zynqmp.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. /*
  2. * (C) Copyright 2014 - 2015 Xilinx, Inc.
  3. * Michal Simek <michal.simek@xilinx.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <sata.h>
  9. #include <ahci.h>
  10. #include <scsi.h>
  11. #include <malloc.h>
  12. #include <asm/arch/clk.h>
  13. #include <asm/arch/hardware.h>
  14. #include <asm/arch/sys_proto.h>
  15. #include <asm/io.h>
  16. #include <usb.h>
  17. #include <dwc3-uboot.h>
  18. #include <zynqmppl.h>
  19. #include <i2c.h>
  20. #include <g_dnl.h>
  21. DECLARE_GLOBAL_DATA_PTR;
  22. #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_ZYNQMPPL) && \
  23. !defined(CONFIG_SPL_BUILD)
  24. static xilinx_desc zynqmppl = XILINX_ZYNQMP_DESC;
  25. static const struct {
  26. uint32_t id;
  27. char *name;
  28. } zynqmp_devices[] = {
  29. {
  30. .id = 0x10,
  31. .name = "3eg",
  32. },
  33. {
  34. .id = 0x11,
  35. .name = "2eg",
  36. },
  37. {
  38. .id = 0x20,
  39. .name = "5ev",
  40. },
  41. {
  42. .id = 0x21,
  43. .name = "4ev",
  44. },
  45. {
  46. .id = 0x30,
  47. .name = "7ev",
  48. },
  49. {
  50. .id = 0x38,
  51. .name = "9eg",
  52. },
  53. {
  54. .id = 0x39,
  55. .name = "6eg",
  56. },
  57. {
  58. .id = 0x40,
  59. .name = "11eg",
  60. },
  61. {
  62. .id = 0x50,
  63. .name = "15eg",
  64. },
  65. {
  66. .id = 0x58,
  67. .name = "19eg",
  68. },
  69. {
  70. .id = 0x59,
  71. .name = "17eg",
  72. },
  73. };
  74. static int chip_id(void)
  75. {
  76. struct pt_regs regs;
  77. regs.regs[0] = ZYNQMP_SIP_SVC_CSU_DMA_CHIPID;
  78. regs.regs[1] = 0;
  79. regs.regs[2] = 0;
  80. regs.regs[3] = 0;
  81. smc_call(&regs);
  82. return regs.regs[0];
  83. }
  84. static char *zynqmp_get_silicon_idcode_name(void)
  85. {
  86. uint32_t i, id;
  87. id = chip_id();
  88. for (i = 0; i < ARRAY_SIZE(zynqmp_devices); i++) {
  89. if (zynqmp_devices[i].id == id)
  90. return zynqmp_devices[i].name;
  91. }
  92. return "unknown";
  93. }
  94. #endif
  95. #define ZYNQMP_VERSION_SIZE 9
  96. int board_init(void)
  97. {
  98. printf("EL Level:\tEL%d\n", current_el());
  99. #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_ZYNQMPPL) && \
  100. !defined(CONFIG_SPL_BUILD) || (defined(CONFIG_SPL_FPGA_SUPPORT) && \
  101. defined(CONFIG_SPL_BUILD))
  102. if (current_el() != 3) {
  103. static char version[ZYNQMP_VERSION_SIZE];
  104. strncat(version, "xczu", ZYNQMP_VERSION_SIZE);
  105. zynqmppl.name = strncat(version,
  106. zynqmp_get_silicon_idcode_name(),
  107. ZYNQMP_VERSION_SIZE);
  108. printf("Chip ID:\t%s\n", zynqmppl.name);
  109. fpga_init();
  110. fpga_add(fpga_xilinx, &zynqmppl);
  111. }
  112. #endif
  113. return 0;
  114. }
  115. int board_early_init_r(void)
  116. {
  117. u32 val;
  118. if (current_el() == 3) {
  119. val = readl(&crlapb_base->timestamp_ref_ctrl);
  120. val |= ZYNQMP_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT;
  121. writel(val, &crlapb_base->timestamp_ref_ctrl);
  122. /* Program freq register in System counter */
  123. writel(zynqmp_get_system_timer_freq(),
  124. &iou_scntr_secure->base_frequency_id_register);
  125. /* And enable system counter */
  126. writel(ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_EN,
  127. &iou_scntr_secure->counter_control_register);
  128. }
  129. /* Program freq register in System counter and enable system counter */
  130. writel(gd->cpu_clk, &iou_scntr->base_frequency_id_register);
  131. writel(ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_HDBG |
  132. ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_EN,
  133. &iou_scntr->counter_control_register);
  134. return 0;
  135. }
  136. int zynq_board_read_rom_ethaddr(unsigned char *ethaddr)
  137. {
  138. #if defined(CONFIG_ZYNQ_GEM_EEPROM_ADDR) && \
  139. defined(CONFIG_ZYNQ_GEM_I2C_MAC_OFFSET) && \
  140. defined(CONFIG_ZYNQ_EEPROM_BUS)
  141. i2c_set_bus_num(CONFIG_ZYNQ_EEPROM_BUS);
  142. if (eeprom_read(CONFIG_ZYNQ_GEM_EEPROM_ADDR,
  143. CONFIG_ZYNQ_GEM_I2C_MAC_OFFSET,
  144. ethaddr, 6))
  145. printf("I2C EEPROM MAC address read failed\n");
  146. #endif
  147. return 0;
  148. }
  149. #if !defined(CONFIG_SYS_SDRAM_BASE) && !defined(CONFIG_SYS_SDRAM_SIZE)
  150. /*
  151. * fdt_get_reg - Fill buffer by information from DT
  152. */
  153. static phys_size_t fdt_get_reg(const void *fdt, int nodeoffset, void *buf,
  154. const u32 *cell, int n)
  155. {
  156. int i = 0, b, banks;
  157. int parent_offset = fdt_parent_offset(fdt, nodeoffset);
  158. int address_cells = fdt_address_cells(fdt, parent_offset);
  159. int size_cells = fdt_size_cells(fdt, parent_offset);
  160. char *p = buf;
  161. u64 val;
  162. u64 vals;
  163. debug("%s: addr_cells=%x, size_cell=%x, buf=%p, cell=%p\n",
  164. __func__, address_cells, size_cells, buf, cell);
  165. /* Check memory bank setup */
  166. banks = n % (address_cells + size_cells);
  167. if (banks)
  168. panic("Incorrect memory setup cells=%d, ac=%d, sc=%d\n",
  169. n, address_cells, size_cells);
  170. banks = n / (address_cells + size_cells);
  171. for (b = 0; b < banks; b++) {
  172. debug("%s: Bank #%d:\n", __func__, b);
  173. if (address_cells == 2) {
  174. val = cell[i + 1];
  175. val <<= 32;
  176. val |= cell[i];
  177. val = fdt64_to_cpu(val);
  178. debug("%s: addr64=%llx, ptr=%p, cell=%p\n",
  179. __func__, val, p, &cell[i]);
  180. *(phys_addr_t *)p = val;
  181. } else {
  182. debug("%s: addr32=%x, ptr=%p\n",
  183. __func__, fdt32_to_cpu(cell[i]), p);
  184. *(phys_addr_t *)p = fdt32_to_cpu(cell[i]);
  185. }
  186. p += sizeof(phys_addr_t);
  187. i += address_cells;
  188. debug("%s: pa=%p, i=%x, size=%zu\n", __func__, p, i,
  189. sizeof(phys_addr_t));
  190. if (size_cells == 2) {
  191. vals = cell[i + 1];
  192. vals <<= 32;
  193. vals |= cell[i];
  194. vals = fdt64_to_cpu(vals);
  195. debug("%s: size64=%llx, ptr=%p, cell=%p\n",
  196. __func__, vals, p, &cell[i]);
  197. *(phys_size_t *)p = vals;
  198. } else {
  199. debug("%s: size32=%x, ptr=%p\n",
  200. __func__, fdt32_to_cpu(cell[i]), p);
  201. *(phys_size_t *)p = fdt32_to_cpu(cell[i]);
  202. }
  203. p += sizeof(phys_size_t);
  204. i += size_cells;
  205. debug("%s: ps=%p, i=%x, size=%zu\n",
  206. __func__, p, i, sizeof(phys_size_t));
  207. }
  208. /* Return the first address size */
  209. return *(phys_size_t *)((char *)buf + sizeof(phys_addr_t));
  210. }
  211. #define FDT_REG_SIZE sizeof(u32)
  212. /* Temp location for sharing data for storing */
  213. /* Up to 64-bit address + 64-bit size */
  214. static u8 tmp[CONFIG_NR_DRAM_BANKS * 16];
  215. void dram_init_banksize(void)
  216. {
  217. int bank;
  218. memcpy(&gd->bd->bi_dram[0], &tmp, sizeof(tmp));
  219. for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
  220. debug("Bank #%d: start %llx\n", bank,
  221. (unsigned long long)gd->bd->bi_dram[bank].start);
  222. debug("Bank #%d: size %llx\n", bank,
  223. (unsigned long long)gd->bd->bi_dram[bank].size);
  224. }
  225. }
  226. int dram_init(void)
  227. {
  228. int node, len;
  229. const void *blob = gd->fdt_blob;
  230. const u32 *cell;
  231. memset(&tmp, 0, sizeof(tmp));
  232. /* find or create "/memory" node. */
  233. node = fdt_subnode_offset(blob, 0, "memory");
  234. if (node < 0) {
  235. printf("%s: Can't get memory node\n", __func__);
  236. return node;
  237. }
  238. /* Get pointer to cells and lenght of it */
  239. cell = fdt_getprop(blob, node, "reg", &len);
  240. if (!cell) {
  241. printf("%s: Can't get reg property\n", __func__);
  242. return -1;
  243. }
  244. gd->ram_size = fdt_get_reg(blob, node, &tmp, cell, len / FDT_REG_SIZE);
  245. debug("%s: Initial DRAM size %llx\n", __func__, (u64)gd->ram_size);
  246. return 0;
  247. }
  248. #else
  249. int dram_init(void)
  250. {
  251. gd->ram_size = CONFIG_SYS_SDRAM_SIZE;
  252. return 0;
  253. }
  254. #endif
  255. void reset_cpu(ulong addr)
  256. {
  257. }
  258. #ifdef CONFIG_SCSI_AHCI_PLAT
  259. void scsi_init(void)
  260. {
  261. #if defined(CONFIG_SATA_CEVA)
  262. init_sata(0);
  263. #endif
  264. ahci_init((void __iomem *)ZYNQMP_SATA_BASEADDR);
  265. scsi_scan(1);
  266. }
  267. #endif
  268. int board_late_init(void)
  269. {
  270. u32 reg = 0;
  271. u8 bootmode;
  272. const char *mode;
  273. char *new_targets;
  274. if (!(gd->flags & GD_FLG_ENV_DEFAULT)) {
  275. debug("Saved variables - Skipping\n");
  276. return 0;
  277. }
  278. reg = readl(&crlapb_base->boot_mode);
  279. bootmode = reg & BOOT_MODES_MASK;
  280. puts("Bootmode: ");
  281. switch (bootmode) {
  282. case USB_MODE:
  283. puts("USB_MODE\n");
  284. mode = "usb";
  285. break;
  286. case JTAG_MODE:
  287. puts("JTAG_MODE\n");
  288. mode = "pxe dhcp";
  289. break;
  290. case QSPI_MODE_24BIT:
  291. case QSPI_MODE_32BIT:
  292. mode = "qspi0";
  293. puts("QSPI_MODE\n");
  294. break;
  295. case EMMC_MODE:
  296. puts("EMMC_MODE\n");
  297. mode = "mmc0";
  298. break;
  299. case SD_MODE:
  300. puts("SD_MODE\n");
  301. mode = "mmc0";
  302. break;
  303. case SD_MODE1:
  304. puts("SD_MODE1\n");
  305. #if defined(CONFIG_ZYNQ_SDHCI0) && defined(CONFIG_ZYNQ_SDHCI1)
  306. mode = "mmc1";
  307. #else
  308. mode = "mmc0";
  309. #endif
  310. break;
  311. case NAND_MODE:
  312. puts("NAND_MODE\n");
  313. mode = "nand0";
  314. break;
  315. default:
  316. mode = "";
  317. printf("Invalid Boot Mode:0x%x\n", bootmode);
  318. break;
  319. }
  320. /*
  321. * One terminating char + one byte for space between mode
  322. * and default boot_targets
  323. */
  324. new_targets = calloc(1, strlen(mode) +
  325. strlen(getenv("boot_targets")) + 2);
  326. sprintf(new_targets, "%s %s", mode, getenv("boot_targets"));
  327. setenv("boot_targets", new_targets);
  328. return 0;
  329. }
  330. int checkboard(void)
  331. {
  332. puts("Board: Xilinx ZynqMP\n");
  333. return 0;
  334. }
  335. #ifdef CONFIG_USB_DWC3
  336. static struct dwc3_device dwc3_device_data0 = {
  337. .maximum_speed = USB_SPEED_HIGH,
  338. .base = ZYNQMP_USB0_XHCI_BASEADDR,
  339. .dr_mode = USB_DR_MODE_PERIPHERAL,
  340. .index = 0,
  341. };
  342. static struct dwc3_device dwc3_device_data1 = {
  343. .maximum_speed = USB_SPEED_HIGH,
  344. .base = ZYNQMP_USB1_XHCI_BASEADDR,
  345. .dr_mode = USB_DR_MODE_PERIPHERAL,
  346. .index = 1,
  347. };
  348. int usb_gadget_handle_interrupts(int index)
  349. {
  350. dwc3_uboot_handle_interrupt(index);
  351. return 0;
  352. }
  353. int board_usb_init(int index, enum usb_init_type init)
  354. {
  355. debug("%s: index %x\n", __func__, index);
  356. switch (index) {
  357. case 0:
  358. return dwc3_uboot_init(&dwc3_device_data0);
  359. case 1:
  360. return dwc3_uboot_init(&dwc3_device_data1);
  361. };
  362. return -1;
  363. }
  364. int board_usb_cleanup(int index, enum usb_init_type init)
  365. {
  366. dwc3_uboot_exit(index);
  367. return 0;
  368. }
  369. #endif