mvneta.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * U-Boot version:
  5. * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
  6. *
  7. * Based on the Linux version which is:
  8. * Copyright (C) 2012 Marvell
  9. *
  10. * Rami Rosen <rosenr@marvell.com>
  11. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  12. *
  13. * SPDX-License-Identifier: GPL-2.0
  14. */
  15. #include <common.h>
  16. #include <dm.h>
  17. #include <net.h>
  18. #include <netdev.h>
  19. #include <config.h>
  20. #include <malloc.h>
  21. #include <asm/io.h>
  22. #include <linux/errno.h>
  23. #include <phy.h>
  24. #include <miiphy.h>
  25. #include <watchdog.h>
  26. #include <asm/arch/cpu.h>
  27. #include <asm/arch/soc.h>
  28. #include <linux/compat.h>
  29. #include <linux/mbus.h>
  30. DECLARE_GLOBAL_DATA_PTR;
  31. #if !defined(CONFIG_PHYLIB)
  32. # error Marvell mvneta requires PHYLIB
  33. #endif
  34. /* Some linux -> U-Boot compatibility stuff */
  35. #define netdev_err(dev, fmt, args...) \
  36. printf(fmt, ##args)
  37. #define netdev_warn(dev, fmt, args...) \
  38. printf(fmt, ##args)
  39. #define netdev_info(dev, fmt, args...) \
  40. printf(fmt, ##args)
  41. #define CONFIG_NR_CPUS 1
  42. #define ETH_HLEN 14 /* Total octets in header */
  43. /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
  44. #define WRAP (2 + ETH_HLEN + 4 + 32)
  45. #define MTU 1500
  46. #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
  47. #define MVNETA_SMI_TIMEOUT 10000
  48. /* Registers */
  49. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  50. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  51. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  52. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  53. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  54. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  55. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  56. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  57. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  58. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  59. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  60. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  61. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  62. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  63. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  64. #define MVNETA_PORT_RX_RESET 0x1cc0
  65. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  66. #define MVNETA_PHY_ADDR 0x2000
  67. #define MVNETA_PHY_ADDR_MASK 0x1f
  68. #define MVNETA_SMI 0x2004
  69. #define MVNETA_PHY_REG_MASK 0x1f
  70. /* SMI register fields */
  71. #define MVNETA_SMI_DATA_OFFS 0 /* Data */
  72. #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
  73. #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
  74. #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
  75. #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
  76. #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
  77. #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
  78. #define MVNETA_SMI_BUSY (1 << 28) /* Busy */
  79. #define MVNETA_MBUS_RETRY 0x2010
  80. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  81. #define MVNETA_UNIT_CONTROL 0x20B0
  82. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  83. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  84. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  85. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  86. #define MVNETA_WIN_SIZE_MASK (0xffff0000)
  87. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  88. #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
  89. #define MVNETA_PORT_ACCESS_PROTECT 0x2294
  90. #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
  91. #define MVNETA_PORT_CONFIG 0x2400
  92. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  93. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  94. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  95. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  96. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  97. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  98. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  99. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  100. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  101. MVNETA_DEF_RXQ_ARP(q) | \
  102. MVNETA_DEF_RXQ_TCP(q) | \
  103. MVNETA_DEF_RXQ_UDP(q) | \
  104. MVNETA_DEF_RXQ_BPDU(q) | \
  105. MVNETA_TX_UNSET_ERR_SUM | \
  106. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  107. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  108. #define MVNETA_MAC_ADDR_LOW 0x2414
  109. #define MVNETA_MAC_ADDR_HIGH 0x2418
  110. #define MVNETA_SDMA_CONFIG 0x241c
  111. #define MVNETA_SDMA_BRST_SIZE_16 4
  112. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  113. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  114. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  115. #define MVNETA_DESC_SWAP BIT(6)
  116. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  117. #define MVNETA_PORT_STATUS 0x2444
  118. #define MVNETA_TX_IN_PRGRS BIT(1)
  119. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  120. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  121. #define MVNETA_SERDES_CFG 0x24A0
  122. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  123. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  124. #define MVNETA_TYPE_PRIO 0x24bc
  125. #define MVNETA_FORCE_UNI BIT(21)
  126. #define MVNETA_TXQ_CMD_1 0x24e4
  127. #define MVNETA_TXQ_CMD 0x2448
  128. #define MVNETA_TXQ_DISABLE_SHIFT 8
  129. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  130. #define MVNETA_ACC_MODE 0x2500
  131. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  132. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  133. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  134. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  135. /* Exception Interrupt Port/Queue Cause register */
  136. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  137. #define MVNETA_INTR_NEW_MASK 0x25a4
  138. /* bits 0..7 = TXQ SENT, one bit per queue.
  139. * bits 8..15 = RXQ OCCUP, one bit per queue.
  140. * bits 16..23 = RXQ FREE, one bit per queue.
  141. * bit 29 = OLD_REG_SUM, see old reg ?
  142. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  143. * bit 31 = MISC_SUM, one bit for 4 ports
  144. */
  145. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  146. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  147. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  148. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  149. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  150. #define MVNETA_INTR_OLD_MASK 0x25ac
  151. /* Data Path Port/Queue Cause Register */
  152. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  153. #define MVNETA_INTR_MISC_MASK 0x25b4
  154. #define MVNETA_INTR_ENABLE 0x25b8
  155. #define MVNETA_RXQ_CMD 0x2680
  156. #define MVNETA_RXQ_DISABLE_SHIFT 8
  157. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  158. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  159. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  160. #define MVNETA_GMAC_CTRL_0 0x2c00
  161. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  162. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  163. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  164. #define MVNETA_GMAC_CTRL_2 0x2c08
  165. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  166. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  167. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  168. #define MVNETA_GMAC_STATUS 0x2c10
  169. #define MVNETA_GMAC_LINK_UP BIT(0)
  170. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  171. #define MVNETA_GMAC_SPEED_100 BIT(2)
  172. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  173. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  174. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  175. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  176. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  177. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  178. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  179. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  180. #define MVNETA_GMAC_FORCE_LINK_UP (BIT(0) | BIT(1))
  181. #define MVNETA_GMAC_IB_BYPASS_AN_EN BIT(3)
  182. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  183. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  184. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  185. #define MVNETA_GMAC_SET_FC_EN BIT(8)
  186. #define MVNETA_GMAC_ADVERT_FC_EN BIT(9)
  187. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  188. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  189. #define MVNETA_GMAC_SAMPLE_TX_CFG_EN BIT(15)
  190. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  191. #define MVNETA_MIB_LATE_COLLISION 0x7c
  192. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  193. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  194. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  195. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  196. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  197. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  198. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  199. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  200. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  201. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  202. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  203. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  204. #define MVNETA_PORT_TX_RESET 0x3cf0
  205. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  206. #define MVNETA_TX_MTU 0x3e0c
  207. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  208. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  209. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  210. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  211. /* Descriptor ring Macros */
  212. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  213. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  214. /* Various constants */
  215. /* Coalescing */
  216. #define MVNETA_TXDONE_COAL_PKTS 16
  217. #define MVNETA_RX_COAL_PKTS 32
  218. #define MVNETA_RX_COAL_USEC 100
  219. /* The two bytes Marvell header. Either contains a special value used
  220. * by Marvell switches when a specific hardware mode is enabled (not
  221. * supported by this driver) or is filled automatically by zeroes on
  222. * the RX side. Those two bytes being at the front of the Ethernet
  223. * header, they allow to have the IP header aligned on a 4 bytes
  224. * boundary automatically: the hardware skips those two bytes on its
  225. * own.
  226. */
  227. #define MVNETA_MH_SIZE 2
  228. #define MVNETA_VLAN_TAG_LEN 4
  229. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  230. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  231. #define MVNETA_ACC_MODE_EXT 1
  232. /* Timeout constants */
  233. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  234. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  235. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  236. #define MVNETA_TX_MTU_MAX 0x3ffff
  237. /* Max number of Rx descriptors */
  238. #define MVNETA_MAX_RXD 16
  239. /* Max number of Tx descriptors */
  240. #define MVNETA_MAX_TXD 16
  241. /* descriptor aligned size */
  242. #define MVNETA_DESC_ALIGNED_SIZE 32
  243. struct mvneta_port {
  244. void __iomem *base;
  245. struct mvneta_rx_queue *rxqs;
  246. struct mvneta_tx_queue *txqs;
  247. u8 mcast_count[256];
  248. u16 tx_ring_size;
  249. u16 rx_ring_size;
  250. phy_interface_t phy_interface;
  251. unsigned int link;
  252. unsigned int duplex;
  253. unsigned int speed;
  254. int init;
  255. int phyaddr;
  256. struct phy_device *phydev;
  257. struct mii_dev *bus;
  258. };
  259. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  260. * layout of the transmit and reception DMA descriptors, and their
  261. * layout is therefore defined by the hardware design
  262. */
  263. #define MVNETA_TX_L3_OFF_SHIFT 0
  264. #define MVNETA_TX_IP_HLEN_SHIFT 8
  265. #define MVNETA_TX_L4_UDP BIT(16)
  266. #define MVNETA_TX_L3_IP6 BIT(17)
  267. #define MVNETA_TXD_IP_CSUM BIT(18)
  268. #define MVNETA_TXD_Z_PAD BIT(19)
  269. #define MVNETA_TXD_L_DESC BIT(20)
  270. #define MVNETA_TXD_F_DESC BIT(21)
  271. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  272. MVNETA_TXD_L_DESC | \
  273. MVNETA_TXD_F_DESC)
  274. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  275. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  276. #define MVNETA_RXD_ERR_CRC 0x0
  277. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  278. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  279. #define MVNETA_RXD_ERR_LEN BIT(18)
  280. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  281. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  282. #define MVNETA_RXD_L3_IP4 BIT(25)
  283. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  284. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  285. struct mvneta_tx_desc {
  286. u32 command; /* Options used by HW for packet transmitting.*/
  287. u16 reserverd1; /* csum_l4 (for future use) */
  288. u16 data_size; /* Data size of transmitted packet in bytes */
  289. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  290. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  291. u32 reserved3[4]; /* Reserved - (for future use) */
  292. };
  293. struct mvneta_rx_desc {
  294. u32 status; /* Info about received packet */
  295. u16 reserved1; /* pnc_info - (for future use, PnC) */
  296. u16 data_size; /* Size of received packet in bytes */
  297. u32 buf_phys_addr; /* Physical address of the buffer */
  298. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  299. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  300. u16 reserved3; /* prefetch_cmd, for future use */
  301. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  302. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  303. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  304. };
  305. struct mvneta_tx_queue {
  306. /* Number of this TX queue, in the range 0-7 */
  307. u8 id;
  308. /* Number of TX DMA descriptors in the descriptor ring */
  309. int size;
  310. /* Index of last TX DMA descriptor that was inserted */
  311. int txq_put_index;
  312. /* Index of the TX DMA descriptor to be cleaned up */
  313. int txq_get_index;
  314. /* Virtual address of the TX DMA descriptors array */
  315. struct mvneta_tx_desc *descs;
  316. /* DMA address of the TX DMA descriptors array */
  317. dma_addr_t descs_phys;
  318. /* Index of the last TX DMA descriptor */
  319. int last_desc;
  320. /* Index of the next TX DMA descriptor to process */
  321. int next_desc_to_proc;
  322. };
  323. struct mvneta_rx_queue {
  324. /* rx queue number, in the range 0-7 */
  325. u8 id;
  326. /* num of rx descriptors in the rx descriptor ring */
  327. int size;
  328. /* Virtual address of the RX DMA descriptors array */
  329. struct mvneta_rx_desc *descs;
  330. /* DMA address of the RX DMA descriptors array */
  331. dma_addr_t descs_phys;
  332. /* Index of the last RX DMA descriptor */
  333. int last_desc;
  334. /* Index of the next RX DMA descriptor to process */
  335. int next_desc_to_proc;
  336. };
  337. /* U-Boot doesn't use the queues, so set the number to 1 */
  338. static int rxq_number = 1;
  339. static int txq_number = 1;
  340. static int rxq_def;
  341. struct buffer_location {
  342. struct mvneta_tx_desc *tx_descs;
  343. struct mvneta_rx_desc *rx_descs;
  344. u32 rx_buffers;
  345. };
  346. /*
  347. * All 4 interfaces use the same global buffer, since only one interface
  348. * can be enabled at once
  349. */
  350. static struct buffer_location buffer_loc;
  351. /*
  352. * Page table entries are set to 1MB, or multiples of 1MB
  353. * (not < 1MB). driver uses less bd's so use 1MB bdspace.
  354. */
  355. #define BD_SPACE (1 << 20)
  356. /*
  357. * Dummy implementation that can be overwritten by a board
  358. * specific function
  359. */
  360. __weak int board_network_enable(struct mii_dev *bus)
  361. {
  362. return 0;
  363. }
  364. /* Utility/helper methods */
  365. /* Write helper method */
  366. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  367. {
  368. writel(data, pp->base + offset);
  369. }
  370. /* Read helper method */
  371. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  372. {
  373. return readl(pp->base + offset);
  374. }
  375. /* Clear all MIB counters */
  376. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  377. {
  378. int i;
  379. /* Perform dummy reads from MIB counters */
  380. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  381. mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  382. }
  383. /* Rx descriptors helper methods */
  384. /* Checks whether the RX descriptor having this status is both the first
  385. * and the last descriptor for the RX packet. Each RX packet is currently
  386. * received through a single RX descriptor, so not having each RX
  387. * descriptor with its first and last bits set is an error
  388. */
  389. static int mvneta_rxq_desc_is_first_last(u32 status)
  390. {
  391. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  392. MVNETA_RXD_FIRST_LAST_DESC;
  393. }
  394. /* Add number of descriptors ready to receive new packets */
  395. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  396. struct mvneta_rx_queue *rxq,
  397. int ndescs)
  398. {
  399. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  400. * be added at once
  401. */
  402. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  403. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  404. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  405. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  406. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  407. }
  408. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  409. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  410. }
  411. /* Get number of RX descriptors occupied by received packets */
  412. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  413. struct mvneta_rx_queue *rxq)
  414. {
  415. u32 val;
  416. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  417. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  418. }
  419. /* Update num of rx desc called upon return from rx path or
  420. * from mvneta_rxq_drop_pkts().
  421. */
  422. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  423. struct mvneta_rx_queue *rxq,
  424. int rx_done, int rx_filled)
  425. {
  426. u32 val;
  427. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  428. val = rx_done |
  429. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  430. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  431. return;
  432. }
  433. /* Only 255 descriptors can be added at once */
  434. while ((rx_done > 0) || (rx_filled > 0)) {
  435. if (rx_done <= 0xff) {
  436. val = rx_done;
  437. rx_done = 0;
  438. } else {
  439. val = 0xff;
  440. rx_done -= 0xff;
  441. }
  442. if (rx_filled <= 0xff) {
  443. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  444. rx_filled = 0;
  445. } else {
  446. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  447. rx_filled -= 0xff;
  448. }
  449. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  450. }
  451. }
  452. /* Get pointer to next RX descriptor to be processed by SW */
  453. static struct mvneta_rx_desc *
  454. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  455. {
  456. int rx_desc = rxq->next_desc_to_proc;
  457. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  458. return rxq->descs + rx_desc;
  459. }
  460. /* Tx descriptors helper methods */
  461. /* Update HW with number of TX descriptors to be sent */
  462. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  463. struct mvneta_tx_queue *txq,
  464. int pend_desc)
  465. {
  466. u32 val;
  467. /* Only 255 descriptors can be added at once ; Assume caller
  468. * process TX descriptors in quanta less than 256
  469. */
  470. val = pend_desc;
  471. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  472. }
  473. /* Get pointer to next TX descriptor to be processed (send) by HW */
  474. static struct mvneta_tx_desc *
  475. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  476. {
  477. int tx_desc = txq->next_desc_to_proc;
  478. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  479. return txq->descs + tx_desc;
  480. }
  481. /* Set rxq buf size */
  482. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  483. struct mvneta_rx_queue *rxq,
  484. int buf_size)
  485. {
  486. u32 val;
  487. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  488. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  489. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  490. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  491. }
  492. static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
  493. {
  494. /* phy_addr is set to invalid value for fixed link */
  495. return pp->phyaddr > PHY_MAX_ADDR;
  496. }
  497. /* Start the Ethernet port RX and TX activity */
  498. static void mvneta_port_up(struct mvneta_port *pp)
  499. {
  500. int queue;
  501. u32 q_map;
  502. /* Enable all initialized TXs. */
  503. mvneta_mib_counters_clear(pp);
  504. q_map = 0;
  505. for (queue = 0; queue < txq_number; queue++) {
  506. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  507. if (txq->descs != NULL)
  508. q_map |= (1 << queue);
  509. }
  510. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  511. /* Enable all initialized RXQs. */
  512. q_map = 0;
  513. for (queue = 0; queue < rxq_number; queue++) {
  514. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  515. if (rxq->descs != NULL)
  516. q_map |= (1 << queue);
  517. }
  518. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  519. }
  520. /* Stop the Ethernet port activity */
  521. static void mvneta_port_down(struct mvneta_port *pp)
  522. {
  523. u32 val;
  524. int count;
  525. /* Stop Rx port activity. Check port Rx activity. */
  526. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  527. /* Issue stop command for active channels only */
  528. if (val != 0)
  529. mvreg_write(pp, MVNETA_RXQ_CMD,
  530. val << MVNETA_RXQ_DISABLE_SHIFT);
  531. /* Wait for all Rx activity to terminate. */
  532. count = 0;
  533. do {
  534. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  535. netdev_warn(pp->dev,
  536. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  537. val);
  538. break;
  539. }
  540. mdelay(1);
  541. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  542. } while (val & 0xff);
  543. /* Stop Tx port activity. Check port Tx activity. Issue stop
  544. * command for active channels only
  545. */
  546. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  547. if (val != 0)
  548. mvreg_write(pp, MVNETA_TXQ_CMD,
  549. (val << MVNETA_TXQ_DISABLE_SHIFT));
  550. /* Wait for all Tx activity to terminate. */
  551. count = 0;
  552. do {
  553. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  554. netdev_warn(pp->dev,
  555. "TIMEOUT for TX stopped status=0x%08x\n",
  556. val);
  557. break;
  558. }
  559. mdelay(1);
  560. /* Check TX Command reg that all Txqs are stopped */
  561. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  562. } while (val & 0xff);
  563. /* Double check to verify that TX FIFO is empty */
  564. count = 0;
  565. do {
  566. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  567. netdev_warn(pp->dev,
  568. "TX FIFO empty timeout status=0x08%x\n",
  569. val);
  570. break;
  571. }
  572. mdelay(1);
  573. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  574. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  575. (val & MVNETA_TX_IN_PRGRS));
  576. udelay(200);
  577. }
  578. /* Enable the port by setting the port enable bit of the MAC control register */
  579. static void mvneta_port_enable(struct mvneta_port *pp)
  580. {
  581. u32 val;
  582. /* Enable port */
  583. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  584. val |= MVNETA_GMAC0_PORT_ENABLE;
  585. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  586. }
  587. /* Disable the port and wait for about 200 usec before retuning */
  588. static void mvneta_port_disable(struct mvneta_port *pp)
  589. {
  590. u32 val;
  591. /* Reset the Enable bit in the Serial Control Register */
  592. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  593. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  594. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  595. udelay(200);
  596. }
  597. /* Multicast tables methods */
  598. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  599. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  600. {
  601. int offset;
  602. u32 val;
  603. if (queue == -1) {
  604. val = 0;
  605. } else {
  606. val = 0x1 | (queue << 1);
  607. val |= (val << 24) | (val << 16) | (val << 8);
  608. }
  609. for (offset = 0; offset <= 0xc; offset += 4)
  610. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  611. }
  612. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  613. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  614. {
  615. int offset;
  616. u32 val;
  617. if (queue == -1) {
  618. val = 0;
  619. } else {
  620. val = 0x1 | (queue << 1);
  621. val |= (val << 24) | (val << 16) | (val << 8);
  622. }
  623. for (offset = 0; offset <= 0xfc; offset += 4)
  624. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  625. }
  626. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  627. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  628. {
  629. int offset;
  630. u32 val;
  631. if (queue == -1) {
  632. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  633. val = 0;
  634. } else {
  635. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  636. val = 0x1 | (queue << 1);
  637. val |= (val << 24) | (val << 16) | (val << 8);
  638. }
  639. for (offset = 0; offset <= 0xfc; offset += 4)
  640. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  641. }
  642. /* This method sets defaults to the NETA port:
  643. * Clears interrupt Cause and Mask registers.
  644. * Clears all MAC tables.
  645. * Sets defaults to all registers.
  646. * Resets RX and TX descriptor rings.
  647. * Resets PHY.
  648. * This method can be called after mvneta_port_down() to return the port
  649. * settings to defaults.
  650. */
  651. static void mvneta_defaults_set(struct mvneta_port *pp)
  652. {
  653. int cpu;
  654. int queue;
  655. u32 val;
  656. /* Clear all Cause registers */
  657. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  658. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  659. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  660. /* Mask all interrupts */
  661. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  662. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  663. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  664. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  665. /* Enable MBUS Retry bit16 */
  666. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  667. /* Set CPU queue access map - all CPUs have access to all RX
  668. * queues and to all TX queues
  669. */
  670. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  671. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  672. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  673. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  674. /* Reset RX and TX DMAs */
  675. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  676. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  677. /* Disable Legacy WRR, Disable EJP, Release from reset */
  678. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  679. for (queue = 0; queue < txq_number; queue++) {
  680. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  681. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  682. }
  683. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  684. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  685. /* Set Port Acceleration Mode */
  686. val = MVNETA_ACC_MODE_EXT;
  687. mvreg_write(pp, MVNETA_ACC_MODE, val);
  688. /* Update val of portCfg register accordingly with all RxQueue types */
  689. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  690. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  691. val = 0;
  692. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  693. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  694. /* Build PORT_SDMA_CONFIG_REG */
  695. val = 0;
  696. /* Default burst size */
  697. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  698. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  699. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  700. /* Assign port SDMA configuration */
  701. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  702. /* Enable PHY polling in hardware if not in fixed-link mode */
  703. if (!mvneta_port_is_fixed_link(pp)) {
  704. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  705. val |= MVNETA_PHY_POLLING_ENABLE;
  706. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  707. }
  708. mvneta_set_ucast_table(pp, -1);
  709. mvneta_set_special_mcast_table(pp, -1);
  710. mvneta_set_other_mcast_table(pp, -1);
  711. }
  712. /* Set unicast address */
  713. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  714. int queue)
  715. {
  716. unsigned int unicast_reg;
  717. unsigned int tbl_offset;
  718. unsigned int reg_offset;
  719. /* Locate the Unicast table entry */
  720. last_nibble = (0xf & last_nibble);
  721. /* offset from unicast tbl base */
  722. tbl_offset = (last_nibble / 4) * 4;
  723. /* offset within the above reg */
  724. reg_offset = last_nibble % 4;
  725. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  726. if (queue == -1) {
  727. /* Clear accepts frame bit at specified unicast DA tbl entry */
  728. unicast_reg &= ~(0xff << (8 * reg_offset));
  729. } else {
  730. unicast_reg &= ~(0xff << (8 * reg_offset));
  731. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  732. }
  733. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  734. }
  735. /* Set mac address */
  736. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  737. int queue)
  738. {
  739. unsigned int mac_h;
  740. unsigned int mac_l;
  741. if (queue != -1) {
  742. mac_l = (addr[4] << 8) | (addr[5]);
  743. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  744. (addr[2] << 8) | (addr[3] << 0);
  745. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  746. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  747. }
  748. /* Accept frames of this address */
  749. mvneta_set_ucast_addr(pp, addr[5], queue);
  750. }
  751. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  752. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  753. u32 phys_addr, u32 cookie)
  754. {
  755. rx_desc->buf_cookie = cookie;
  756. rx_desc->buf_phys_addr = phys_addr;
  757. }
  758. /* Decrement sent descriptors counter */
  759. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  760. struct mvneta_tx_queue *txq,
  761. int sent_desc)
  762. {
  763. u32 val;
  764. /* Only 255 TX descriptors can be updated at once */
  765. while (sent_desc > 0xff) {
  766. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  767. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  768. sent_desc = sent_desc - 0xff;
  769. }
  770. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  771. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  772. }
  773. /* Get number of TX descriptors already sent by HW */
  774. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  775. struct mvneta_tx_queue *txq)
  776. {
  777. u32 val;
  778. int sent_desc;
  779. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  780. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  781. MVNETA_TXQ_SENT_DESC_SHIFT;
  782. return sent_desc;
  783. }
  784. /* Display more error info */
  785. static void mvneta_rx_error(struct mvneta_port *pp,
  786. struct mvneta_rx_desc *rx_desc)
  787. {
  788. u32 status = rx_desc->status;
  789. if (!mvneta_rxq_desc_is_first_last(status)) {
  790. netdev_err(pp->dev,
  791. "bad rx status %08x (buffer oversize), size=%d\n",
  792. status, rx_desc->data_size);
  793. return;
  794. }
  795. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  796. case MVNETA_RXD_ERR_CRC:
  797. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  798. status, rx_desc->data_size);
  799. break;
  800. case MVNETA_RXD_ERR_OVERRUN:
  801. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  802. status, rx_desc->data_size);
  803. break;
  804. case MVNETA_RXD_ERR_LEN:
  805. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  806. status, rx_desc->data_size);
  807. break;
  808. case MVNETA_RXD_ERR_RESOURCE:
  809. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  810. status, rx_desc->data_size);
  811. break;
  812. }
  813. }
  814. static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
  815. int rxq)
  816. {
  817. return &pp->rxqs[rxq];
  818. }
  819. /* Drop packets received by the RXQ and free buffers */
  820. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  821. struct mvneta_rx_queue *rxq)
  822. {
  823. int rx_done;
  824. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  825. if (rx_done)
  826. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  827. }
  828. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  829. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  830. int num)
  831. {
  832. int i;
  833. for (i = 0; i < num; i++) {
  834. u32 addr;
  835. /* U-Boot special: Fill in the rx buffer addresses */
  836. addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
  837. mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
  838. }
  839. /* Add this number of RX descriptors as non occupied (ready to
  840. * get packets)
  841. */
  842. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  843. return 0;
  844. }
  845. /* Rx/Tx queue initialization/cleanup methods */
  846. /* Create a specified RX queue */
  847. static int mvneta_rxq_init(struct mvneta_port *pp,
  848. struct mvneta_rx_queue *rxq)
  849. {
  850. rxq->size = pp->rx_ring_size;
  851. /* Allocate memory for RX descriptors */
  852. rxq->descs_phys = (dma_addr_t)rxq->descs;
  853. if (rxq->descs == NULL)
  854. return -ENOMEM;
  855. rxq->last_desc = rxq->size - 1;
  856. /* Set Rx descriptors queue starting address */
  857. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  858. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  859. /* Fill RXQ with buffers from RX pool */
  860. mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
  861. mvneta_rxq_fill(pp, rxq, rxq->size);
  862. return 0;
  863. }
  864. /* Cleanup Rx queue */
  865. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  866. struct mvneta_rx_queue *rxq)
  867. {
  868. mvneta_rxq_drop_pkts(pp, rxq);
  869. rxq->descs = NULL;
  870. rxq->last_desc = 0;
  871. rxq->next_desc_to_proc = 0;
  872. rxq->descs_phys = 0;
  873. }
  874. /* Create and initialize a tx queue */
  875. static int mvneta_txq_init(struct mvneta_port *pp,
  876. struct mvneta_tx_queue *txq)
  877. {
  878. txq->size = pp->tx_ring_size;
  879. /* Allocate memory for TX descriptors */
  880. txq->descs_phys = (dma_addr_t)txq->descs;
  881. if (txq->descs == NULL)
  882. return -ENOMEM;
  883. txq->last_desc = txq->size - 1;
  884. /* Set maximum bandwidth for enabled TXQs */
  885. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  886. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  887. /* Set Tx descriptors queue starting address */
  888. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  889. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  890. return 0;
  891. }
  892. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  893. static void mvneta_txq_deinit(struct mvneta_port *pp,
  894. struct mvneta_tx_queue *txq)
  895. {
  896. txq->descs = NULL;
  897. txq->last_desc = 0;
  898. txq->next_desc_to_proc = 0;
  899. txq->descs_phys = 0;
  900. /* Set minimum bandwidth for disabled TXQs */
  901. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  902. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  903. /* Set Tx descriptors queue starting address and size */
  904. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  905. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  906. }
  907. /* Cleanup all Tx queues */
  908. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  909. {
  910. int queue;
  911. for (queue = 0; queue < txq_number; queue++)
  912. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  913. }
  914. /* Cleanup all Rx queues */
  915. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  916. {
  917. int queue;
  918. for (queue = 0; queue < rxq_number; queue++)
  919. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  920. }
  921. /* Init all Rx queues */
  922. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  923. {
  924. int queue;
  925. for (queue = 0; queue < rxq_number; queue++) {
  926. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  927. if (err) {
  928. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  929. __func__, queue);
  930. mvneta_cleanup_rxqs(pp);
  931. return err;
  932. }
  933. }
  934. return 0;
  935. }
  936. /* Init all tx queues */
  937. static int mvneta_setup_txqs(struct mvneta_port *pp)
  938. {
  939. int queue;
  940. for (queue = 0; queue < txq_number; queue++) {
  941. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  942. if (err) {
  943. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  944. __func__, queue);
  945. mvneta_cleanup_txqs(pp);
  946. return err;
  947. }
  948. }
  949. return 0;
  950. }
  951. static void mvneta_start_dev(struct mvneta_port *pp)
  952. {
  953. /* start the Rx/Tx activity */
  954. mvneta_port_enable(pp);
  955. }
  956. static void mvneta_adjust_link(struct udevice *dev)
  957. {
  958. struct mvneta_port *pp = dev_get_priv(dev);
  959. struct phy_device *phydev = pp->phydev;
  960. int status_change = 0;
  961. if (mvneta_port_is_fixed_link(pp)) {
  962. debug("Using fixed link, skip link adjust\n");
  963. return;
  964. }
  965. if (phydev->link) {
  966. if ((pp->speed != phydev->speed) ||
  967. (pp->duplex != phydev->duplex)) {
  968. u32 val;
  969. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  970. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  971. MVNETA_GMAC_CONFIG_GMII_SPEED |
  972. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  973. MVNETA_GMAC_AN_SPEED_EN |
  974. MVNETA_GMAC_AN_DUPLEX_EN);
  975. if (phydev->duplex)
  976. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  977. if (phydev->speed == SPEED_1000)
  978. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  979. else
  980. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  981. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  982. pp->duplex = phydev->duplex;
  983. pp->speed = phydev->speed;
  984. }
  985. }
  986. if (phydev->link != pp->link) {
  987. if (!phydev->link) {
  988. pp->duplex = -1;
  989. pp->speed = 0;
  990. }
  991. pp->link = phydev->link;
  992. status_change = 1;
  993. }
  994. if (status_change) {
  995. if (phydev->link) {
  996. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  997. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  998. MVNETA_GMAC_FORCE_LINK_DOWN);
  999. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1000. mvneta_port_up(pp);
  1001. } else {
  1002. mvneta_port_down(pp);
  1003. }
  1004. }
  1005. }
  1006. static int mvneta_open(struct udevice *dev)
  1007. {
  1008. struct mvneta_port *pp = dev_get_priv(dev);
  1009. int ret;
  1010. ret = mvneta_setup_rxqs(pp);
  1011. if (ret)
  1012. return ret;
  1013. ret = mvneta_setup_txqs(pp);
  1014. if (ret)
  1015. return ret;
  1016. mvneta_adjust_link(dev);
  1017. mvneta_start_dev(pp);
  1018. return 0;
  1019. }
  1020. /* Initialize hw */
  1021. static int mvneta_init2(struct mvneta_port *pp)
  1022. {
  1023. int queue;
  1024. /* Disable port */
  1025. mvneta_port_disable(pp);
  1026. /* Set port default values */
  1027. mvneta_defaults_set(pp);
  1028. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  1029. GFP_KERNEL);
  1030. if (!pp->txqs)
  1031. return -ENOMEM;
  1032. /* U-Boot special: use preallocated area */
  1033. pp->txqs[0].descs = buffer_loc.tx_descs;
  1034. /* Initialize TX descriptor rings */
  1035. for (queue = 0; queue < txq_number; queue++) {
  1036. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  1037. txq->id = queue;
  1038. txq->size = pp->tx_ring_size;
  1039. }
  1040. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  1041. GFP_KERNEL);
  1042. if (!pp->rxqs) {
  1043. kfree(pp->txqs);
  1044. return -ENOMEM;
  1045. }
  1046. /* U-Boot special: use preallocated area */
  1047. pp->rxqs[0].descs = buffer_loc.rx_descs;
  1048. /* Create Rx descriptor rings */
  1049. for (queue = 0; queue < rxq_number; queue++) {
  1050. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  1051. rxq->id = queue;
  1052. rxq->size = pp->rx_ring_size;
  1053. }
  1054. return 0;
  1055. }
  1056. /* platform glue : initialize decoding windows */
  1057. /*
  1058. * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
  1059. * First layer is: GbE Address window that resides inside the GBE unit,
  1060. * Second layer is: Fabric address window which is located in the NIC400
  1061. * (South Fabric).
  1062. * To simplify the address decode configuration for Armada3700, we bypass the
  1063. * first layer of GBE decode window by setting the first window to 4GB.
  1064. */
  1065. static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
  1066. {
  1067. /*
  1068. * Set window size to 4GB, to bypass GBE address decode, leave the
  1069. * work to MBUS decode window
  1070. */
  1071. mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
  1072. /* Enable GBE address decode window 0 by set bit 0 to 0 */
  1073. clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
  1074. MVNETA_BASE_ADDR_ENABLE_BIT);
  1075. /* Set GBE address decode window 0 to full Access (read or write) */
  1076. setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
  1077. MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
  1078. }
  1079. static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
  1080. {
  1081. const struct mbus_dram_target_info *dram;
  1082. u32 win_enable;
  1083. u32 win_protect;
  1084. int i;
  1085. dram = mvebu_mbus_dram_info();
  1086. for (i = 0; i < 6; i++) {
  1087. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  1088. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  1089. if (i < 4)
  1090. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  1091. }
  1092. win_enable = 0x3f;
  1093. win_protect = 0;
  1094. for (i = 0; i < dram->num_cs; i++) {
  1095. const struct mbus_dram_window *cs = dram->cs + i;
  1096. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  1097. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  1098. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  1099. (cs->size - 1) & 0xffff0000);
  1100. win_enable &= ~(1 << i);
  1101. win_protect |= 3 << (2 * i);
  1102. }
  1103. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  1104. }
  1105. /* Power up the port */
  1106. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  1107. {
  1108. u32 ctrl;
  1109. /* MAC Cause register should be cleared */
  1110. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  1111. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  1112. /* Even though it might look weird, when we're configured in
  1113. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  1114. */
  1115. switch (phy_mode) {
  1116. case PHY_INTERFACE_MODE_QSGMII:
  1117. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  1118. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1119. break;
  1120. case PHY_INTERFACE_MODE_SGMII:
  1121. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  1122. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1123. break;
  1124. case PHY_INTERFACE_MODE_RGMII:
  1125. case PHY_INTERFACE_MODE_RGMII_ID:
  1126. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  1127. break;
  1128. default:
  1129. return -EINVAL;
  1130. }
  1131. /* Cancel Port Reset */
  1132. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  1133. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  1134. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  1135. MVNETA_GMAC2_PORT_RESET) != 0)
  1136. continue;
  1137. return 0;
  1138. }
  1139. /* Device initialization routine */
  1140. static int mvneta_init(struct udevice *dev)
  1141. {
  1142. struct eth_pdata *pdata = dev_get_platdata(dev);
  1143. struct mvneta_port *pp = dev_get_priv(dev);
  1144. int err;
  1145. pp->tx_ring_size = MVNETA_MAX_TXD;
  1146. pp->rx_ring_size = MVNETA_MAX_RXD;
  1147. err = mvneta_init2(pp);
  1148. if (err < 0) {
  1149. dev_err(&pdev->dev, "can't init eth hal\n");
  1150. return err;
  1151. }
  1152. mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
  1153. err = mvneta_port_power_up(pp, pp->phy_interface);
  1154. if (err < 0) {
  1155. dev_err(&pdev->dev, "can't power up port\n");
  1156. return err;
  1157. }
  1158. /* Call open() now as it needs to be done before runing send() */
  1159. mvneta_open(dev);
  1160. return 0;
  1161. }
  1162. /* U-Boot only functions follow here */
  1163. /* SMI / MDIO functions */
  1164. static int smi_wait_ready(struct mvneta_port *pp)
  1165. {
  1166. u32 timeout = MVNETA_SMI_TIMEOUT;
  1167. u32 smi_reg;
  1168. /* wait till the SMI is not busy */
  1169. do {
  1170. /* read smi register */
  1171. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1172. if (timeout-- == 0) {
  1173. printf("Error: SMI busy timeout\n");
  1174. return -EFAULT;
  1175. }
  1176. } while (smi_reg & MVNETA_SMI_BUSY);
  1177. return 0;
  1178. }
  1179. /*
  1180. * mvneta_mdio_read - miiphy_read callback function.
  1181. *
  1182. * Returns 16bit phy register value, or 0xffff on error
  1183. */
  1184. static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
  1185. {
  1186. struct mvneta_port *pp = bus->priv;
  1187. u32 smi_reg;
  1188. u32 timeout;
  1189. /* check parameters */
  1190. if (addr > MVNETA_PHY_ADDR_MASK) {
  1191. printf("Error: Invalid PHY address %d\n", addr);
  1192. return -EFAULT;
  1193. }
  1194. if (reg > MVNETA_PHY_REG_MASK) {
  1195. printf("Err: Invalid register offset %d\n", reg);
  1196. return -EFAULT;
  1197. }
  1198. /* wait till the SMI is not busy */
  1199. if (smi_wait_ready(pp) < 0)
  1200. return -EFAULT;
  1201. /* fill the phy address and regiser offset and read opcode */
  1202. smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1203. | (reg << MVNETA_SMI_REG_ADDR_OFFS)
  1204. | MVNETA_SMI_OPCODE_READ;
  1205. /* write the smi register */
  1206. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1207. /* wait till read value is ready */
  1208. timeout = MVNETA_SMI_TIMEOUT;
  1209. do {
  1210. /* read smi register */
  1211. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1212. if (timeout-- == 0) {
  1213. printf("Err: SMI read ready timeout\n");
  1214. return -EFAULT;
  1215. }
  1216. } while (!(smi_reg & MVNETA_SMI_READ_VALID));
  1217. /* Wait for the data to update in the SMI register */
  1218. for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
  1219. ;
  1220. return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
  1221. }
  1222. /*
  1223. * mvneta_mdio_write - miiphy_write callback function.
  1224. *
  1225. * Returns 0 if write succeed, -EINVAL on bad parameters
  1226. * -ETIME on timeout
  1227. */
  1228. static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
  1229. u16 value)
  1230. {
  1231. struct mvneta_port *pp = bus->priv;
  1232. u32 smi_reg;
  1233. /* check parameters */
  1234. if (addr > MVNETA_PHY_ADDR_MASK) {
  1235. printf("Error: Invalid PHY address %d\n", addr);
  1236. return -EFAULT;
  1237. }
  1238. if (reg > MVNETA_PHY_REG_MASK) {
  1239. printf("Err: Invalid register offset %d\n", reg);
  1240. return -EFAULT;
  1241. }
  1242. /* wait till the SMI is not busy */
  1243. if (smi_wait_ready(pp) < 0)
  1244. return -EFAULT;
  1245. /* fill the phy addr and reg offset and write opcode and data */
  1246. smi_reg = value << MVNETA_SMI_DATA_OFFS;
  1247. smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1248. | (reg << MVNETA_SMI_REG_ADDR_OFFS);
  1249. smi_reg &= ~MVNETA_SMI_OPCODE_READ;
  1250. /* write the smi register */
  1251. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1252. return 0;
  1253. }
  1254. static int mvneta_start(struct udevice *dev)
  1255. {
  1256. struct mvneta_port *pp = dev_get_priv(dev);
  1257. struct phy_device *phydev;
  1258. mvneta_port_power_up(pp, pp->phy_interface);
  1259. if (!pp->init || pp->link == 0) {
  1260. if (mvneta_port_is_fixed_link(pp)) {
  1261. u32 val;
  1262. pp->init = 1;
  1263. pp->link = 1;
  1264. mvneta_init(dev);
  1265. val = MVNETA_GMAC_FORCE_LINK_UP |
  1266. MVNETA_GMAC_IB_BYPASS_AN_EN |
  1267. MVNETA_GMAC_SET_FC_EN |
  1268. MVNETA_GMAC_ADVERT_FC_EN |
  1269. MVNETA_GMAC_SAMPLE_TX_CFG_EN;
  1270. if (pp->duplex)
  1271. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1272. if (pp->speed == SPEED_1000)
  1273. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1274. else if (pp->speed == SPEED_100)
  1275. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1276. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1277. } else {
  1278. /* Set phy address of the port */
  1279. mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
  1280. phydev = phy_connect(pp->bus, pp->phyaddr, dev,
  1281. pp->phy_interface);
  1282. pp->phydev = phydev;
  1283. phy_config(phydev);
  1284. phy_startup(phydev);
  1285. if (!phydev->link) {
  1286. printf("%s: No link.\n", phydev->dev->name);
  1287. return -1;
  1288. }
  1289. /* Full init on first call */
  1290. mvneta_init(dev);
  1291. pp->init = 1;
  1292. return 0;
  1293. }
  1294. }
  1295. /* Upon all following calls, this is enough */
  1296. mvneta_port_up(pp);
  1297. mvneta_port_enable(pp);
  1298. return 0;
  1299. }
  1300. static int mvneta_send(struct udevice *dev, void *packet, int length)
  1301. {
  1302. struct mvneta_port *pp = dev_get_priv(dev);
  1303. struct mvneta_tx_queue *txq = &pp->txqs[0];
  1304. struct mvneta_tx_desc *tx_desc;
  1305. int sent_desc;
  1306. u32 timeout = 0;
  1307. /* Get a descriptor for the first part of the packet */
  1308. tx_desc = mvneta_txq_next_desc_get(txq);
  1309. tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
  1310. tx_desc->data_size = length;
  1311. flush_dcache_range((ulong)packet,
  1312. (ulong)packet + ALIGN(length, PKTALIGN));
  1313. /* First and Last descriptor */
  1314. tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
  1315. mvneta_txq_pend_desc_add(pp, txq, 1);
  1316. /* Wait for packet to be sent (queue might help with speed here) */
  1317. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1318. while (!sent_desc) {
  1319. if (timeout++ > 10000) {
  1320. printf("timeout: packet not sent\n");
  1321. return -1;
  1322. }
  1323. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1324. }
  1325. /* txDone has increased - hw sent packet */
  1326. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  1327. return 0;
  1328. }
  1329. static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
  1330. {
  1331. struct mvneta_port *pp = dev_get_priv(dev);
  1332. int rx_done;
  1333. struct mvneta_rx_queue *rxq;
  1334. int rx_bytes = 0;
  1335. /* get rx queue */
  1336. rxq = mvneta_rxq_handle_get(pp, rxq_def);
  1337. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1338. if (rx_done) {
  1339. struct mvneta_rx_desc *rx_desc;
  1340. unsigned char *data;
  1341. u32 rx_status;
  1342. /*
  1343. * No cache invalidation needed here, since the desc's are
  1344. * located in a uncached memory region
  1345. */
  1346. rx_desc = mvneta_rxq_next_desc_get(rxq);
  1347. rx_status = rx_desc->status;
  1348. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1349. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1350. mvneta_rx_error(pp, rx_desc);
  1351. /* leave the descriptor untouched */
  1352. return -EIO;
  1353. }
  1354. /* 2 bytes for marvell header. 4 bytes for crc */
  1355. rx_bytes = rx_desc->data_size - 6;
  1356. /* give packet to stack - skip on first 2 bytes */
  1357. data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
  1358. /*
  1359. * No cache invalidation needed here, since the rx_buffer's are
  1360. * located in a uncached memory region
  1361. */
  1362. *packetp = data;
  1363. /*
  1364. * Only mark one descriptor as free
  1365. * since only one was processed
  1366. */
  1367. mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
  1368. }
  1369. return rx_bytes;
  1370. }
  1371. static int mvneta_probe(struct udevice *dev)
  1372. {
  1373. struct eth_pdata *pdata = dev_get_platdata(dev);
  1374. struct mvneta_port *pp = dev_get_priv(dev);
  1375. void *blob = (void *)gd->fdt_blob;
  1376. int node = dev_of_offset(dev);
  1377. struct mii_dev *bus;
  1378. unsigned long addr;
  1379. void *bd_space;
  1380. int ret;
  1381. int fl_node;
  1382. /*
  1383. * Allocate buffer area for descs and rx_buffers. This is only
  1384. * done once for all interfaces. As only one interface can
  1385. * be active. Make this area DMA safe by disabling the D-cache
  1386. */
  1387. if (!buffer_loc.tx_descs) {
  1388. /* Align buffer area for descs and rx_buffers to 1MiB */
  1389. bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
  1390. mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
  1391. DCACHE_OFF);
  1392. buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
  1393. buffer_loc.rx_descs = (struct mvneta_rx_desc *)
  1394. ((phys_addr_t)bd_space +
  1395. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
  1396. buffer_loc.rx_buffers = (phys_addr_t)
  1397. (bd_space +
  1398. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
  1399. MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
  1400. }
  1401. pp->base = (void __iomem *)pdata->iobase;
  1402. /* Configure MBUS address windows */
  1403. if (device_is_compatible(dev, "marvell,armada-3700-neta"))
  1404. mvneta_bypass_mbus_windows(pp);
  1405. else
  1406. mvneta_conf_mbus_windows(pp);
  1407. /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
  1408. pp->phy_interface = pdata->phy_interface;
  1409. /* fetch 'fixed-link' property from 'neta' node */
  1410. fl_node = fdt_subnode_offset(blob, node, "fixed-link");
  1411. if (fl_node != -FDT_ERR_NOTFOUND) {
  1412. /* set phy_addr to invalid value for fixed link */
  1413. pp->phyaddr = PHY_MAX_ADDR + 1;
  1414. pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
  1415. pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
  1416. } else {
  1417. /* Now read phyaddr from DT */
  1418. addr = fdtdec_get_int(blob, node, "phy", 0);
  1419. addr = fdt_node_offset_by_phandle(blob, addr);
  1420. pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
  1421. }
  1422. bus = mdio_alloc();
  1423. if (!bus) {
  1424. printf("Failed to allocate MDIO bus\n");
  1425. return -ENOMEM;
  1426. }
  1427. bus->read = mvneta_mdio_read;
  1428. bus->write = mvneta_mdio_write;
  1429. snprintf(bus->name, sizeof(bus->name), dev->name);
  1430. bus->priv = (void *)pp;
  1431. pp->bus = bus;
  1432. ret = mdio_register(bus);
  1433. if (ret)
  1434. return ret;
  1435. return board_network_enable(bus);
  1436. }
  1437. static void mvneta_stop(struct udevice *dev)
  1438. {
  1439. struct mvneta_port *pp = dev_get_priv(dev);
  1440. mvneta_port_down(pp);
  1441. mvneta_port_disable(pp);
  1442. }
  1443. static const struct eth_ops mvneta_ops = {
  1444. .start = mvneta_start,
  1445. .send = mvneta_send,
  1446. .recv = mvneta_recv,
  1447. .stop = mvneta_stop,
  1448. };
  1449. static int mvneta_ofdata_to_platdata(struct udevice *dev)
  1450. {
  1451. struct eth_pdata *pdata = dev_get_platdata(dev);
  1452. const char *phy_mode;
  1453. pdata->iobase = devfdt_get_addr(dev);
  1454. /* Get phy-mode / phy_interface from DT */
  1455. pdata->phy_interface = -1;
  1456. phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
  1457. NULL);
  1458. if (phy_mode)
  1459. pdata->phy_interface = phy_get_interface_by_name(phy_mode);
  1460. if (pdata->phy_interface == -1) {
  1461. debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
  1462. return -EINVAL;
  1463. }
  1464. return 0;
  1465. }
  1466. static const struct udevice_id mvneta_ids[] = {
  1467. { .compatible = "marvell,armada-370-neta" },
  1468. { .compatible = "marvell,armada-xp-neta" },
  1469. { .compatible = "marvell,armada-3700-neta" },
  1470. { }
  1471. };
  1472. U_BOOT_DRIVER(mvneta) = {
  1473. .name = "mvneta",
  1474. .id = UCLASS_ETH,
  1475. .of_match = mvneta_ids,
  1476. .ofdata_to_platdata = mvneta_ofdata_to_platdata,
  1477. .probe = mvneta_probe,
  1478. .ops = &mvneta_ops,
  1479. .priv_auto_alloc_size = sizeof(struct mvneta_port),
  1480. .platdata_auto_alloc_size = sizeof(struct eth_pdata),
  1481. };