test-fdt.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (c) 2013 Google, Inc
  4. */
  5. #include <common.h>
  6. #include <dm.h>
  7. #include <errno.h>
  8. #include <fdtdec.h>
  9. #include <malloc.h>
  10. #include <asm/io.h>
  11. #include <dm/test.h>
  12. #include <dm/root.h>
  13. #include <dm/device-internal.h>
  14. #include <dm/uclass-internal.h>
  15. #include <dm/util.h>
  16. #include <test/ut.h>
  17. DECLARE_GLOBAL_DATA_PTR;
  18. static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret)
  19. {
  20. const struct dm_test_pdata *pdata = dev->platdata;
  21. struct dm_test_priv *priv = dev_get_priv(dev);
  22. *pingret = pingval + pdata->ping_add;
  23. priv->ping_total += *pingret;
  24. return 0;
  25. }
  26. static const struct test_ops test_ops = {
  27. .ping = testfdt_drv_ping,
  28. };
  29. static int testfdt_ofdata_to_platdata(struct udevice *dev)
  30. {
  31. struct dm_test_pdata *pdata = dev_get_platdata(dev);
  32. pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
  33. "ping-add", -1);
  34. pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
  35. "ping-expect");
  36. return 0;
  37. }
  38. static int testfdt_drv_probe(struct udevice *dev)
  39. {
  40. struct dm_test_priv *priv = dev_get_priv(dev);
  41. priv->ping_total += DM_TEST_START_TOTAL;
  42. /*
  43. * If this device is on a bus, the uclass_flag will be set before
  44. * calling this function. This is used by
  45. * dm_test_bus_child_pre_probe_uclass().
  46. */
  47. priv->uclass_total += priv->uclass_flag;
  48. return 0;
  49. }
  50. static const struct udevice_id testfdt_ids[] = {
  51. {
  52. .compatible = "denx,u-boot-fdt-test",
  53. .data = DM_TEST_TYPE_FIRST },
  54. {
  55. .compatible = "google,another-fdt-test",
  56. .data = DM_TEST_TYPE_SECOND },
  57. { }
  58. };
  59. U_BOOT_DRIVER(testfdt_drv) = {
  60. .name = "testfdt_drv",
  61. .of_match = testfdt_ids,
  62. .id = UCLASS_TEST_FDT,
  63. .ofdata_to_platdata = testfdt_ofdata_to_platdata,
  64. .probe = testfdt_drv_probe,
  65. .ops = &test_ops,
  66. .priv_auto_alloc_size = sizeof(struct dm_test_priv),
  67. .platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
  68. };
  69. /* From here is the testfdt uclass code */
  70. int testfdt_ping(struct udevice *dev, int pingval, int *pingret)
  71. {
  72. const struct test_ops *ops = device_get_ops(dev);
  73. if (!ops->ping)
  74. return -ENOSYS;
  75. return ops->ping(dev, pingval, pingret);
  76. }
  77. UCLASS_DRIVER(testfdt) = {
  78. .name = "testfdt",
  79. .id = UCLASS_TEST_FDT,
  80. .flags = DM_UC_FLAG_SEQ_ALIAS,
  81. };
  82. struct dm_testprobe_pdata {
  83. int probe_err;
  84. };
  85. static int testprobe_drv_probe(struct udevice *dev)
  86. {
  87. struct dm_testprobe_pdata *pdata = dev_get_platdata(dev);
  88. return pdata->probe_err;
  89. }
  90. static const struct udevice_id testprobe_ids[] = {
  91. { .compatible = "denx,u-boot-probe-test" },
  92. { }
  93. };
  94. U_BOOT_DRIVER(testprobe_drv) = {
  95. .name = "testprobe_drv",
  96. .of_match = testprobe_ids,
  97. .id = UCLASS_TEST_PROBE,
  98. .probe = testprobe_drv_probe,
  99. .platdata_auto_alloc_size = sizeof(struct dm_testprobe_pdata),
  100. };
  101. UCLASS_DRIVER(testprobe) = {
  102. .name = "testprobe",
  103. .id = UCLASS_TEST_PROBE,
  104. .flags = DM_UC_FLAG_SEQ_ALIAS,
  105. };
  106. int dm_check_devices(struct unit_test_state *uts, int num_devices)
  107. {
  108. struct udevice *dev;
  109. int ret;
  110. int i;
  111. /*
  112. * Now check that the ping adds are what we expect. This is using the
  113. * ping-add property in each node.
  114. */
  115. for (i = 0; i < num_devices; i++) {
  116. uint32_t base;
  117. ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
  118. ut_assert(!ret);
  119. /*
  120. * Get the 'ping-expect' property, which tells us what the
  121. * ping add should be. We don't use the platdata because we
  122. * want to test the code that sets that up
  123. * (testfdt_drv_probe()).
  124. */
  125. base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
  126. "ping-expect");
  127. debug("dev=%d, base=%d: %s\n", i, base,
  128. fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
  129. ut_assert(!dm_check_operations(uts, dev, base,
  130. dev_get_priv(dev)));
  131. }
  132. return 0;
  133. }
  134. /* Test that FDT-based binding works correctly */
  135. static int dm_test_fdt(struct unit_test_state *uts)
  136. {
  137. const int num_devices = 7;
  138. struct udevice *dev;
  139. struct uclass *uc;
  140. int ret;
  141. int i;
  142. ret = dm_scan_fdt(gd->fdt_blob, false);
  143. ut_assert(!ret);
  144. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  145. ut_assert(!ret);
  146. /* These are num_devices compatible root-level device tree nodes */
  147. ut_asserteq(num_devices, list_count_items(&uc->dev_head));
  148. /* Each should have platform data but no private data */
  149. for (i = 0; i < num_devices; i++) {
  150. ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
  151. ut_assert(!ret);
  152. ut_assert(!dev_get_priv(dev));
  153. ut_assert(dev->platdata);
  154. }
  155. ut_assertok(dm_check_devices(uts, num_devices));
  156. return 0;
  157. }
  158. DM_TEST(dm_test_fdt, 0);
  159. static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
  160. {
  161. struct uclass *uc;
  162. int ret;
  163. ret = dm_scan_fdt(gd->fdt_blob, true);
  164. ut_assert(!ret);
  165. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  166. ut_assert(!ret);
  167. /* These is only one pre-reloc device */
  168. ut_asserteq(1, list_count_items(&uc->dev_head));
  169. return 0;
  170. }
  171. DM_TEST(dm_test_fdt_pre_reloc, 0);
  172. /* Test that sequence numbers are allocated properly */
  173. static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
  174. {
  175. struct udevice *dev;
  176. /* A few basic santiy tests */
  177. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev));
  178. ut_asserteq_str("b-test", dev->name);
  179. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev));
  180. ut_asserteq_str("a-test", dev->name);
  181. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5,
  182. true, &dev));
  183. ut_asserteq_ptr(NULL, dev);
  184. /* Test aliases */
  185. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
  186. ut_asserteq_str("e-test", dev->name);
  187. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
  188. true, &dev));
  189. /*
  190. * Note that c-test nodes are not probed since it is not a top-level
  191. * node
  192. */
  193. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
  194. ut_asserteq_str("b-test", dev->name);
  195. /*
  196. * d-test wants sequence number 3 also, but it can't have it because
  197. * b-test gets it first.
  198. */
  199. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
  200. ut_asserteq_str("d-test", dev->name);
  201. /* d-test actually gets 0 */
  202. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev));
  203. ut_asserteq_str("d-test", dev->name);
  204. /* initially no one wants seq 1 */
  205. ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1,
  206. &dev));
  207. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
  208. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev));
  209. /* But now that it is probed, we can find it */
  210. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev));
  211. ut_asserteq_str("f-test", dev->name);
  212. return 0;
  213. }
  214. DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  215. /* Test that we can find a device by device tree offset */
  216. static int dm_test_fdt_offset(struct unit_test_state *uts)
  217. {
  218. const void *blob = gd->fdt_blob;
  219. struct udevice *dev;
  220. int node;
  221. node = fdt_path_offset(blob, "/e-test");
  222. ut_assert(node > 0);
  223. ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
  224. &dev));
  225. ut_asserteq_str("e-test", dev->name);
  226. /* This node should not be bound */
  227. node = fdt_path_offset(blob, "/junk");
  228. ut_assert(node > 0);
  229. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  230. node, &dev));
  231. /* This is not a top level node so should not be probed */
  232. node = fdt_path_offset(blob, "/some-bus/c-test@5");
  233. ut_assert(node > 0);
  234. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  235. node, &dev));
  236. return 0;
  237. }
  238. DM_TEST(dm_test_fdt_offset,
  239. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
  240. /**
  241. * Test various error conditions with uclass_first_device() and
  242. * uclass_next_device()
  243. */
  244. static int dm_test_first_next_device(struct unit_test_state *uts)
  245. {
  246. struct dm_testprobe_pdata *pdata;
  247. struct udevice *dev, *parent = NULL;
  248. int count;
  249. int ret;
  250. /* There should be 4 devices */
  251. for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
  252. dev;
  253. ret = uclass_next_device(&dev)) {
  254. count++;
  255. parent = dev_get_parent(dev);
  256. }
  257. ut_assertok(ret);
  258. ut_asserteq(4, count);
  259. /* Remove them and try again, with an error on the second one */
  260. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
  261. pdata = dev_get_platdata(dev);
  262. pdata->probe_err = -ENOMEM;
  263. device_remove(parent, DM_REMOVE_NORMAL);
  264. ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
  265. ut_asserteq(-ENOMEM, uclass_next_device(&dev));
  266. ut_asserteq_ptr(dev, NULL);
  267. /* Now an error on the first one */
  268. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
  269. pdata = dev_get_platdata(dev);
  270. pdata->probe_err = -ENOENT;
  271. device_remove(parent, DM_REMOVE_NORMAL);
  272. ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
  273. return 0;
  274. }
  275. DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  276. /**
  277. * check_devices() - Check return values and pointers
  278. *
  279. * This runs through a full sequence of uclass_first_device_check()...
  280. * uclass_next_device_check() checking that the return values and devices
  281. * are correct.
  282. *
  283. * @uts: Test state
  284. * @devlist: List of expected devices
  285. * @mask: Indicates which devices should return an error. Device n should
  286. * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
  287. * bit n is clear.
  288. */
  289. static int check_devices(struct unit_test_state *uts,
  290. struct udevice *devlist[], int mask)
  291. {
  292. int expected_ret;
  293. struct udevice *dev;
  294. int i;
  295. expected_ret = (mask & 1) ? -ENOENT : 0;
  296. mask >>= 1;
  297. ut_asserteq(expected_ret,
  298. uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  299. for (i = 0; i < 4; i++) {
  300. ut_asserteq_ptr(devlist[i], dev);
  301. expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
  302. mask >>= 1;
  303. ut_asserteq(expected_ret, uclass_next_device_check(&dev));
  304. }
  305. ut_asserteq_ptr(NULL, dev);
  306. return 0;
  307. }
  308. /* Test uclass_first_device_check() and uclass_next_device_check() */
  309. static int dm_test_first_next_ok_device(struct unit_test_state *uts)
  310. {
  311. struct dm_testprobe_pdata *pdata;
  312. struct udevice *dev, *parent = NULL, *devlist[4];
  313. int count;
  314. int ret;
  315. /* There should be 4 devices */
  316. count = 0;
  317. for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
  318. dev;
  319. ret = uclass_next_device_check(&dev)) {
  320. ut_assertok(ret);
  321. devlist[count++] = dev;
  322. parent = dev_get_parent(dev);
  323. }
  324. ut_asserteq(4, count);
  325. ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  326. ut_assertok(check_devices(uts, devlist, 0));
  327. /* Remove them and try again, with an error on the second one */
  328. pdata = dev_get_platdata(devlist[1]);
  329. pdata->probe_err = -ENOENT - 1;
  330. device_remove(parent, DM_REMOVE_NORMAL);
  331. ut_assertok(check_devices(uts, devlist, 1 << 1));
  332. /* Now an error on the first one */
  333. pdata = dev_get_platdata(devlist[0]);
  334. pdata->probe_err = -ENOENT - 0;
  335. device_remove(parent, DM_REMOVE_NORMAL);
  336. ut_assertok(check_devices(uts, devlist, 3 << 0));
  337. /* Now errors on all */
  338. pdata = dev_get_platdata(devlist[2]);
  339. pdata->probe_err = -ENOENT - 2;
  340. pdata = dev_get_platdata(devlist[3]);
  341. pdata->probe_err = -ENOENT - 3;
  342. device_remove(parent, DM_REMOVE_NORMAL);
  343. ut_assertok(check_devices(uts, devlist, 0xf << 0));
  344. return 0;
  345. }
  346. DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  347. static const struct udevice_id fdt_dummy_ids[] = {
  348. { .compatible = "denx,u-boot-fdt-dummy", },
  349. { }
  350. };
  351. UCLASS_DRIVER(fdt_dummy) = {
  352. .name = "fdt_dummy",
  353. .id = UCLASS_TEST_DUMMY,
  354. .flags = DM_UC_FLAG_SEQ_ALIAS,
  355. };
  356. U_BOOT_DRIVER(fdt_dummy_drv) = {
  357. .name = "fdt_dummy_drv",
  358. .of_match = fdt_dummy_ids,
  359. .id = UCLASS_TEST_DUMMY,
  360. };
  361. static int dm_test_fdt_translation(struct unit_test_state *uts)
  362. {
  363. struct udevice *dev;
  364. /* Some simple translations */
  365. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  366. ut_asserteq_str("dev@0,0", dev->name);
  367. ut_asserteq(0x8000, dev_read_addr(dev));
  368. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
  369. ut_asserteq_str("dev@1,100", dev->name);
  370. ut_asserteq(0x9000, dev_read_addr(dev));
  371. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev));
  372. ut_asserteq_str("dev@2,200", dev->name);
  373. ut_asserteq(0xA000, dev_read_addr(dev));
  374. /* No translation for busses with #size-cells == 0 */
  375. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev));
  376. ut_asserteq_str("dev@42", dev->name);
  377. ut_asserteq(0x42, dev_read_addr(dev));
  378. return 0;
  379. }
  380. DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  381. /* Test devfdt_remap_addr_index() */
  382. static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
  383. {
  384. struct udevice *dev;
  385. fdt_addr_t addr;
  386. void *paddr;
  387. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  388. addr = devfdt_get_addr(dev);
  389. ut_asserteq(0x8000, addr);
  390. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  391. ut_assertnonnull(paddr);
  392. ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
  393. return 0;
  394. }
  395. DM_TEST(dm_test_fdt_remap_addr_flat,
  396. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
  397. /* Test dev_remap_addr_index() */
  398. static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
  399. {
  400. struct udevice *dev;
  401. fdt_addr_t addr;
  402. void *paddr;
  403. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  404. addr = dev_read_addr(dev);
  405. ut_asserteq(0x8000, addr);
  406. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  407. ut_assertnonnull(paddr);
  408. ut_asserteq_ptr(paddr, dev_remap_addr(dev));
  409. return 0;
  410. }
  411. DM_TEST(dm_test_fdt_remap_addr_live,
  412. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);