||
  673. priv->cur_seqid == QSPI_CMD_WRAR) {
  674. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  675. } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
  676. (priv->cur_seqid == QSPI_CMD_WREAR)) {
  677. #ifdef CONFIG_SPI_FLASH_BAR
  678. wr_sfaddr = 0;
  679. #endif
  680. }
  681. }
  682. if (din) {
  683. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  684. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  685. qspi_ahb_read(priv, din, bytes);
  686. #else
  687. qspi_op_read(priv, din, bytes);
  688. #endif
  689. } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
  690. qspi_op_read(priv, din, bytes);
  691. } else if (priv->cur_seqid == QSPI_CMD_RDID)
  692. qspi_op_rdid(priv, din, bytes);
  693. else if (priv->cur_seqid == QSPI_CMD_RDSR)
  694. qspi_op_rdsr(priv, din, bytes);
  695. #ifdef CONFIG_SPI_FLASH_BAR
  696. else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
  697. (priv->cur_seqid == QSPI_CMD_RDEAR)) {
  698. priv->sf_addr = 0;
  699. qspi_op_rdbank(priv, din, bytes);
  700. }
  701. #endif
  702. }
  703. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  704. if ((priv->cur_seqid == QSPI_CMD_SE) ||
  705. (priv->cur_seqid == QSPI_CMD_PP) ||
  706. (priv->cur_seqid == QSPI_CMD_BE_4K) ||
  707. (priv->cur_seqid == QSPI_CMD_WREAR) ||
  708. (priv->cur_seqid == QSPI_CMD_BRWR))
  709. qspi_ahb_invalid(priv);
  710. #endif
  711. return 0;
  712. }
  713. void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
  714. {
  715. u32 mcr_val;
  716. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  717. if (disable)
  718. mcr_val |= QSPI_MCR_MDIS_MASK;
  719. else
  720. mcr_val &= ~QSPI_MCR_MDIS_MASK;
  721. qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
  722. }
  723. void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
  724. {
  725. u32 smpr_val;
  726. smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
  727. smpr_val &= ~clear_bits;
  728. smpr_val |= set_bits;
  729. qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
  730. }
  731. #ifndef CONFIG_DM_SPI
  732. static unsigned long spi_bases[] = {
  733. QSPI0_BASE_ADDR,
  734. #ifdef CONFIG_MX6SX
  735. QSPI1_BASE_ADDR,
  736. #endif
  737. };
  738. static unsigned long amba_bases[] = {
  739. QSPI0_AMBA_BASE,
  740. #ifdef CONFIG_MX6SX
  741. QSPI1_AMBA_BASE,
  742. #endif
  743. };
  744. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  745. {
  746. return container_of(slave, struct fsl_qspi, slave);
  747. }
  748. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  749. unsigned int max_hz, unsigned int mode)
  750. {
  751. u32 mcr_val;
  752. struct fsl_qspi *qspi;
  753. struct fsl_qspi_regs *regs;
  754. u32 total_size;
  755. if (bus >= ARRAY_SIZE(spi_bases))
  756. return NULL;
  757. if (cs >= FSL_QSPI_FLASH_NUM)
  758. return NULL;
  759. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  760. if (!qspi)
  761. return NULL;
  762. #ifdef CONFIG_SYS_FSL_QSPI_BE
  763. qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  764. #endif
  765. regs = (struct fsl_qspi_regs *)spi_bases[bus];
  766. qspi->priv.regs = regs;
  767. /*
  768. * According cs, use different amba_base to choose the
  769. * corresponding flash devices.
  770. *
  771. * If not, only one flash device is used even if passing
  772. * different cs using `sf probe`
  773. */
  774. qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  775. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  776. mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
  777. qspi_write32(qspi->priv.flags, &regs->mcr,
  778. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  779. (mcr_val & QSPI_MCR_END_CFD_MASK));
  780. qspi_cfg_smpr(&qspi->priv,
  781. ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  782. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  783. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  784. /*
  785. * Any read access to non-implemented addresses will provide
  786. * undefined results.
  787. *
  788. * In case single die flash devices, TOP_ADDR_MEMA2 and
  789. * TOP_ADDR_MEMB2 should be initialized/programmed to
  790. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  791. * setting the size of these devices to 0. This would ensure
  792. * that the complete memory map is assigned to only one flash device.
  793. */
  794. qspi_write32(qspi->priv.flags, &regs->sfa1ad,
  795. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  796. qspi_write32(qspi->priv.flags, &regs->sfa2ad,
  797. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  798. qspi_write32(qspi->priv.flags, &regs->sfb1ad,
  799. total_size | amba_bases[bus]);
  800. qspi_write32(qspi->priv.flags, &regs->sfb2ad,
  801. total_size | amba_bases[bus]);
  802. qspi_set_lut(&qspi->priv);
  803. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  804. qspi_init_ahb_read(&qspi->priv);
  805. #endif
  806. qspi_module_disable(&qspi->priv, 0);
  807. return &qspi->slave;
  808. }
  809. void spi_free_slave(struct spi_slave *slave)
  810. {
  811. struct fsl_qspi *qspi = to_qspi_spi(slave);
  812. free(qspi);
  813. }
  814. int spi_claim_bus(struct spi_slave *slave)
  815. {
  816. return 0;
  817. }
  818. void spi_release_bus(struct spi_slave *slave)
  819. {
  820. /* Nothing to do */
  821. }
  822. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  823. const void *dout, void *din, unsigned long flags)
  824. {
  825. struct fsl_qspi *qspi = to_qspi_spi(slave);
  826. return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
  827. }
  828. void spi_init(void)
  829. {
  830. /* Nothing to do */
  831. }
  832. #else
  833. static int fsl_qspi_child_pre_probe(struct udevice *dev)
  834. {
  835. struct spi_slave *slave = dev_get_parent_priv(dev);
  836. slave->max_write_size = TX_BUFFER_SIZE;
  837. return 0;
  838. }
  839. static int fsl_qspi_probe(struct udevice *bus)
  840. {
  841. u32 mcr_val;
  842. u32 amba_size_per_chip;
  843. struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
  844. struct fsl_qspi_priv *priv = dev_get_priv(bus);
  845. struct dm_spi_bus *dm_spi_bus;
  846. int i, ret;
  847. dm_spi_bus = bus->uclass_priv;
  848. dm_spi_bus->max_hz = plat->speed_hz;
  849. priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
  850. priv->flags = plat->flags;
  851. priv->speed_hz = plat->speed_hz;
  852. /*
  853. * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
  854. * AMBA memory zone should be located on the 0~4GB space
  855. * even on a 64bits cpu.
  856. */
  857. priv->amba_base[0] = (u32)plat->amba_base;
  858. priv->amba_total_size = (u32)plat->amba_total_size;
  859. priv->flash_num = plat->flash_num;
  860. priv->num_chipselect = plat->num_chipselect;
  861. /* make sure controller is not busy anywhere */
  862. ret = wait_for_bit(__func__, &priv->regs->sr,
  863. QSPI_SR_BUSY_MASK |
  864. QSPI_SR_AHB_ACC_MASK |
  865. QSPI_SR_IP_ACC_MASK,
  866. false, 100, false);
  867. if (ret) {
  868. debug("ERROR : The controller is busy\n");
  869. return ret;
  870. }
  871. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  872. qspi_write32(priv->flags, &priv->regs->mcr,
  873. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  874. (mcr_val & QSPI_MCR_END_CFD_MASK));
  875. qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  876. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  877. /*
  878. * Assign AMBA memory zone for every chipselect
  879. * QuadSPI has two channels, every channel has two chipselects.
  880. * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
  881. * into two parts and assign to every channel. This indicate that every
  882. * channel only has one valid chipselect.
  883. * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
  884. * into four parts and assign to every chipselect.
  885. * Every channel will has two valid chipselects.
  886. */
  887. amba_size_per_chip = priv->amba_total_size >>
  888. (priv->num_chipselect >> 1);
  889. for (i = 1 ; i < priv->num_chipselect ; i++)
  890. priv->amba_base[i] =
  891. amba_size_per_chip + priv->amba_base[i - 1];
  892. /*
  893. * Any read access to non-implemented addresses will provide
  894. * undefined results.
  895. *
  896. * In case single die flash devices, TOP_ADDR_MEMA2 and
  897. * TOP_ADDR_MEMB2 should be initialized/programmed to
  898. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  899. * setting the size of these devices to 0. This would ensure
  900. * that the complete memory map is assigned to only one flash device.
  901. */
  902. qspi_write32(priv->flags, &priv->regs->sfa1ad,
  903. priv->amba_base[0] + amba_size_per_chip);
  904. switch (priv->num_chipselect) {
  905. case 1:
  906. break;
  907. case 2:
  908. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  909. priv->amba_base[1]);
  910. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  911. priv->amba_base[1] + amba_size_per_chip);
  912. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  913. priv->amba_base[1] + amba_size_per_chip);
  914. break;
  915. case 4:
  916. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  917. priv->amba_base[2]);
  918. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  919. priv->amba_base[3]);
  920. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  921. priv->amba_base[3] + amba_size_per_chip);
  922. break;
  923. default:
  924. debug("Error: Unsupported chipselect number %u!\n",
  925. priv->num_chipselect);
  926. qspi_module_disable(priv, 1);
  927. return -EINVAL;
  928. }
  929. qspi_set_lut(priv);
  930. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  931. qspi_init_ahb_read(priv);
  932. #endif
  933. qspi_module_disable(priv, 0);
  934. return 0;
  935. }
  936. static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
  937. {
  938. struct fdt_resource res_regs, res_mem;
  939. struct fsl_qspi_platdata *plat = bus->platdata;
  940. const void *blob = gd->fdt_blob;
  941. int node = dev_of_offset(bus);
  942. int ret, flash_num = 0, subnode;
  943. if (fdtdec_get_bool(blob, node, "big-endian"))
  944. plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  945. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  946. "QuadSPI", &res_regs);
  947. if (ret) {
  948. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  949. return -ENOMEM;
  950. }
  951. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  952. "QuadSPI-memory", &res_mem);
  953. if (ret) {
  954. debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
  955. return -ENOMEM;
  956. }
  957. /* Count flash numbers */
  958. fdt_for_each_subnode(subnode, blob, node)
  959. ++flash_num;
  960. if (flash_num == 0) {
  961. debug("Error: Missing flashes!\n");
  962. return -ENODEV;
  963. }
  964. plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  965. FSL_QSPI_DEFAULT_SCK_FREQ);
  966. plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
  967. FSL_QSPI_MAX_CHIPSELECT_NUM);
  968. plat->reg_base = res_regs.start;
  969. plat->amba_base = res_mem.start;
  970. plat->amba_total_size = res_mem.end - res_mem.start + 1;
  971. plat->flash_num = flash_num;
  972. debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
  973. __func__,
  974. (u64)plat->reg_base,
  975. (u64)plat->amba_base,
  976. (u64)plat->amba_total_size,
  977. plat->speed_hz,
  978. plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
  979. );
  980. return 0;
  981. }
  982. static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  983. const void *dout, void *din, unsigned long flags)
  984. {
  985. struct fsl_qspi_priv *priv;
  986. struct udevice *bus;
  987. bus = dev->parent;
  988. priv = dev_get_priv(bus);
  989. return qspi_xfer(priv, bitlen, dout, din, flags);
  990. }
  991. static int fsl_qspi_claim_bus(struct udevice *dev)
  992. {
  993. struct fsl_qspi_priv *priv;
  994. struct udevice *bus;
  995. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  996. int ret;
  997. bus = dev->parent;
  998. priv = dev_get_priv(bus);
  999. /* make sure controller is not busy anywhere */
  1000. ret = wait_for_bit(__func__, &priv->regs->sr,
  1001. QSPI_SR_BUSY_MASK |
  1002. QSPI_SR_AHB_ACC_MASK |
  1003. QSPI_SR_IP_ACC_MASK,
  1004. false, 100, false);
  1005. if (ret) {
  1006. debug("ERROR : The controller is busy\n");
  1007. return ret;
  1008. }
  1009. priv->cur_amba_base = priv->amba_base[slave_plat->cs];
  1010. qspi_module_disable(priv, 0);
  1011. return 0;
  1012. }
  1013. static int fsl_qspi_release_bus(struct udevice *dev)
  1014. {
  1015. struct fsl_qspi_priv *priv;
  1016. struct udevice *bus;
  1017. bus = dev->parent;
  1018. priv = dev_get_priv(bus);
  1019. qspi_module_disable(priv, 1);
  1020. return 0;
  1021. }
  1022. static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
  1023. {
  1024. /* Nothing to do */
  1025. return 0;
  1026. }
  1027. static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
  1028. {
  1029. /* Nothing to do */
  1030. return 0;
  1031. }
  1032. static const struct dm_spi_ops fsl_qspi_ops = {
  1033. .claim_bus = fsl_qspi_claim_bus,
  1034. .release_bus = fsl_qspi_release_bus,
  1035. .xfer = fsl_qspi_xfer,
  1036. .set_speed = fsl_qspi_set_speed,
  1037. .set_mode = fsl_qspi_set_mode,
  1038. };
  1039. static const struct udevice_id fsl_qspi_ids[] = {
  1040. { .compatible = "fsl,vf610-qspi" },
  1041. { .compatible = "fsl,imx6sx-qspi" },
  1042. { }
  1043. };
  1044. U_BOOT_DRIVER(fsl_qspi) = {
  1045. .name = "fsl_qspi",
  1046. .id = UCLASS_SPI,
  1047. .of_match = fsl_qspi_ids,
  1048. .ops = &fsl_qspi_ops,
  1049. .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
  1050. .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
  1051. .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
  1052. .probe = fsl_qspi_probe,
  1053. .child_pre_probe = fsl_qspi_child_pre_probe,
  1054. };
  1055. #endif