clock.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388
  1. /*
  2. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <div64.h>
  8. #include <asm/io.h>
  9. #include <linux/errno.h>
  10. #include <asm/arch/imx-regs.h>
  11. #include <asm/arch/crm_regs.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/sys_proto.h>
  14. enum pll_clocks {
  15. PLL_SYS, /* System PLL */
  16. PLL_BUS, /* System Bus PLL*/
  17. PLL_USBOTG, /* OTG USB PLL */
  18. PLL_ENET, /* ENET PLL */
  19. PLL_AUDIO, /* AUDIO PLL */
  20. PLL_VIDEO, /* AUDIO PLL */
  21. };
  22. struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  23. #ifdef CONFIG_MXC_OCOTP
  24. void enable_ocotp_clk(unsigned char enable)
  25. {
  26. u32 reg;
  27. reg = __raw_readl(&imx_ccm->CCGR2);
  28. if (enable)
  29. reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  30. else
  31. reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  32. __raw_writel(reg, &imx_ccm->CCGR2);
  33. }
  34. #endif
  35. #ifdef CONFIG_NAND_MXS
  36. void setup_gpmi_io_clk(u32 cfg)
  37. {
  38. /* Disable clocks per ERR007177 from MX6 errata */
  39. clrbits_le32(&imx_ccm->CCGR4,
  40. MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
  41. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
  42. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
  43. MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
  44. MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
  45. #if defined(CONFIG_MX6SX)
  46. clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
  47. clrsetbits_le32(&imx_ccm->cs2cdr,
  48. MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
  49. MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
  50. MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
  51. cfg);
  52. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
  53. #else
  54. clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
  55. clrsetbits_le32(&imx_ccm->cs2cdr,
  56. MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
  57. MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
  58. MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
  59. cfg);
  60. setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
  61. #endif
  62. setbits_le32(&imx_ccm->CCGR4,
  63. MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
  64. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
  65. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
  66. MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
  67. MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
  68. }
  69. #endif
  70. void enable_usboh3_clk(unsigned char enable)
  71. {
  72. u32 reg;
  73. reg = __raw_readl(&imx_ccm->CCGR6);
  74. if (enable)
  75. reg |= MXC_CCM_CCGR6_USBOH3_MASK;
  76. else
  77. reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
  78. __raw_writel(reg, &imx_ccm->CCGR6);
  79. }
  80. #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
  81. void enable_enet_clk(unsigned char enable)
  82. {
  83. u32 mask, *addr;
  84. if (is_mx6ull()) {
  85. mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
  86. addr = &imx_ccm->CCGR0;
  87. } else if (is_mx6ul()) {
  88. mask = MXC_CCM_CCGR3_ENET_MASK;
  89. addr = &imx_ccm->CCGR3;
  90. } else {
  91. mask = MXC_CCM_CCGR1_ENET_MASK;
  92. addr = &imx_ccm->CCGR1;
  93. }
  94. if (enable)
  95. setbits_le32(addr, mask);
  96. else
  97. clrbits_le32(addr, mask);
  98. }
  99. #endif
  100. #ifdef CONFIG_MXC_UART
  101. void enable_uart_clk(unsigned char enable)
  102. {
  103. u32 mask;
  104. if (is_mx6ul() || is_mx6ull())
  105. mask = MXC_CCM_CCGR5_UART_MASK;
  106. else
  107. mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
  108. if (enable)
  109. setbits_le32(&imx_ccm->CCGR5, mask);
  110. else
  111. clrbits_le32(&imx_ccm->CCGR5, mask);
  112. }
  113. #endif
  114. #ifdef CONFIG_MMC
  115. int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
  116. {
  117. u32 mask;
  118. if (bus_num > 3)
  119. return -EINVAL;
  120. mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
  121. if (enable)
  122. setbits_le32(&imx_ccm->CCGR6, mask);
  123. else
  124. clrbits_le32(&imx_ccm->CCGR6, mask);
  125. return 0;
  126. }
  127. #endif
  128. #ifdef CONFIG_SYS_I2C_MXC
  129. /* i2c_num can be from 0 - 3 */
  130. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  131. {
  132. u32 reg;
  133. u32 mask;
  134. u32 *addr;
  135. if (i2c_num > 3)
  136. return -EINVAL;
  137. if (i2c_num < 3) {
  138. mask = MXC_CCM_CCGR_CG_MASK
  139. << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
  140. + (i2c_num << 1));
  141. reg = __raw_readl(&imx_ccm->CCGR2);
  142. if (enable)
  143. reg |= mask;
  144. else
  145. reg &= ~mask;
  146. __raw_writel(reg, &imx_ccm->CCGR2);
  147. } else {
  148. if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
  149. mask = MXC_CCM_CCGR6_I2C4_MASK;
  150. addr = &imx_ccm->CCGR6;
  151. } else {
  152. mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
  153. addr = &imx_ccm->CCGR1;
  154. }
  155. reg = __raw_readl(addr);
  156. if (enable)
  157. reg |= mask;
  158. else
  159. reg &= ~mask;
  160. __raw_writel(reg, addr);
  161. }
  162. return 0;
  163. }
  164. #endif
  165. /* spi_num can be from 0 - SPI_MAX_NUM */
  166. int enable_spi_clk(unsigned char enable, unsigned spi_num)
  167. {
  168. u32 reg;
  169. u32 mask;
  170. if (spi_num > SPI_MAX_NUM)
  171. return -EINVAL;
  172. mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
  173. reg = __raw_readl(&imx_ccm->CCGR1);
  174. if (enable)
  175. reg |= mask;
  176. else
  177. reg &= ~mask;
  178. __raw_writel(reg, &imx_ccm->CCGR1);
  179. return 0;
  180. }
  181. static u32 decode_pll(enum pll_clocks pll, u32 infreq)
  182. {
  183. u32 div, test_div, pll_num, pll_denom;
  184. switch (pll) {
  185. case PLL_SYS:
  186. div = __raw_readl(&imx_ccm->analog_pll_sys);
  187. div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
  188. return (infreq * div) >> 1;
  189. case PLL_BUS:
  190. div = __raw_readl(&imx_ccm->analog_pll_528);
  191. div &= BM_ANADIG_PLL_528_DIV_SELECT;
  192. return infreq * (20 + (div << 1));
  193. case PLL_USBOTG:
  194. div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
  195. div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
  196. return infreq * (20 + (div << 1));
  197. case PLL_ENET:
  198. div = __raw_readl(&imx_ccm->analog_pll_enet);
  199. div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
  200. return 25000000 * (div + (div >> 1) + 1);
  201. case PLL_AUDIO:
  202. div = __raw_readl(&imx_ccm->analog_pll_audio);
  203. if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
  204. return 0;
  205. /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
  206. if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
  207. return MXC_HCLK;
  208. pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
  209. pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
  210. test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
  211. BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
  212. div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
  213. if (test_div == 3) {
  214. debug("Error test_div\n");
  215. return 0;
  216. }
  217. test_div = 1 << (2 - test_div);
  218. return infreq * (div + pll_num / pll_denom) / test_div;
  219. case PLL_VIDEO:
  220. div = __raw_readl(&imx_ccm->analog_pll_video);
  221. if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
  222. return 0;
  223. /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
  224. if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
  225. return MXC_HCLK;
  226. pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
  227. pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
  228. test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
  229. BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
  230. div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
  231. if (test_div == 3) {
  232. debug("Error test_div\n");
  233. return 0;
  234. }
  235. test_div = 1 << (2 - test_div);
  236. return infreq * (div + pll_num / pll_denom) / test_div;
  237. default:
  238. return 0;
  239. }
  240. /* NOTREACHED */
  241. }
  242. static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
  243. {
  244. u32 div;
  245. u64 freq;
  246. switch (pll) {
  247. case PLL_BUS:
  248. if (!is_mx6ul() && !is_mx6ull()) {
  249. if (pfd_num == 3) {
  250. /* No PFD3 on PLL2 */
  251. return 0;
  252. }
  253. }
  254. div = __raw_readl(&imx_ccm->analog_pfd_528);
  255. freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
  256. break;
  257. case PLL_USBOTG:
  258. div = __raw_readl(&imx_ccm->analog_pfd_480);
  259. freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
  260. break;
  261. default:
  262. /* No PFD on other PLL */
  263. return 0;
  264. }
  265. return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
  266. ANATOP_PFD_FRAC_SHIFT(pfd_num));
  267. }
  268. static u32 get_mcu_main_clk(void)
  269. {
  270. u32 reg, freq;
  271. reg = __raw_readl(&imx_ccm->cacrr);
  272. reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
  273. reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
  274. freq = decode_pll(PLL_SYS, MXC_HCLK);
  275. return freq / (reg + 1);
  276. }
  277. u32 get_periph_clk(void)
  278. {
  279. u32 reg, div = 0, freq = 0;
  280. reg = __raw_readl(&imx_ccm->cbcdr);
  281. if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  282. div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
  283. MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
  284. reg = __raw_readl(&imx_ccm->cbcmr);
  285. reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
  286. reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
  287. switch (reg) {
  288. case 0:
  289. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  290. break;
  291. case 1:
  292. case 2:
  293. freq = MXC_HCLK;
  294. break;
  295. default:
  296. break;
  297. }
  298. } else {
  299. reg = __raw_readl(&imx_ccm->cbcmr);
  300. reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
  301. reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
  302. switch (reg) {
  303. case 0:
  304. freq = decode_pll(PLL_BUS, MXC_HCLK);
  305. break;
  306. case 1:
  307. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  308. break;
  309. case 2:
  310. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  311. break;
  312. case 3:
  313. /* static / 2 divider */
  314. freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
  315. break;
  316. default:
  317. break;
  318. }
  319. }
  320. return freq / (div + 1);
  321. }
  322. static u32 get_ipg_clk(void)
  323. {
  324. u32 reg, ipg_podf;
  325. reg = __raw_readl(&imx_ccm->cbcdr);
  326. reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
  327. ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
  328. return get_ahb_clk() / (ipg_podf + 1);
  329. }
  330. static u32 get_ipg_per_clk(void)
  331. {
  332. u32 reg, perclk_podf;
  333. reg = __raw_readl(&imx_ccm->cscmr1);
  334. if (is_mx6sl() || is_mx6sx() ||
  335. is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
  336. if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
  337. return MXC_HCLK; /* OSC 24Mhz */
  338. }
  339. perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
  340. return get_ipg_clk() / (perclk_podf + 1);
  341. }
  342. static u32 get_uart_clk(void)
  343. {
  344. u32 reg, uart_podf;
  345. u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
  346. reg = __raw_readl(&imx_ccm->cscdr1);
  347. if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
  348. is_mx6ull()) {
  349. if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
  350. freq = MXC_HCLK;
  351. }
  352. reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
  353. uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  354. return freq / (uart_podf + 1);
  355. }
  356. static u32 get_cspi_clk(void)
  357. {
  358. u32 reg, cspi_podf;
  359. reg = __raw_readl(&imx_ccm->cscdr2);
  360. cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
  361. MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
  362. if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
  363. is_mx6ull()) {
  364. if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
  365. return MXC_HCLK / (cspi_podf + 1);
  366. }
  367. return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
  368. }
  369. static u32 get_axi_clk(void)
  370. {
  371. u32 root_freq, axi_podf;
  372. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  373. axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
  374. axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
  375. if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
  376. if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
  377. root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
  378. else
  379. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  380. } else
  381. root_freq = get_periph_clk();
  382. return root_freq / (axi_podf + 1);
  383. }
  384. static u32 get_emi_slow_clk(void)
  385. {
  386. u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
  387. cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  388. emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
  389. emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
  390. emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
  391. emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
  392. switch (emi_clk_sel) {
  393. case 0:
  394. root_freq = get_axi_clk();
  395. break;
  396. case 1:
  397. root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  398. break;
  399. case 2:
  400. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  401. break;
  402. case 3:
  403. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  404. break;
  405. }
  406. return root_freq / (emi_slow_podf + 1);
  407. }
  408. static u32 get_mmdc_ch0_clk(void)
  409. {
  410. u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
  411. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  412. u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
  413. if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl()) {
  414. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
  415. MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
  416. if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
  417. per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
  418. MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
  419. if (is_mx6sl()) {
  420. if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
  421. freq = MXC_HCLK;
  422. else
  423. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  424. } else {
  425. if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
  426. freq = decode_pll(PLL_BUS, MXC_HCLK);
  427. else
  428. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  429. }
  430. } else {
  431. per2_clk2_podf = 0;
  432. switch ((cbcmr &
  433. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
  434. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
  435. case 0:
  436. freq = decode_pll(PLL_BUS, MXC_HCLK);
  437. break;
  438. case 1:
  439. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  440. break;
  441. case 2:
  442. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  443. break;
  444. case 3:
  445. pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
  446. switch (pmu_misc2_audio_div) {
  447. case 0:
  448. case 2:
  449. pmu_misc2_audio_div = 1;
  450. break;
  451. case 1:
  452. pmu_misc2_audio_div = 2;
  453. break;
  454. case 3:
  455. pmu_misc2_audio_div = 4;
  456. break;
  457. }
  458. freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
  459. pmu_misc2_audio_div;
  460. break;
  461. }
  462. }
  463. return freq / (podf + 1) / (per2_clk2_podf + 1);
  464. } else {
  465. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
  466. MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
  467. return get_periph_clk() / (podf + 1);
  468. }
  469. }
  470. #if defined(CONFIG_VIDEO_MXS)
  471. static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
  472. u32 post_div)
  473. {
  474. u32 reg = 0;
  475. ulong start;
  476. debug("pll5 div = %d, num = %d, denom = %d\n",
  477. pll_div, pll_num, pll_denom);
  478. /* Power up PLL5 video */
  479. writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
  480. BM_ANADIG_PLL_VIDEO_BYPASS |
  481. BM_ANADIG_PLL_VIDEO_DIV_SELECT |
  482. BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
  483. &imx_ccm->analog_pll_video_clr);
  484. /* Set div, num and denom */
  485. switch (post_div) {
  486. case 1:
  487. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  488. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
  489. &imx_ccm->analog_pll_video_set);
  490. break;
  491. case 2:
  492. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  493. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
  494. &imx_ccm->analog_pll_video_set);
  495. break;
  496. case 4:
  497. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  498. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
  499. &imx_ccm->analog_pll_video_set);
  500. break;
  501. default:
  502. puts("Wrong test_div!\n");
  503. return -EINVAL;
  504. }
  505. writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
  506. &imx_ccm->analog_pll_video_num);
  507. writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
  508. &imx_ccm->analog_pll_video_denom);
  509. /* Wait PLL5 lock */
  510. start = get_timer(0); /* Get current timestamp */
  511. do {
  512. reg = readl(&imx_ccm->analog_pll_video);
  513. if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
  514. /* Enable PLL out */
  515. writel(BM_ANADIG_PLL_VIDEO_ENABLE,
  516. &imx_ccm->analog_pll_video_set);
  517. return 0;
  518. }
  519. } while (get_timer(0) < (start + 10)); /* Wait 10ms */
  520. puts("Lock PLL5 timeout\n");
  521. return -ETIME;
  522. }
  523. /*
  524. * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
  525. *
  526. * 'freq' using KHz as unit, see driver/video/mxsfb.c.
  527. */
  528. void mxs_set_lcdclk(u32 base_addr, u32 freq)
  529. {
  530. u32 reg = 0;
  531. u32 hck = MXC_HCLK / 1000;
  532. /* DIV_SELECT ranges from 27 to 54 */
  533. u32 min = hck * 27;
  534. u32 max = hck * 54;
  535. u32 temp, best = 0;
  536. u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
  537. u32 pll_div, pll_num, pll_denom, post_div = 1;
  538. debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
  539. if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull()) {
  540. debug("This chip not support lcd!\n");
  541. return;
  542. }
  543. if (base_addr == LCDIF1_BASE_ADDR) {
  544. reg = readl(&imx_ccm->cscdr2);
  545. /* Can't change clocks when clock not from pre-mux */
  546. if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
  547. return;
  548. }
  549. if (is_mx6sx()) {
  550. reg = readl(&imx_ccm->cscdr2);
  551. /* Can't change clocks when clock not from pre-mux */
  552. if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
  553. return;
  554. }
  555. temp = freq * max_pred * max_postd;
  556. if (temp < min) {
  557. /*
  558. * Register: PLL_VIDEO
  559. * Bit Field: POST_DIV_SELECT
  560. * 00 — Divide by 4.
  561. * 01 — Divide by 2.
  562. * 10 — Divide by 1.
  563. * 11 — Reserved
  564. * No need to check post_div(1)
  565. */
  566. for (post_div = 2; post_div <= 4; post_div <<= 1) {
  567. if ((temp * post_div) > min) {
  568. freq *= post_div;
  569. break;
  570. }
  571. }
  572. if (post_div > 4) {
  573. printf("Fail to set rate to %dkhz", freq);
  574. return;
  575. }
  576. }
  577. /* Choose the best pred and postd to match freq for lcd */
  578. for (i = 1; i <= max_pred; i++) {
  579. for (j = 1; j <= max_postd; j++) {
  580. temp = freq * i * j;
  581. if (temp > max || temp < min)
  582. continue;
  583. if (best == 0 || temp < best) {
  584. best = temp;
  585. pred = i;
  586. postd = j;
  587. }
  588. }
  589. }
  590. if (best == 0) {
  591. printf("Fail to set rate to %dKHz", freq);
  592. return;
  593. }
  594. debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
  595. pll_div = best / hck;
  596. pll_denom = 1000000;
  597. pll_num = (best - hck * pll_div) * pll_denom / hck;
  598. /*
  599. * pll_num
  600. * (24MHz * (pll_div + --------- ))
  601. * pll_denom
  602. *freq KHz = --------------------------------
  603. * post_div * pred * postd * 1000
  604. */
  605. if (base_addr == LCDIF1_BASE_ADDR) {
  606. if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
  607. return;
  608. /* Select pre-lcd clock to PLL5 and set pre divider */
  609. clrsetbits_le32(&imx_ccm->cscdr2,
  610. MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
  611. MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
  612. (0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
  613. ((pred - 1) <<
  614. MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
  615. /* Set the post divider */
  616. clrsetbits_le32(&imx_ccm->cbcmr,
  617. MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
  618. ((postd - 1) <<
  619. MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
  620. } else if (is_mx6sx()) {
  621. /* Setting LCDIF2 for i.MX6SX */
  622. if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
  623. return;
  624. /* Select pre-lcd clock to PLL5 and set pre divider */
  625. clrsetbits_le32(&imx_ccm->cscdr2,
  626. MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
  627. MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
  628. (0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
  629. ((pred - 1) <<
  630. MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
  631. /* Set the post divider */
  632. clrsetbits_le32(&imx_ccm->cscmr1,
  633. MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
  634. ((postd - 1) <<
  635. MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
  636. }
  637. }
  638. int enable_lcdif_clock(u32 base_addr)
  639. {
  640. u32 reg = 0;
  641. u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
  642. if (is_mx6sx()) {
  643. if ((base_addr != LCDIF1_BASE_ADDR) &&
  644. (base_addr != LCDIF2_BASE_ADDR)) {
  645. puts("Wrong LCD interface!\n");
  646. return -EINVAL;
  647. }
  648. /* Set to pre-mux clock at default */
  649. lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
  650. MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
  651. MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
  652. lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
  653. (MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
  654. MXC_CCM_CCGR3_DISP_AXI_MASK) :
  655. (MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
  656. MXC_CCM_CCGR3_DISP_AXI_MASK);
  657. } else if (is_mx6ul() || is_mx6ull()) {
  658. if (base_addr != LCDIF1_BASE_ADDR) {
  659. puts("Wrong LCD interface!\n");
  660. return -EINVAL;
  661. }
  662. /* Set to pre-mux clock at default */
  663. lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
  664. lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
  665. } else {
  666. return 0;
  667. }
  668. reg = readl(&imx_ccm->cscdr2);
  669. reg &= ~lcdif_clk_sel_mask;
  670. writel(reg, &imx_ccm->cscdr2);
  671. /* Enable the LCDIF pix clock */
  672. reg = readl(&imx_ccm->CCGR3);
  673. reg |= lcdif_ccgr3_mask;
  674. writel(reg, &imx_ccm->CCGR3);
  675. reg = readl(&imx_ccm->CCGR2);
  676. reg |= MXC_CCM_CCGR2_LCD_MASK;
  677. writel(reg, &imx_ccm->CCGR2);
  678. return 0;
  679. }
  680. #endif
  681. #ifdef CONFIG_FSL_QSPI
  682. /* qspi_num can be from 0 - 1 */
  683. void enable_qspi_clk(int qspi_num)
  684. {
  685. u32 reg = 0;
  686. /* Enable QuadSPI clock */
  687. switch (qspi_num) {
  688. case 0:
  689. /* disable the clock gate */
  690. clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
  691. /* set 50M : (50 = 396 / 2 / 4) */
  692. reg = readl(&imx_ccm->cscmr1);
  693. reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
  694. MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
  695. reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
  696. (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
  697. writel(reg, &imx_ccm->cscmr1);
  698. /* enable the clock gate */
  699. setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
  700. break;
  701. case 1:
  702. /*
  703. * disable the clock gate
  704. * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
  705. * disable both of them.
  706. */
  707. clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
  708. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
  709. /* set 50M : (50 = 396 / 2 / 4) */
  710. reg = readl(&imx_ccm->cs2cdr);
  711. reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
  712. MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
  713. MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
  714. reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
  715. MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
  716. writel(reg, &imx_ccm->cs2cdr);
  717. /*enable the clock gate*/
  718. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
  719. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
  720. break;
  721. default:
  722. break;
  723. }
  724. }
  725. #endif
  726. #ifdef CONFIG_FEC_MXC
  727. int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
  728. {
  729. u32 reg = 0;
  730. s32 timeout = 100000;
  731. struct anatop_regs __iomem *anatop =
  732. (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
  733. if (freq < ENET_25MHZ || freq > ENET_125MHZ)
  734. return -EINVAL;
  735. reg = readl(&anatop->pll_enet);
  736. if (fec_id == 0) {
  737. reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
  738. reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
  739. } else if (fec_id == 1) {
  740. /* Only i.MX6SX/UL support ENET2 */
  741. if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
  742. return -EINVAL;
  743. reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
  744. reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
  745. } else {
  746. return -EINVAL;
  747. }
  748. if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
  749. (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
  750. reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
  751. writel(reg, &anatop->pll_enet);
  752. while (timeout--) {
  753. if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
  754. break;
  755. }
  756. if (timeout < 0)
  757. return -ETIMEDOUT;
  758. }
  759. /* Enable FEC clock */
  760. if (fec_id == 0)
  761. reg |= BM_ANADIG_PLL_ENET_ENABLE;
  762. else
  763. reg |= BM_ANADIG_PLL_ENET2_ENABLE;
  764. reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
  765. writel(reg, &anatop->pll_enet);
  766. #ifdef CONFIG_MX6SX
  767. /*
  768. * Set enet ahb clock to 200MHz
  769. * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
  770. */
  771. reg = readl(&imx_ccm->chsccdr);
  772. reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
  773. | MXC_CCM_CHSCCDR_ENET_PODF_MASK
  774. | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
  775. /* PLL2 PFD2 */
  776. reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
  777. /* Div = 2*/
  778. reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
  779. reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
  780. writel(reg, &imx_ccm->chsccdr);
  781. /* Enable enet system clock */
  782. reg = readl(&imx_ccm->CCGR3);
  783. reg |= MXC_CCM_CCGR3_ENET_MASK;
  784. writel(reg, &imx_ccm->CCGR3);
  785. #endif
  786. return 0;
  787. }
  788. #endif
  789. static u32 get_usdhc_clk(u32 port)
  790. {
  791. u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
  792. u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  793. u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
  794. switch (port) {
  795. case 0:
  796. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
  797. MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
  798. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
  799. break;
  800. case 1:
  801. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
  802. MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
  803. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
  804. break;
  805. case 2:
  806. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
  807. MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
  808. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
  809. break;
  810. case 3:
  811. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
  812. MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
  813. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
  814. break;
  815. default:
  816. break;
  817. }
  818. if (clk_sel)
  819. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  820. else
  821. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  822. return root_freq / (usdhc_podf + 1);
  823. }
  824. u32 imx_get_uartclk(void)
  825. {
  826. return get_uart_clk();
  827. }
  828. u32 imx_get_fecclk(void)
  829. {
  830. return mxc_get_clock(MXC_IPG_CLK);
  831. }
  832. #if defined(CONFIG_CMD_SATA) || defined(CONFIG_PCIE_IMX)
  833. static int enable_enet_pll(uint32_t en)
  834. {
  835. struct mxc_ccm_reg *const imx_ccm
  836. = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
  837. s32 timeout = 100000;
  838. u32 reg = 0;
  839. /* Enable PLLs */
  840. reg = readl(&imx_ccm->analog_pll_enet);
  841. reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
  842. writel(reg, &imx_ccm->analog_pll_enet);
  843. reg |= BM_ANADIG_PLL_SYS_ENABLE;
  844. while (timeout--) {
  845. if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
  846. break;
  847. }
  848. if (timeout <= 0)
  849. return -EIO;
  850. reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
  851. writel(reg, &imx_ccm->analog_pll_enet);
  852. reg |= en;
  853. writel(reg, &imx_ccm->analog_pll_enet);
  854. return 0;
  855. }
  856. #endif
  857. #ifdef CONFIG_CMD_SATA
  858. static void ungate_sata_clock(void)
  859. {
  860. struct mxc_ccm_reg *const imx_ccm =
  861. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  862. /* Enable SATA clock. */
  863. setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
  864. }
  865. int enable_sata_clock(void)
  866. {
  867. ungate_sata_clock();
  868. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
  869. }
  870. void disable_sata_clock(void)
  871. {
  872. struct mxc_ccm_reg *const imx_ccm =
  873. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  874. clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
  875. }
  876. #endif
  877. #ifdef CONFIG_PCIE_IMX
  878. static void ungate_pcie_clock(void)
  879. {
  880. struct mxc_ccm_reg *const imx_ccm =
  881. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  882. /* Enable PCIe clock. */
  883. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
  884. }
  885. int enable_pcie_clock(void)
  886. {
  887. struct anatop_regs *anatop_regs =
  888. (struct anatop_regs *)ANATOP_BASE_ADDR;
  889. struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  890. u32 lvds1_clk_sel;
  891. /*
  892. * Here be dragons!
  893. *
  894. * The register ANATOP_MISC1 is not documented in the Freescale
  895. * MX6RM. The register that is mapped in the ANATOP space and
  896. * marked as ANATOP_MISC1 is actually documented in the PMU section
  897. * of the datasheet as PMU_MISC1.
  898. *
  899. * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
  900. * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
  901. * for PCI express link that is clocked from the i.MX6.
  902. */
  903. #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
  904. #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
  905. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
  906. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
  907. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
  908. if (is_mx6sx())
  909. lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
  910. else
  911. lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
  912. clrsetbits_le32(&anatop_regs->ana_misc1,
  913. ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
  914. ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
  915. ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
  916. /* PCIe reference clock sourced from AXI. */
  917. clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
  918. /* Party time! Ungate the clock to the PCIe. */
  919. #ifdef CONFIG_CMD_SATA
  920. ungate_sata_clock();
  921. #endif
  922. ungate_pcie_clock();
  923. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
  924. BM_ANADIG_PLL_ENET_ENABLE_PCIE);
  925. }
  926. #endif
  927. #ifdef CONFIG_SECURE_BOOT
  928. void hab_caam_clock_enable(unsigned char enable)
  929. {
  930. u32 reg;
  931. if (is_mx6ull()) {
  932. /* CG5, DCP clock */
  933. reg = __raw_readl(&imx_ccm->CCGR0);
  934. if (enable)
  935. reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
  936. else
  937. reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
  938. __raw_writel(reg, &imx_ccm->CCGR0);
  939. } else {
  940. /* CG4 ~ CG6, CAAM clocks */
  941. reg = __raw_readl(&imx_ccm->CCGR0);
  942. if (enable)
  943. reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
  944. MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
  945. MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
  946. else
  947. reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
  948. MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
  949. MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
  950. __raw_writel(reg, &imx_ccm->CCGR0);
  951. }
  952. /* EMI slow clk */
  953. reg = __raw_readl(&imx_ccm->CCGR6);
  954. if (enable)
  955. reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
  956. else
  957. reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
  958. __raw_writel(reg, &imx_ccm->CCGR6);
  959. }
  960. #endif
  961. static void enable_pll3(void)
  962. {
  963. struct anatop_regs __iomem *anatop =
  964. (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
  965. /* make sure pll3 is enabled */
  966. if ((readl(&anatop->usb1_pll_480_ctrl) &
  967. BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
  968. /* enable pll's power */
  969. writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
  970. &anatop->usb1_pll_480_ctrl_set);
  971. writel(0x80, &anatop->ana_misc2_clr);
  972. /* wait for pll lock */
  973. while ((readl(&anatop->usb1_pll_480_ctrl) &
  974. BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
  975. ;
  976. /* disable bypass */
  977. writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
  978. &anatop->usb1_pll_480_ctrl_clr);
  979. /* enable pll output */
  980. writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
  981. &anatop->usb1_pll_480_ctrl_set);
  982. }
  983. }
  984. void enable_thermal_clk(void)
  985. {
  986. enable_pll3();
  987. }
  988. unsigned int mxc_get_clock(enum mxc_clock clk)
  989. {
  990. switch (clk) {
  991. case MXC_ARM_CLK:
  992. return get_mcu_main_clk();
  993. case MXC_PER_CLK:
  994. return get_periph_clk();
  995. case MXC_AHB_CLK:
  996. return get_ahb_clk();
  997. case MXC_IPG_CLK:
  998. return get_ipg_clk();
  999. case MXC_IPG_PERCLK:
  1000. case MXC_I2C_CLK:
  1001. return get_ipg_per_clk();
  1002. case MXC_UART_CLK:
  1003. return get_uart_clk();
  1004. case MXC_CSPI_CLK:
  1005. return get_cspi_clk();
  1006. case MXC_AXI_CLK:
  1007. return get_axi_clk();
  1008. case MXC_EMI_SLOW_CLK:
  1009. return get_emi_slow_clk();
  1010. case MXC_DDR_CLK:
  1011. return get_mmdc_ch0_clk();
  1012. case MXC_ESDHC_CLK:
  1013. return get_usdhc_clk(0);
  1014. case MXC_ESDHC2_CLK:
  1015. return get_usdhc_clk(1);
  1016. case MXC_ESDHC3_CLK:
  1017. return get_usdhc_clk(2);
  1018. case MXC_ESDHC4_CLK:
  1019. return get_usdhc_clk(3);
  1020. case MXC_SATA_CLK:
  1021. return get_ahb_clk();
  1022. default:
  1023. printf("Unsupported MXC CLK: %d\n", clk);
  1024. break;
  1025. }
  1026. return 0;
  1027. }
  1028. /*
  1029. * Dump some core clockes.
  1030. */
  1031. int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  1032. {
  1033. u32 freq;
  1034. freq = decode_pll(PLL_SYS, MXC_HCLK);
  1035. printf("PLL_SYS %8d MHz\n", freq / 1000000);
  1036. freq = decode_pll(PLL_BUS, MXC_HCLK);
  1037. printf("PLL_BUS %8d MHz\n", freq / 1000000);
  1038. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  1039. printf("PLL_OTG %8d MHz\n", freq / 1000000);
  1040. freq = decode_pll(PLL_ENET, MXC_HCLK);
  1041. printf("PLL_NET %8d MHz\n", freq / 1000000);
  1042. printf("\n");
  1043. printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
  1044. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  1045. printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
  1046. #ifdef CONFIG_MXC_SPI
  1047. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  1048. #endif
  1049. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  1050. printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
  1051. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  1052. printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
  1053. printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
  1054. printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
  1055. printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
  1056. printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
  1057. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  1058. return 0;
  1059. }
  1060. #ifndef CONFIG_MX6SX
  1061. void enable_ipu_clock(void)
  1062. {
  1063. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  1064. int reg;
  1065. reg = readl(&mxc_ccm->CCGR3);
  1066. reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
  1067. writel(reg, &mxc_ccm->CCGR3);
  1068. if (is_mx6dqp()) {
  1069. setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
  1070. setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
  1071. }
  1072. }
  1073. #endif
  1074. #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
  1075. defined(CONFIG_MX6S)
  1076. static void disable_ldb_di_clock_sources(void)
  1077. {
  1078. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  1079. int reg;
  1080. /* Make sure PFDs are disabled at boot. */
  1081. reg = readl(&mxc_ccm->analog_pfd_528);
  1082. /* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
  1083. if (is_mx6sdl())
  1084. reg |= 0x80008080;
  1085. else
  1086. reg |= 0x80808080;
  1087. writel(reg, &mxc_ccm->analog_pfd_528);
  1088. /* Disable PLL3 PFDs */
  1089. reg = readl(&mxc_ccm->analog_pfd_480);
  1090. reg |= 0x80808080;
  1091. writel(reg, &mxc_ccm->analog_pfd_480);
  1092. /* Disable PLL5 */
  1093. reg = readl(&mxc_ccm->analog_pll_video);
  1094. reg &= ~(1 << 13);
  1095. writel(reg, &mxc_ccm->analog_pll_video);
  1096. }
  1097. static void enable_ldb_di_clock_sources(void)
  1098. {
  1099. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  1100. int reg;
  1101. reg = readl(&mxc_ccm->analog_pfd_528);
  1102. if (is_mx6sdl())
  1103. reg &= ~(0x80008080);
  1104. else
  1105. reg &= ~(0x80808080);
  1106. writel(reg, &mxc_ccm->analog_pfd_528);
  1107. reg = readl(&mxc_ccm->analog_pfd_480);
  1108. reg &= ~(0x80808080);
  1109. writel(reg, &mxc_ccm->analog_pfd_480);
  1110. }
  1111. /*
  1112. * Try call this function as early in the boot process as possible since the
  1113. * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
  1114. */
  1115. void select_ldb_di_clock_source(enum ldb_di_clock clk)
  1116. {
  1117. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  1118. int reg;
  1119. /*
  1120. * Need to follow a strict procedure when changing the LDB
  1121. * clock, else we can introduce a glitch. Things to keep in
  1122. * mind:
  1123. * 1. The current and new parent clocks must be disabled.
  1124. * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
  1125. * no CG bit.
  1126. * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
  1127. * the top four options are in one mux and the PLL3 option along
  1128. * with another option is in the second mux. There is third mux
  1129. * used to decide between the first and second mux.
  1130. * The code below switches the parent to the bottom mux first
  1131. * and then manipulates the top mux. This ensures that no glitch
  1132. * will enter the divider.
  1133. *
  1134. * Need to disable MMDC_CH1 clock manually as there is no CG bit
  1135. * for this clock. The only way to disable this clock is to move
  1136. * it to pll3_sw_clk and then to disable pll3_sw_clk
  1137. * Make sure periph2_clk2_sel is set to pll3_sw_clk
  1138. */
  1139. /* Disable all ldb_di clock parents */
  1140. disable_ldb_di_clock_sources();
  1141. /* Set MMDC_CH1 mask bit */
  1142. reg = readl(&mxc_ccm->ccdr);
  1143. reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
  1144. writel(reg, &mxc_ccm->ccdr);
  1145. /* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
  1146. reg = readl(&mxc_ccm->cbcmr);
  1147. reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
  1148. writel(reg, &mxc_ccm->cbcmr);
  1149. /*
  1150. * Set the periph2_clk_sel to the top mux so that
  1151. * mmdc_ch1 is from pll3_sw_clk.
  1152. */
  1153. reg = readl(&mxc_ccm->cbcdr);
  1154. reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
  1155. writel(reg, &mxc_ccm->cbcdr);
  1156. /* Wait for the clock switch */
  1157. while (readl(&mxc_ccm->cdhipr))
  1158. ;
  1159. /* Disable pll3_sw_clk by selecting bypass clock source */
  1160. reg = readl(&mxc_ccm->ccsr);
  1161. reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
  1162. writel(reg, &mxc_ccm->ccsr);
  1163. /* Set the ldb_di0_clk and ldb_di1_clk to 111b */
  1164. reg = readl(&mxc_ccm->cs2cdr);
  1165. reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
  1166. | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
  1167. writel(reg, &mxc_ccm->cs2cdr);
  1168. /* Set the ldb_di0_clk and ldb_di1_clk to 100b */
  1169. reg = readl(&mxc_ccm->cs2cdr);
  1170. reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
  1171. | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
  1172. reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
  1173. | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
  1174. writel(reg, &mxc_ccm->cs2cdr);
  1175. /* Set the ldb_di0_clk and ldb_di1_clk to desired source */
  1176. reg = readl(&mxc_ccm->cs2cdr);
  1177. reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
  1178. | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
  1179. reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
  1180. | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
  1181. writel(reg, &mxc_ccm->cs2cdr);
  1182. /* Unbypass pll3_sw_clk */
  1183. reg = readl(&mxc_ccm->ccsr);
  1184. reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
  1185. writel(reg, &mxc_ccm->ccsr);
  1186. /*
  1187. * Set the periph2_clk_sel back to the bottom mux so that
  1188. * mmdc_ch1 is from its original parent.
  1189. */
  1190. reg = readl(&mxc_ccm->cbcdr);
  1191. reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
  1192. writel(reg, &mxc_ccm->cbcdr);
  1193. /* Wait for the clock switch */
  1194. while (readl(&mxc_ccm->cdhipr))
  1195. ;
  1196. /* Clear MMDC_CH1 mask bit */
  1197. reg = readl(&mxc_ccm->ccdr);
  1198. reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
  1199. writel(reg, &mxc_ccm->ccdr);
  1200. enable_ldb_di_clock_sources();
  1201. }
  1202. #endif
  1203. /***************************************************/
  1204. U_BOOT_CMD(
  1205. clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
  1206. "display clocks",
  1207. ""
  1208. );