main.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /*
  2. * Copyright 2008-2014 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. /*
  9. * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
  10. * Based on code from spd_sdram.c
  11. * Author: James Yang [at freescale.com]
  12. */
  13. #include <common.h>
  14. #include <i2c.h>
  15. #include <fsl_ddr_sdram.h>
  16. #include <fsl_ddr.h>
  17. /*
  18. * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
  19. * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
  20. * all Power SoCs. But it could be different for ARM SoCs. For example,
  21. * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
  22. * 0x00_8000_0000 ~ 0x00_ffff_ffff
  23. * 0x80_8000_0000 ~ 0xff_ffff_ffff
  24. */
  25. #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
  26. #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
  27. #endif
  28. #ifdef CONFIG_PPC
  29. #include <asm/fsl_law.h>
  30. void fsl_ddr_set_lawbar(
  31. const common_timing_params_t *memctl_common_params,
  32. unsigned int memctl_interleaved,
  33. unsigned int ctrl_num);
  34. #endif
  35. void fsl_ddr_set_intl3r(const unsigned int granule_size);
  36. #if defined(SPD_EEPROM_ADDRESS) || \
  37. defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
  38. defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
  39. #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  40. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  41. [0][0] = SPD_EEPROM_ADDRESS,
  42. };
  43. #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  44. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  45. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  46. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  47. };
  48. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  49. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  50. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  51. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  52. };
  53. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  54. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  55. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  56. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  57. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  58. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  59. };
  60. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  61. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  62. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  63. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  64. [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
  65. };
  66. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  67. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  68. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  69. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  70. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  71. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  72. [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
  73. [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
  74. };
  75. #endif
  76. #define SPD_SPA0_ADDRESS 0x36
  77. #define SPD_SPA1_ADDRESS 0x37
  78. static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
  79. {
  80. int ret;
  81. #ifdef CONFIG_SYS_FSL_DDR4
  82. uint8_t dummy = 0;
  83. #endif
  84. i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
  85. #ifdef CONFIG_SYS_FSL_DDR4
  86. /*
  87. * DDR4 SPD has 384 to 512 bytes
  88. * To access the lower 256 bytes, we need to set EE page address to 0
  89. * To access the upper 256 bytes, we need to set EE page address to 1
  90. * See Jedec standar No. 21-C for detail
  91. */
  92. i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
  93. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
  94. if (!ret) {
  95. i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
  96. ret = i2c_read(i2c_address, 0, 1,
  97. (uchar *)((ulong)spd + 256),
  98. min(256, sizeof(generic_spd_eeprom_t) - 256));
  99. }
  100. #else
  101. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
  102. sizeof(generic_spd_eeprom_t));
  103. #endif
  104. if (ret) {
  105. if (i2c_address ==
  106. #ifdef SPD_EEPROM_ADDRESS
  107. SPD_EEPROM_ADDRESS
  108. #elif defined(SPD_EEPROM_ADDRESS1)
  109. SPD_EEPROM_ADDRESS1
  110. #endif
  111. ) {
  112. printf("DDR: failed to read SPD from address %u\n",
  113. i2c_address);
  114. } else {
  115. debug("DDR: failed to read SPD from address %u\n",
  116. i2c_address);
  117. }
  118. memset(spd, 0, sizeof(generic_spd_eeprom_t));
  119. }
  120. }
  121. __attribute__((weak, alias("__get_spd")))
  122. void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
  123. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  124. unsigned int ctrl_num)
  125. {
  126. unsigned int i;
  127. unsigned int i2c_address = 0;
  128. if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
  129. printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
  130. return;
  131. }
  132. for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
  133. i2c_address = spd_i2c_addr[ctrl_num][i];
  134. get_spd(&(ctrl_dimms_spd[i]), i2c_address);
  135. }
  136. }
  137. #else
  138. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  139. unsigned int ctrl_num)
  140. {
  141. }
  142. #endif /* SPD_EEPROM_ADDRESSx */
  143. /*
  144. * ASSUMPTIONS:
  145. * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
  146. * - Same memory data bus width on all controllers
  147. *
  148. * NOTES:
  149. *
  150. * The memory controller and associated documentation use confusing
  151. * terminology when referring to the orgranization of DRAM.
  152. *
  153. * Here is a terminology translation table:
  154. *
  155. * memory controller/documention |industry |this code |signals
  156. * -------------------------------|-----------|-----------|-----------------
  157. * physical bank/bank |rank |rank |chip select (CS)
  158. * logical bank/sub-bank |bank |bank |bank address (BA)
  159. * page/row |row |page |row address
  160. * ??? |column |column |column address
  161. *
  162. * The naming confusion is further exacerbated by the descriptions of the
  163. * memory controller interleaving feature, where accesses are interleaved
  164. * _BETWEEN_ two seperate memory controllers. This is configured only in
  165. * CS0_CONFIG[INTLV_CTL] of each memory controller.
  166. *
  167. * memory controller documentation | number of chip selects
  168. * | per memory controller supported
  169. * --------------------------------|-----------------------------------------
  170. * cache line interleaving | 1 (CS0 only)
  171. * page interleaving | 1 (CS0 only)
  172. * bank interleaving | 1 (CS0 only)
  173. * superbank interleraving | depends on bank (chip select)
  174. * | interleraving [rank interleaving]
  175. * | mode used on every memory controller
  176. *
  177. * Even further confusing is the existence of the interleaving feature
  178. * _WITHIN_ each memory controller. The feature is referred to in
  179. * documentation as chip select interleaving or bank interleaving,
  180. * although it is configured in the DDR_SDRAM_CFG field.
  181. *
  182. * Name of field | documentation name | this code
  183. * -----------------------------|-----------------------|------------------
  184. * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
  185. * | interleaving
  186. */
  187. const char *step_string_tbl[] = {
  188. "STEP_GET_SPD",
  189. "STEP_COMPUTE_DIMM_PARMS",
  190. "STEP_COMPUTE_COMMON_PARMS",
  191. "STEP_GATHER_OPTS",
  192. "STEP_ASSIGN_ADDRESSES",
  193. "STEP_COMPUTE_REGS",
  194. "STEP_PROGRAM_REGS",
  195. "STEP_ALL"
  196. };
  197. const char * step_to_string(unsigned int step) {
  198. unsigned int s = __ilog2(step);
  199. if ((1 << s) != step)
  200. return step_string_tbl[7];
  201. if (s >= ARRAY_SIZE(step_string_tbl)) {
  202. printf("Error for the step in %s\n", __func__);
  203. s = 0;
  204. }
  205. return step_string_tbl[s];
  206. }
  207. static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
  208. unsigned int dbw_cap_adj[])
  209. {
  210. int i, j;
  211. unsigned long long total_mem, current_mem_base, total_ctlr_mem;
  212. unsigned long long rank_density, ctlr_density = 0;
  213. /*
  214. * If a reduced data width is requested, but the SPD
  215. * specifies a physically wider device, adjust the
  216. * computed dimm capacities accordingly before
  217. * assigning addresses.
  218. */
  219. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  220. unsigned int found = 0;
  221. switch (pinfo->memctl_opts[i].data_bus_width) {
  222. case 2:
  223. /* 16-bit */
  224. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  225. unsigned int dw;
  226. if (!pinfo->dimm_params[i][j].n_ranks)
  227. continue;
  228. dw = pinfo->dimm_params[i][j].primary_sdram_width;
  229. if ((dw == 72 || dw == 64)) {
  230. dbw_cap_adj[i] = 2;
  231. break;
  232. } else if ((dw == 40 || dw == 32)) {
  233. dbw_cap_adj[i] = 1;
  234. break;
  235. }
  236. }
  237. break;
  238. case 1:
  239. /* 32-bit */
  240. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  241. unsigned int dw;
  242. dw = pinfo->dimm_params[i][j].data_width;
  243. if (pinfo->dimm_params[i][j].n_ranks
  244. && (dw == 72 || dw == 64)) {
  245. /*
  246. * FIXME: can't really do it
  247. * like this because this just
  248. * further reduces the memory
  249. */
  250. found = 1;
  251. break;
  252. }
  253. }
  254. if (found) {
  255. dbw_cap_adj[i] = 1;
  256. }
  257. break;
  258. case 0:
  259. /* 64-bit */
  260. break;
  261. default:
  262. printf("unexpected data bus width "
  263. "specified controller %u\n", i);
  264. return 1;
  265. }
  266. debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
  267. }
  268. current_mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  269. total_mem = 0;
  270. if (pinfo->memctl_opts[0].memctl_interleaving) {
  271. rank_density = pinfo->dimm_params[0][0].rank_density >>
  272. dbw_cap_adj[0];
  273. switch (pinfo->memctl_opts[0].ba_intlv_ctl &
  274. FSL_DDR_CS0_CS1_CS2_CS3) {
  275. case FSL_DDR_CS0_CS1_CS2_CS3:
  276. ctlr_density = 4 * rank_density;
  277. break;
  278. case FSL_DDR_CS0_CS1:
  279. case FSL_DDR_CS0_CS1_AND_CS2_CS3:
  280. ctlr_density = 2 * rank_density;
  281. break;
  282. case FSL_DDR_CS2_CS3:
  283. default:
  284. ctlr_density = rank_density;
  285. break;
  286. }
  287. debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
  288. rank_density, ctlr_density);
  289. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  290. if (pinfo->memctl_opts[i].memctl_interleaving) {
  291. switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
  292. case FSL_DDR_256B_INTERLEAVING:
  293. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  294. case FSL_DDR_PAGE_INTERLEAVING:
  295. case FSL_DDR_BANK_INTERLEAVING:
  296. case FSL_DDR_SUPERBANK_INTERLEAVING:
  297. total_ctlr_mem = 2 * ctlr_density;
  298. break;
  299. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  300. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  301. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  302. total_ctlr_mem = 3 * ctlr_density;
  303. break;
  304. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  305. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  306. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  307. total_ctlr_mem = 4 * ctlr_density;
  308. break;
  309. default:
  310. panic("Unknown interleaving mode");
  311. }
  312. pinfo->common_timing_params[i].base_address =
  313. current_mem_base;
  314. pinfo->common_timing_params[i].total_mem =
  315. total_ctlr_mem;
  316. total_mem = current_mem_base + total_ctlr_mem;
  317. debug("ctrl %d base 0x%llx\n", i, current_mem_base);
  318. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  319. } else {
  320. /* when 3rd controller not interleaved */
  321. current_mem_base = total_mem;
  322. total_ctlr_mem = 0;
  323. pinfo->common_timing_params[i].base_address =
  324. current_mem_base;
  325. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  326. unsigned long long cap =
  327. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  328. pinfo->dimm_params[i][j].base_address =
  329. current_mem_base;
  330. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  331. current_mem_base += cap;
  332. total_ctlr_mem += cap;
  333. }
  334. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  335. pinfo->common_timing_params[i].total_mem =
  336. total_ctlr_mem;
  337. total_mem += total_ctlr_mem;
  338. }
  339. }
  340. } else {
  341. /*
  342. * Simple linear assignment if memory
  343. * controllers are not interleaved.
  344. */
  345. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  346. total_ctlr_mem = 0;
  347. pinfo->common_timing_params[i].base_address =
  348. current_mem_base;
  349. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  350. /* Compute DIMM base addresses. */
  351. unsigned long long cap =
  352. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  353. pinfo->dimm_params[i][j].base_address =
  354. current_mem_base;
  355. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  356. current_mem_base += cap;
  357. total_ctlr_mem += cap;
  358. }
  359. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  360. pinfo->common_timing_params[i].total_mem =
  361. total_ctlr_mem;
  362. total_mem += total_ctlr_mem;
  363. }
  364. }
  365. debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
  366. return total_mem;
  367. }
  368. /* Use weak function to allow board file to override the address assignment */
  369. __attribute__((weak, alias("__step_assign_addresses")))
  370. unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
  371. unsigned int dbw_cap_adj[]);
  372. unsigned long long
  373. fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
  374. unsigned int size_only)
  375. {
  376. unsigned int i, j;
  377. unsigned long long total_mem = 0;
  378. int assert_reset;
  379. fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
  380. common_timing_params_t *timing_params = pinfo->common_timing_params;
  381. assert_reset = board_need_mem_reset();
  382. /* data bus width capacity adjust shift amount */
  383. unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
  384. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  385. dbw_capacity_adjust[i] = 0;
  386. }
  387. debug("starting at step %u (%s)\n",
  388. start_step, step_to_string(start_step));
  389. switch (start_step) {
  390. case STEP_GET_SPD:
  391. #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
  392. /* STEP 1: Gather all DIMM SPD data */
  393. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  394. fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
  395. }
  396. case STEP_COMPUTE_DIMM_PARMS:
  397. /* STEP 2: Compute DIMM parameters from SPD data */
  398. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  399. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  400. unsigned int retval;
  401. generic_spd_eeprom_t *spd =
  402. &(pinfo->spd_installed_dimms[i][j]);
  403. dimm_params_t *pdimm =
  404. &(pinfo->dimm_params[i][j]);
  405. retval = compute_dimm_parameters(spd, pdimm, i);
  406. #ifdef CONFIG_SYS_DDR_RAW_TIMING
  407. if (!i && !j && retval) {
  408. printf("SPD error on controller %d! "
  409. "Trying fallback to raw timing "
  410. "calculation\n", i);
  411. fsl_ddr_get_dimm_params(pdimm, i, j);
  412. }
  413. #else
  414. if (retval == 2) {
  415. printf("Error: compute_dimm_parameters"
  416. " non-zero returned FATAL value "
  417. "for memctl=%u dimm=%u\n", i, j);
  418. return 0;
  419. }
  420. #endif
  421. if (retval) {
  422. debug("Warning: compute_dimm_parameters"
  423. " non-zero return value for memctl=%u "
  424. "dimm=%u\n", i, j);
  425. }
  426. }
  427. }
  428. #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
  429. case STEP_COMPUTE_DIMM_PARMS:
  430. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  431. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  432. dimm_params_t *pdimm =
  433. &(pinfo->dimm_params[i][j]);
  434. fsl_ddr_get_dimm_params(pdimm, i, j);
  435. }
  436. }
  437. debug("Filling dimm parameters from board specific file\n");
  438. #endif
  439. case STEP_COMPUTE_COMMON_PARMS:
  440. /*
  441. * STEP 3: Compute a common set of timing parameters
  442. * suitable for all of the DIMMs on each memory controller
  443. */
  444. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  445. debug("Computing lowest common DIMM"
  446. " parameters for memctl=%u\n", i);
  447. compute_lowest_common_dimm_parameters(
  448. pinfo->dimm_params[i],
  449. &timing_params[i],
  450. CONFIG_DIMM_SLOTS_PER_CTLR);
  451. }
  452. case STEP_GATHER_OPTS:
  453. /* STEP 4: Gather configuration requirements from user */
  454. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  455. debug("Reloading memory controller "
  456. "configuration options for memctl=%u\n", i);
  457. /*
  458. * This "reloads" the memory controller options
  459. * to defaults. If the user "edits" an option,
  460. * next_step points to the step after this,
  461. * which is currently STEP_ASSIGN_ADDRESSES.
  462. */
  463. populate_memctl_options(
  464. timing_params[i].all_dimms_registered,
  465. &pinfo->memctl_opts[i],
  466. pinfo->dimm_params[i], i);
  467. /*
  468. * For RDIMMs, JEDEC spec requires clocks to be stable
  469. * before reset signal is deasserted. For the boards
  470. * using fixed parameters, this function should be
  471. * be called from board init file.
  472. */
  473. if (timing_params[i].all_dimms_registered)
  474. assert_reset = 1;
  475. }
  476. if (assert_reset) {
  477. debug("Asserting mem reset\n");
  478. board_assert_mem_reset();
  479. }
  480. case STEP_ASSIGN_ADDRESSES:
  481. /* STEP 5: Assign addresses to chip selects */
  482. check_interleaving_options(pinfo);
  483. total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
  484. debug("Total mem %llu assigned\n", total_mem);
  485. case STEP_COMPUTE_REGS:
  486. /* STEP 6: compute controller register values */
  487. debug("FSL Memory ctrl register computation\n");
  488. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  489. if (timing_params[i].ndimms_present == 0) {
  490. memset(&ddr_reg[i], 0,
  491. sizeof(fsl_ddr_cfg_regs_t));
  492. continue;
  493. }
  494. compute_fsl_memctl_config_regs(
  495. &pinfo->memctl_opts[i],
  496. &ddr_reg[i], &timing_params[i],
  497. pinfo->dimm_params[i],
  498. dbw_capacity_adjust[i],
  499. size_only);
  500. }
  501. default:
  502. break;
  503. }
  504. {
  505. /*
  506. * Compute the amount of memory available just by
  507. * looking for the highest valid CSn_BNDS value.
  508. * This allows us to also experiment with using
  509. * only CS0 when using dual-rank DIMMs.
  510. */
  511. unsigned int max_end = 0;
  512. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  513. for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
  514. fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
  515. if (reg->cs[j].config & 0x80000000) {
  516. unsigned int end;
  517. /*
  518. * 0xfffffff is a special value we put
  519. * for unused bnds
  520. */
  521. if (reg->cs[j].bnds == 0xffffffff)
  522. continue;
  523. end = reg->cs[j].bnds & 0xffff;
  524. if (end > max_end) {
  525. max_end = end;
  526. }
  527. }
  528. }
  529. }
  530. total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
  531. 0xFFFFFFULL) - CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  532. }
  533. return total_mem;
  534. }
  535. /*
  536. * fsl_ddr_sdram() -- this is the main function to be called by
  537. * initdram() in the board file.
  538. *
  539. * It returns amount of memory configured in bytes.
  540. */
  541. phys_size_t fsl_ddr_sdram(void)
  542. {
  543. unsigned int i;
  544. #ifdef CONFIG_PPC
  545. unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
  546. #endif
  547. unsigned long long total_memory;
  548. fsl_ddr_info_t info;
  549. int deassert_reset;
  550. /* Reset info structure. */
  551. memset(&info, 0, sizeof(fsl_ddr_info_t));
  552. /* Compute it once normally. */
  553. #ifdef CONFIG_FSL_DDR_INTERACTIVE
  554. if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
  555. total_memory = fsl_ddr_interactive(&info, 0);
  556. } else if (fsl_ddr_interactive_env_var_exists()) {
  557. total_memory = fsl_ddr_interactive(&info, 1);
  558. } else
  559. #endif
  560. total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
  561. /* setup 3-way interleaving before enabling DDRC */
  562. if (info.memctl_opts[0].memctl_interleaving) {
  563. switch (info.memctl_opts[0].memctl_interleaving_mode) {
  564. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  565. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  566. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  567. fsl_ddr_set_intl3r(
  568. info.memctl_opts[0].memctl_interleaving_mode);
  569. break;
  570. default:
  571. break;
  572. }
  573. }
  574. /*
  575. * Program configuration registers.
  576. * JEDEC specs requires clocks to be stable before deasserting reset
  577. * for RDIMMs. Clocks start after chip select is enabled and clock
  578. * control register is set. During step 1, all controllers have their
  579. * registers set but not enabled. Step 2 proceeds after deasserting
  580. * reset through board FPGA or GPIO.
  581. * For non-registered DIMMs, initialization can go through but it is
  582. * also OK to follow the same flow.
  583. */
  584. deassert_reset = board_need_mem_reset();
  585. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  586. if (info.common_timing_params[i].all_dimms_registered)
  587. deassert_reset = 1;
  588. }
  589. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  590. debug("Programming controller %u\n", i);
  591. if (info.common_timing_params[i].ndimms_present == 0) {
  592. debug("No dimms present on controller %u; "
  593. "skipping programming\n", i);
  594. continue;
  595. }
  596. /*
  597. * The following call with step = 1 returns before enabling
  598. * the controller. It has to finish with step = 2 later.
  599. */
  600. fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
  601. deassert_reset ? 1 : 0);
  602. }
  603. if (deassert_reset) {
  604. /* Use board FPGA or GPIO to deassert reset signal */
  605. debug("Deasserting mem reset\n");
  606. board_deassert_mem_reset();
  607. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  608. /* Call with step = 2 to continue initialization */
  609. fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
  610. i, 2);
  611. }
  612. }
  613. #ifdef CONFIG_PPC
  614. /* program LAWs */
  615. for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
  616. if (info.memctl_opts[i].memctl_interleaving) {
  617. switch (info.memctl_opts[i].memctl_interleaving_mode) {
  618. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  619. case FSL_DDR_PAGE_INTERLEAVING:
  620. case FSL_DDR_BANK_INTERLEAVING:
  621. case FSL_DDR_SUPERBANK_INTERLEAVING:
  622. if (i == 0) {
  623. law_memctl = LAW_TRGT_IF_DDR_INTRLV;
  624. fsl_ddr_set_lawbar(&info.common_timing_params[i],
  625. law_memctl, i);
  626. } else if (i == 2) {
  627. law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
  628. fsl_ddr_set_lawbar(&info.common_timing_params[i],
  629. law_memctl, i);
  630. }
  631. break;
  632. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  633. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  634. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  635. law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
  636. if (i == 0) {
  637. fsl_ddr_set_lawbar(&info.common_timing_params[i],
  638. law_memctl, i);
  639. }
  640. break;
  641. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  642. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  643. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  644. law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
  645. if (i == 0)
  646. fsl_ddr_set_lawbar(&info.common_timing_params[i],
  647. law_memctl, i);
  648. /* place holder for future 4-way interleaving */
  649. break;
  650. default:
  651. break;
  652. }
  653. } else {
  654. switch (i) {
  655. case 0:
  656. law_memctl = LAW_TRGT_IF_DDR_1;
  657. break;
  658. case 1:
  659. law_memctl = LAW_TRGT_IF_DDR_2;
  660. break;
  661. case 2:
  662. law_memctl = LAW_TRGT_IF_DDR_3;
  663. break;
  664. case 3:
  665. law_memctl = LAW_TRGT_IF_DDR_4;
  666. break;
  667. default:
  668. break;
  669. }
  670. fsl_ddr_set_lawbar(&info.common_timing_params[i],
  671. law_memctl, i);
  672. }
  673. }
  674. #endif
  675. debug("total_memory by %s = %llu\n", __func__, total_memory);
  676. #if !defined(CONFIG_PHYS_64BIT)
  677. /* Check for 4G or more. Bad. */
  678. if (total_memory >= (1ull << 32)) {
  679. puts("Detected ");
  680. print_size(total_memory, " of memory\n");
  681. printf(" This U-Boot only supports < 4G of DDR\n");
  682. printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
  683. printf(" "); /* re-align to match init_func_ram print */
  684. total_memory = CONFIG_MAX_MEM_MAPPED;
  685. }
  686. #endif
  687. return total_memory;
  688. }
  689. /*
  690. * fsl_ddr_sdram_size() - This function only returns the size of the total
  691. * memory without setting ddr control registers.
  692. */
  693. phys_size_t
  694. fsl_ddr_sdram_size(void)
  695. {
  696. fsl_ddr_info_t info;
  697. unsigned long long total_memory = 0;
  698. memset(&info, 0 , sizeof(fsl_ddr_info_t));
  699. /* Compute it once normally. */
  700. total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
  701. return total_memory;
  702. }