clk_stm32mp1.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906
  1. // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
  2. /*
  3. * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
  4. */
  5. #include <common.h>
  6. #include <clk-uclass.h>
  7. #include <div64.h>
  8. #include <dm.h>
  9. #include <regmap.h>
  10. #include <spl.h>
  11. #include <syscon.h>
  12. #include <linux/io.h>
  13. #include <linux/iopoll.h>
  14. #include <dt-bindings/clock/stm32mp1-clks.h>
  15. #include <dt-bindings/clock/stm32mp1-clksrc.h>
  16. #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
  17. /* activate clock tree initialization in the driver */
  18. #define STM32MP1_CLOCK_TREE_INIT
  19. #endif
  20. #define MAX_HSI_HZ 64000000
  21. /* TIMEOUT */
  22. #define TIMEOUT_200MS 200000
  23. #define TIMEOUT_1S 1000000
  24. /* STGEN registers */
  25. #define STGENC_CNTCR 0x00
  26. #define STGENC_CNTSR 0x04
  27. #define STGENC_CNTCVL 0x08
  28. #define STGENC_CNTCVU 0x0C
  29. #define STGENC_CNTFID0 0x20
  30. #define STGENC_CNTCR_EN BIT(0)
  31. /* RCC registers */
  32. #define RCC_OCENSETR 0x0C
  33. #define RCC_OCENCLRR 0x10
  34. #define RCC_HSICFGR 0x18
  35. #define RCC_MPCKSELR 0x20
  36. #define RCC_ASSCKSELR 0x24
  37. #define RCC_RCK12SELR 0x28
  38. #define RCC_MPCKDIVR 0x2C
  39. #define RCC_AXIDIVR 0x30
  40. #define RCC_APB4DIVR 0x3C
  41. #define RCC_APB5DIVR 0x40
  42. #define RCC_RTCDIVR 0x44
  43. #define RCC_MSSCKSELR 0x48
  44. #define RCC_PLL1CR 0x80
  45. #define RCC_PLL1CFGR1 0x84
  46. #define RCC_PLL1CFGR2 0x88
  47. #define RCC_PLL1FRACR 0x8C
  48. #define RCC_PLL1CSGR 0x90
  49. #define RCC_PLL2CR 0x94
  50. #define RCC_PLL2CFGR1 0x98
  51. #define RCC_PLL2CFGR2 0x9C
  52. #define RCC_PLL2FRACR 0xA0
  53. #define RCC_PLL2CSGR 0xA4
  54. #define RCC_I2C46CKSELR 0xC0
  55. #define RCC_CPERCKSELR 0xD0
  56. #define RCC_STGENCKSELR 0xD4
  57. #define RCC_DDRITFCR 0xD8
  58. #define RCC_BDCR 0x140
  59. #define RCC_RDLSICR 0x144
  60. #define RCC_MP_APB4ENSETR 0x200
  61. #define RCC_MP_APB5ENSETR 0x208
  62. #define RCC_MP_AHB5ENSETR 0x210
  63. #define RCC_MP_AHB6ENSETR 0x218
  64. #define RCC_OCRDYR 0x808
  65. #define RCC_DBGCFGR 0x80C
  66. #define RCC_RCK3SELR 0x820
  67. #define RCC_RCK4SELR 0x824
  68. #define RCC_MCUDIVR 0x830
  69. #define RCC_APB1DIVR 0x834
  70. #define RCC_APB2DIVR 0x838
  71. #define RCC_APB3DIVR 0x83C
  72. #define RCC_PLL3CR 0x880
  73. #define RCC_PLL3CFGR1 0x884
  74. #define RCC_PLL3CFGR2 0x888
  75. #define RCC_PLL3FRACR 0x88C
  76. #define RCC_PLL3CSGR 0x890
  77. #define RCC_PLL4CR 0x894
  78. #define RCC_PLL4CFGR1 0x898
  79. #define RCC_PLL4CFGR2 0x89C
  80. #define RCC_PLL4FRACR 0x8A0
  81. #define RCC_PLL4CSGR 0x8A4
  82. #define RCC_I2C12CKSELR 0x8C0
  83. #define RCC_I2C35CKSELR 0x8C4
  84. #define RCC_UART6CKSELR 0x8E4
  85. #define RCC_UART24CKSELR 0x8E8
  86. #define RCC_UART35CKSELR 0x8EC
  87. #define RCC_UART78CKSELR 0x8F0
  88. #define RCC_SDMMC12CKSELR 0x8F4
  89. #define RCC_SDMMC3CKSELR 0x8F8
  90. #define RCC_ETHCKSELR 0x8FC
  91. #define RCC_QSPICKSELR 0x900
  92. #define RCC_FMCCKSELR 0x904
  93. #define RCC_USBCKSELR 0x91C
  94. #define RCC_DSICKSELR 0x924
  95. #define RCC_ADCCKSELR 0x928
  96. #define RCC_MP_APB1ENSETR 0xA00
  97. #define RCC_MP_APB2ENSETR 0XA08
  98. #define RCC_MP_APB3ENSETR 0xA10
  99. #define RCC_MP_AHB2ENSETR 0xA18
  100. #define RCC_MP_AHB4ENSETR 0xA28
  101. /* used for most of SELR register */
  102. #define RCC_SELR_SRC_MASK GENMASK(2, 0)
  103. #define RCC_SELR_SRCRDY BIT(31)
  104. /* Values of RCC_MPCKSELR register */
  105. #define RCC_MPCKSELR_HSI 0
  106. #define RCC_MPCKSELR_HSE 1
  107. #define RCC_MPCKSELR_PLL 2
  108. #define RCC_MPCKSELR_PLL_MPUDIV 3
  109. /* Values of RCC_ASSCKSELR register */
  110. #define RCC_ASSCKSELR_HSI 0
  111. #define RCC_ASSCKSELR_HSE 1
  112. #define RCC_ASSCKSELR_PLL 2
  113. /* Values of RCC_MSSCKSELR register */
  114. #define RCC_MSSCKSELR_HSI 0
  115. #define RCC_MSSCKSELR_HSE 1
  116. #define RCC_MSSCKSELR_CSI 2
  117. #define RCC_MSSCKSELR_PLL 3
  118. /* Values of RCC_CPERCKSELR register */
  119. #define RCC_CPERCKSELR_HSI 0
  120. #define RCC_CPERCKSELR_CSI 1
  121. #define RCC_CPERCKSELR_HSE 2
  122. /* used for most of DIVR register : max div for RTC */
  123. #define RCC_DIVR_DIV_MASK GENMASK(5, 0)
  124. #define RCC_DIVR_DIVRDY BIT(31)
  125. /* Masks for specific DIVR registers */
  126. #define RCC_APBXDIV_MASK GENMASK(2, 0)
  127. #define RCC_MPUDIV_MASK GENMASK(2, 0)
  128. #define RCC_AXIDIV_MASK GENMASK(2, 0)
  129. #define RCC_MCUDIV_MASK GENMASK(3, 0)
  130. /* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
  131. #define RCC_MP_ENCLRR_OFFSET 4
  132. /* Fields of RCC_BDCR register */
  133. #define RCC_BDCR_LSEON BIT(0)
  134. #define RCC_BDCR_LSEBYP BIT(1)
  135. #define RCC_BDCR_LSERDY BIT(2)
  136. #define RCC_BDCR_DIGBYP BIT(3)
  137. #define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
  138. #define RCC_BDCR_LSEDRV_SHIFT 4
  139. #define RCC_BDCR_LSECSSON BIT(8)
  140. #define RCC_BDCR_RTCCKEN BIT(20)
  141. #define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
  142. #define RCC_BDCR_RTCSRC_SHIFT 16
  143. /* Fields of RCC_RDLSICR register */
  144. #define RCC_RDLSICR_LSION BIT(0)
  145. #define RCC_RDLSICR_LSIRDY BIT(1)
  146. /* used for ALL PLLNCR registers */
  147. #define RCC_PLLNCR_PLLON BIT(0)
  148. #define RCC_PLLNCR_PLLRDY BIT(1)
  149. #define RCC_PLLNCR_DIVPEN BIT(4)
  150. #define RCC_PLLNCR_DIVQEN BIT(5)
  151. #define RCC_PLLNCR_DIVREN BIT(6)
  152. #define RCC_PLLNCR_DIVEN_SHIFT 4
  153. /* used for ALL PLLNCFGR1 registers */
  154. #define RCC_PLLNCFGR1_DIVM_SHIFT 16
  155. #define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
  156. #define RCC_PLLNCFGR1_DIVN_SHIFT 0
  157. #define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
  158. /* only for PLL3 and PLL4 */
  159. #define RCC_PLLNCFGR1_IFRGE_SHIFT 24
  160. #define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
  161. /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
  162. #define RCC_PLLNCFGR2_SHIFT(div_id) ((div_id) * 8)
  163. #define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
  164. #define RCC_PLLNCFGR2_DIVP_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_P)
  165. #define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
  166. #define RCC_PLLNCFGR2_DIVQ_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_Q)
  167. #define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
  168. #define RCC_PLLNCFGR2_DIVR_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_R)
  169. #define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
  170. /* used for ALL PLLNFRACR registers */
  171. #define RCC_PLLNFRACR_FRACV_SHIFT 3
  172. #define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
  173. #define RCC_PLLNFRACR_FRACLE BIT(16)
  174. /* used for ALL PLLNCSGR registers */
  175. #define RCC_PLLNCSGR_INC_STEP_SHIFT 16
  176. #define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
  177. #define RCC_PLLNCSGR_MOD_PER_SHIFT 0
  178. #define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
  179. #define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
  180. #define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
  181. /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
  182. #define RCC_OCENR_HSION BIT(0)
  183. #define RCC_OCENR_CSION BIT(4)
  184. #define RCC_OCENR_DIGBYP BIT(7)
  185. #define RCC_OCENR_HSEON BIT(8)
  186. #define RCC_OCENR_HSEBYP BIT(10)
  187. #define RCC_OCENR_HSECSSON BIT(11)
  188. /* Fields of RCC_OCRDYR register */
  189. #define RCC_OCRDYR_HSIRDY BIT(0)
  190. #define RCC_OCRDYR_HSIDIVRDY BIT(2)
  191. #define RCC_OCRDYR_CSIRDY BIT(4)
  192. #define RCC_OCRDYR_HSERDY BIT(8)
  193. /* Fields of DDRITFCR register */
  194. #define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
  195. #define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
  196. #define RCC_DDRITFCR_DDRCKMOD_SSR 0
  197. /* Fields of RCC_HSICFGR register */
  198. #define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
  199. /* used for MCO related operations */
  200. #define RCC_MCOCFG_MCOON BIT(12)
  201. #define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
  202. #define RCC_MCOCFG_MCODIV_SHIFT 4
  203. #define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
  204. enum stm32mp1_parent_id {
  205. /*
  206. * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
  207. * they are used as index in osc[] as entry point
  208. */
  209. _HSI,
  210. _HSE,
  211. _CSI,
  212. _LSI,
  213. _LSE,
  214. _I2S_CKIN,
  215. _USB_PHY_48,
  216. NB_OSC,
  217. /* other parent source */
  218. _HSI_KER = NB_OSC,
  219. _HSE_KER,
  220. _HSE_KER_DIV2,
  221. _CSI_KER,
  222. _PLL1_P,
  223. _PLL1_Q,
  224. _PLL1_R,
  225. _PLL2_P,
  226. _PLL2_Q,
  227. _PLL2_R,
  228. _PLL3_P,
  229. _PLL3_Q,
  230. _PLL3_R,
  231. _PLL4_P,
  232. _PLL4_Q,
  233. _PLL4_R,
  234. _ACLK,
  235. _PCLK1,
  236. _PCLK2,
  237. _PCLK3,
  238. _PCLK4,
  239. _PCLK5,
  240. _HCLK6,
  241. _HCLK2,
  242. _CK_PER,
  243. _CK_MPU,
  244. _CK_MCU,
  245. _DSI_PHY,
  246. _PARENT_NB,
  247. _UNKNOWN_ID = 0xff,
  248. };
  249. enum stm32mp1_parent_sel {
  250. _I2C12_SEL,
  251. _I2C35_SEL,
  252. _I2C46_SEL,
  253. _UART6_SEL,
  254. _UART24_SEL,
  255. _UART35_SEL,
  256. _UART78_SEL,
  257. _SDMMC12_SEL,
  258. _SDMMC3_SEL,
  259. _ETH_SEL,
  260. _QSPI_SEL,
  261. _FMC_SEL,
  262. _USBPHY_SEL,
  263. _USBO_SEL,
  264. _STGEN_SEL,
  265. _DSI_SEL,
  266. _ADC12_SEL,
  267. _PARENT_SEL_NB,
  268. _UNKNOWN_SEL = 0xff,
  269. };
  270. enum stm32mp1_pll_id {
  271. _PLL1,
  272. _PLL2,
  273. _PLL3,
  274. _PLL4,
  275. _PLL_NB
  276. };
  277. enum stm32mp1_div_id {
  278. _DIV_P,
  279. _DIV_Q,
  280. _DIV_R,
  281. _DIV_NB,
  282. };
  283. enum stm32mp1_clksrc_id {
  284. CLKSRC_MPU,
  285. CLKSRC_AXI,
  286. CLKSRC_MCU,
  287. CLKSRC_PLL12,
  288. CLKSRC_PLL3,
  289. CLKSRC_PLL4,
  290. CLKSRC_RTC,
  291. CLKSRC_MCO1,
  292. CLKSRC_MCO2,
  293. CLKSRC_NB
  294. };
  295. enum stm32mp1_clkdiv_id {
  296. CLKDIV_MPU,
  297. CLKDIV_AXI,
  298. CLKDIV_MCU,
  299. CLKDIV_APB1,
  300. CLKDIV_APB2,
  301. CLKDIV_APB3,
  302. CLKDIV_APB4,
  303. CLKDIV_APB5,
  304. CLKDIV_RTC,
  305. CLKDIV_MCO1,
  306. CLKDIV_MCO2,
  307. CLKDIV_NB
  308. };
  309. enum stm32mp1_pllcfg {
  310. PLLCFG_M,
  311. PLLCFG_N,
  312. PLLCFG_P,
  313. PLLCFG_Q,
  314. PLLCFG_R,
  315. PLLCFG_O,
  316. PLLCFG_NB
  317. };
  318. enum stm32mp1_pllcsg {
  319. PLLCSG_MOD_PER,
  320. PLLCSG_INC_STEP,
  321. PLLCSG_SSCG_MODE,
  322. PLLCSG_NB
  323. };
  324. enum stm32mp1_plltype {
  325. PLL_800,
  326. PLL_1600,
  327. PLL_TYPE_NB
  328. };
  329. struct stm32mp1_pll {
  330. u8 refclk_min;
  331. u8 refclk_max;
  332. u8 divn_max;
  333. };
  334. struct stm32mp1_clk_gate {
  335. u16 offset;
  336. u8 bit;
  337. u8 index;
  338. u8 set_clr;
  339. u8 sel;
  340. u8 fixed;
  341. };
  342. struct stm32mp1_clk_sel {
  343. u16 offset;
  344. u8 src;
  345. u8 msk;
  346. u8 nb_parent;
  347. const u8 *parent;
  348. };
  349. #define REFCLK_SIZE 4
  350. struct stm32mp1_clk_pll {
  351. enum stm32mp1_plltype plltype;
  352. u16 rckxselr;
  353. u16 pllxcfgr1;
  354. u16 pllxcfgr2;
  355. u16 pllxfracr;
  356. u16 pllxcr;
  357. u16 pllxcsgr;
  358. u8 refclk[REFCLK_SIZE];
  359. };
  360. struct stm32mp1_clk_data {
  361. const struct stm32mp1_clk_gate *gate;
  362. const struct stm32mp1_clk_sel *sel;
  363. const struct stm32mp1_clk_pll *pll;
  364. const int nb_gate;
  365. };
  366. struct stm32mp1_clk_priv {
  367. fdt_addr_t base;
  368. const struct stm32mp1_clk_data *data;
  369. ulong osc[NB_OSC];
  370. struct udevice *osc_dev[NB_OSC];
  371. };
  372. #define STM32MP1_CLK(off, b, idx, s) \
  373. { \
  374. .offset = (off), \
  375. .bit = (b), \
  376. .index = (idx), \
  377. .set_clr = 0, \
  378. .sel = (s), \
  379. .fixed = _UNKNOWN_ID, \
  380. }
  381. #define STM32MP1_CLK_F(off, b, idx, f) \
  382. { \
  383. .offset = (off), \
  384. .bit = (b), \
  385. .index = (idx), \
  386. .set_clr = 0, \
  387. .sel = _UNKNOWN_SEL, \
  388. .fixed = (f), \
  389. }
  390. #define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
  391. { \
  392. .offset = (off), \
  393. .bit = (b), \
  394. .index = (idx), \
  395. .set_clr = 1, \
  396. .sel = (s), \
  397. .fixed = _UNKNOWN_ID, \
  398. }
  399. #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
  400. { \
  401. .offset = (off), \
  402. .bit = (b), \
  403. .index = (idx), \
  404. .set_clr = 1, \
  405. .sel = _UNKNOWN_SEL, \
  406. .fixed = (f), \
  407. }
  408. #define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
  409. [(idx)] = { \
  410. .offset = (off), \
  411. .src = (s), \
  412. .msk = (m), \
  413. .parent = (p), \
  414. .nb_parent = ARRAY_SIZE((p)) \
  415. }
  416. #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
  417. p1, p2, p3, p4) \
  418. [(idx)] = { \
  419. .plltype = (type), \
  420. .rckxselr = (off1), \
  421. .pllxcfgr1 = (off2), \
  422. .pllxcfgr2 = (off3), \
  423. .pllxfracr = (off4), \
  424. .pllxcr = (off5), \
  425. .pllxcsgr = (off6), \
  426. .refclk[0] = (p1), \
  427. .refclk[1] = (p2), \
  428. .refclk[2] = (p3), \
  429. .refclk[3] = (p4), \
  430. }
  431. static const u8 stm32mp1_clks[][2] = {
  432. {CK_PER, _CK_PER},
  433. {CK_MPU, _CK_MPU},
  434. {CK_AXI, _ACLK},
  435. {CK_MCU, _CK_MCU},
  436. {CK_HSE, _HSE},
  437. {CK_CSI, _CSI},
  438. {CK_LSI, _LSI},
  439. {CK_LSE, _LSE},
  440. {CK_HSI, _HSI},
  441. {CK_HSE_DIV2, _HSE_KER_DIV2},
  442. };
  443. static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
  444. STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
  445. STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
  446. STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
  447. STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
  448. STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
  449. STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
  450. STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
  451. STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
  452. STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
  453. STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
  454. STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
  455. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
  456. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
  457. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
  458. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
  459. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
  460. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
  461. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
  462. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
  463. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
  464. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
  465. STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
  466. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
  467. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
  468. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
  469. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
  470. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
  471. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
  472. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
  473. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
  474. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
  475. STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
  476. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
  477. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
  478. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
  479. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
  480. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
  481. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
  482. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
  483. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
  484. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
  485. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
  486. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
  487. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
  488. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
  489. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
  490. STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
  491. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK, _ETH_SEL),
  492. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
  493. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
  494. STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
  495. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
  496. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
  497. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
  498. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
  499. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
  500. STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
  501. };
  502. static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  503. static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  504. static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
  505. static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
  506. _HSE_KER};
  507. static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  508. _HSE_KER};
  509. static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  510. _HSE_KER};
  511. static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  512. _HSE_KER};
  513. static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
  514. static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
  515. static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
  516. static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  517. static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  518. static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
  519. static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
  520. static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
  521. static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
  522. static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
  523. static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
  524. STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
  525. STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
  526. STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
  527. STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
  528. STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
  529. uart24_parents),
  530. STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
  531. uart35_parents),
  532. STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
  533. uart78_parents),
  534. STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
  535. sdmmc12_parents),
  536. STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
  537. sdmmc3_parents),
  538. STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
  539. STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
  540. STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
  541. STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
  542. STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
  543. STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
  544. STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
  545. STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
  546. };
  547. #ifdef STM32MP1_CLOCK_TREE_INIT
  548. /* define characteristic of PLL according type */
  549. #define DIVN_MIN 24
  550. static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
  551. [PLL_800] = {
  552. .refclk_min = 4,
  553. .refclk_max = 16,
  554. .divn_max = 99,
  555. },
  556. [PLL_1600] = {
  557. .refclk_min = 8,
  558. .refclk_max = 16,
  559. .divn_max = 199,
  560. },
  561. };
  562. #endif /* STM32MP1_CLOCK_TREE_INIT */
  563. static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
  564. STM32MP1_CLK_PLL(_PLL1, PLL_1600,
  565. RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
  566. RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
  567. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  568. STM32MP1_CLK_PLL(_PLL2, PLL_1600,
  569. RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
  570. RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
  571. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  572. STM32MP1_CLK_PLL(_PLL3, PLL_800,
  573. RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
  574. RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
  575. _HSI, _HSE, _CSI, _UNKNOWN_ID),
  576. STM32MP1_CLK_PLL(_PLL4, PLL_800,
  577. RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
  578. RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
  579. _HSI, _HSE, _CSI, _I2S_CKIN),
  580. };
  581. /* Prescaler table lookups for clock computation */
  582. /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
  583. static const u8 stm32mp1_mcu_div[16] = {
  584. 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
  585. };
  586. /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
  587. #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
  588. #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
  589. static const u8 stm32mp1_mpu_apbx_div[8] = {
  590. 0, 1, 2, 3, 4, 4, 4, 4
  591. };
  592. /* div = /1 /2 /3 /4 */
  593. static const u8 stm32mp1_axi_div[8] = {
  594. 1, 2, 3, 4, 4, 4, 4, 4
  595. };
  596. #ifdef DEBUG
  597. static const char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
  598. [_HSI] = "HSI",
  599. [_HSE] = "HSE",
  600. [_CSI] = "CSI",
  601. [_LSI] = "LSI",
  602. [_LSE] = "LSE",
  603. [_I2S_CKIN] = "I2S_CKIN",
  604. [_HSI_KER] = "HSI_KER",
  605. [_HSE_KER] = "HSE_KER",
  606. [_HSE_KER_DIV2] = "HSE_KER_DIV2",
  607. [_CSI_KER] = "CSI_KER",
  608. [_PLL1_P] = "PLL1_P",
  609. [_PLL1_Q] = "PLL1_Q",
  610. [_PLL1_R] = "PLL1_R",
  611. [_PLL2_P] = "PLL2_P",
  612. [_PLL2_Q] = "PLL2_Q",
  613. [_PLL2_R] = "PLL2_R",
  614. [_PLL3_P] = "PLL3_P",
  615. [_PLL3_Q] = "PLL3_Q",
  616. [_PLL3_R] = "PLL3_R",
  617. [_PLL4_P] = "PLL4_P",
  618. [_PLL4_Q] = "PLL4_Q",
  619. [_PLL4_R] = "PLL4_R",
  620. [_ACLK] = "ACLK",
  621. [_PCLK1] = "PCLK1",
  622. [_PCLK2] = "PCLK2",
  623. [_PCLK3] = "PCLK3",
  624. [_PCLK4] = "PCLK4",
  625. [_PCLK5] = "PCLK5",
  626. [_HCLK6] = "KCLK6",
  627. [_HCLK2] = "HCLK2",
  628. [_CK_PER] = "CK_PER",
  629. [_CK_MPU] = "CK_MPU",
  630. [_CK_MCU] = "CK_MCU",
  631. [_USB_PHY_48] = "USB_PHY_48",
  632. [_DSI_PHY] = "DSI_PHY_PLL",
  633. };
  634. static const char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
  635. [_I2C12_SEL] = "I2C12",
  636. [_I2C35_SEL] = "I2C35",
  637. [_I2C46_SEL] = "I2C46",
  638. [_UART6_SEL] = "UART6",
  639. [_UART24_SEL] = "UART24",
  640. [_UART35_SEL] = "UART35",
  641. [_UART78_SEL] = "UART78",
  642. [_SDMMC12_SEL] = "SDMMC12",
  643. [_SDMMC3_SEL] = "SDMMC3",
  644. [_ETH_SEL] = "ETH",
  645. [_QSPI_SEL] = "QSPI",
  646. [_FMC_SEL] = "FMC",
  647. [_USBPHY_SEL] = "USBPHY",
  648. [_USBO_SEL] = "USBO",
  649. [_STGEN_SEL] = "STGEN",
  650. [_DSI_SEL] = "DSI",
  651. [_ADC12_SEL] = "ADC12",
  652. };
  653. #endif
  654. static const struct stm32mp1_clk_data stm32mp1_data = {
  655. .gate = stm32mp1_clk_gate,
  656. .sel = stm32mp1_clk_sel,
  657. .pll = stm32mp1_clk_pll,
  658. .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
  659. };
  660. static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
  661. {
  662. if (idx >= NB_OSC) {
  663. debug("%s: clk id %d not found\n", __func__, idx);
  664. return 0;
  665. }
  666. debug("%s: clk id %d = %x : %ld kHz\n", __func__, idx,
  667. (u32)priv->osc[idx], priv->osc[idx] / 1000);
  668. return priv->osc[idx];
  669. }
  670. static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
  671. {
  672. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  673. int i, nb_clks = priv->data->nb_gate;
  674. for (i = 0; i < nb_clks; i++) {
  675. if (gate[i].index == id)
  676. break;
  677. }
  678. if (i == nb_clks) {
  679. printf("%s: clk id %d not found\n", __func__, (u32)id);
  680. return -EINVAL;
  681. }
  682. return i;
  683. }
  684. static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
  685. int i)
  686. {
  687. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  688. if (gate[i].sel > _PARENT_SEL_NB) {
  689. printf("%s: parents for clk id %d not found\n",
  690. __func__, i);
  691. return -EINVAL;
  692. }
  693. return gate[i].sel;
  694. }
  695. static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
  696. int i)
  697. {
  698. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  699. if (gate[i].fixed == _UNKNOWN_ID)
  700. return -ENOENT;
  701. return gate[i].fixed;
  702. }
  703. static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
  704. unsigned long id)
  705. {
  706. const struct stm32mp1_clk_sel *sel = priv->data->sel;
  707. int i;
  708. int s, p;
  709. for (i = 0; i < ARRAY_SIZE(stm32mp1_clks); i++)
  710. if (stm32mp1_clks[i][0] == id)
  711. return stm32mp1_clks[i][1];
  712. i = stm32mp1_clk_get_id(priv, id);
  713. if (i < 0)
  714. return i;
  715. p = stm32mp1_clk_get_fixed_parent(priv, i);
  716. if (p >= 0 && p < _PARENT_NB)
  717. return p;
  718. s = stm32mp1_clk_get_sel(priv, i);
  719. if (s < 0)
  720. return s;
  721. p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
  722. if (p < sel[s].nb_parent) {
  723. #ifdef DEBUG
  724. debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
  725. stm32mp1_clk_parent_name[sel[s].parent[p]],
  726. stm32mp1_clk_parent_sel_name[s],
  727. (u32)id);
  728. #endif
  729. return sel[s].parent[p];
  730. }
  731. pr_err("%s: no parents defined for clk id %d\n",
  732. __func__, (u32)id);
  733. return -EINVAL;
  734. }
  735. static ulong pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
  736. int pll_id)
  737. {
  738. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  739. u32 selr;
  740. int src;
  741. ulong refclk;
  742. /* Get current refclk */
  743. selr = readl(priv->base + pll[pll_id].rckxselr);
  744. src = selr & RCC_SELR_SRC_MASK;
  745. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
  746. debug("PLL%d : selr=%x refclk = %d kHz\n",
  747. pll_id, selr, (u32)(refclk / 1000));
  748. return refclk;
  749. }
  750. /*
  751. * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
  752. * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
  753. * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
  754. * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
  755. */
  756. static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
  757. int pll_id)
  758. {
  759. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  760. int divm, divn;
  761. ulong refclk, fvco;
  762. u32 cfgr1, fracr;
  763. cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
  764. fracr = readl(priv->base + pll[pll_id].pllxfracr);
  765. divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
  766. divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
  767. debug("PLL%d : cfgr1=%x fracr=%x DIVN=%d DIVM=%d\n",
  768. pll_id, cfgr1, fracr, divn, divm);
  769. refclk = pll_get_fref_ck(priv, pll_id);
  770. /* with FRACV :
  771. * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
  772. * without FRACV
  773. * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
  774. */
  775. if (fracr & RCC_PLLNFRACR_FRACLE) {
  776. u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
  777. >> RCC_PLLNFRACR_FRACV_SHIFT;
  778. fvco = (ulong)lldiv((unsigned long long)refclk *
  779. (((divn + 1) << 13) + fracv),
  780. ((unsigned long long)(divm + 1)) << 13);
  781. } else {
  782. fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
  783. }
  784. debug("PLL%d : %s = %ld\n", pll_id, __func__, fvco);
  785. return fvco;
  786. }
  787. static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
  788. int pll_id, int div_id)
  789. {
  790. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  791. int divy;
  792. ulong dfout;
  793. u32 cfgr2;
  794. debug("%s(%d, %d)\n", __func__, pll_id, div_id);
  795. if (div_id >= _DIV_NB)
  796. return 0;
  797. cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
  798. divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
  799. debug("PLL%d : cfgr2=%x DIVY=%d\n", pll_id, cfgr2, divy);
  800. dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
  801. debug(" => dfout = %d kHz\n", (u32)(dfout / 1000));
  802. return dfout;
  803. }
  804. static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
  805. {
  806. u32 reg;
  807. ulong clock = 0;
  808. switch (p) {
  809. case _CK_MPU:
  810. /* MPU sub system */
  811. reg = readl(priv->base + RCC_MPCKSELR);
  812. switch (reg & RCC_SELR_SRC_MASK) {
  813. case RCC_MPCKSELR_HSI:
  814. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  815. break;
  816. case RCC_MPCKSELR_HSE:
  817. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  818. break;
  819. case RCC_MPCKSELR_PLL:
  820. case RCC_MPCKSELR_PLL_MPUDIV:
  821. clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
  822. if (p == RCC_MPCKSELR_PLL_MPUDIV) {
  823. reg = readl(priv->base + RCC_MPCKDIVR);
  824. clock /= stm32mp1_mpu_div[reg &
  825. RCC_MPUDIV_MASK];
  826. }
  827. break;
  828. }
  829. break;
  830. /* AXI sub system */
  831. case _ACLK:
  832. case _HCLK2:
  833. case _HCLK6:
  834. case _PCLK4:
  835. case _PCLK5:
  836. reg = readl(priv->base + RCC_ASSCKSELR);
  837. switch (reg & RCC_SELR_SRC_MASK) {
  838. case RCC_ASSCKSELR_HSI:
  839. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  840. break;
  841. case RCC_ASSCKSELR_HSE:
  842. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  843. break;
  844. case RCC_ASSCKSELR_PLL:
  845. clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
  846. break;
  847. }
  848. /* System clock divider */
  849. reg = readl(priv->base + RCC_AXIDIVR);
  850. clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
  851. switch (p) {
  852. case _PCLK4:
  853. reg = readl(priv->base + RCC_APB4DIVR);
  854. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  855. break;
  856. case _PCLK5:
  857. reg = readl(priv->base + RCC_APB5DIVR);
  858. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  859. break;
  860. default:
  861. break;
  862. }
  863. break;
  864. /* MCU sub system */
  865. case _CK_MCU:
  866. case _PCLK1:
  867. case _PCLK2:
  868. case _PCLK3:
  869. reg = readl(priv->base + RCC_MSSCKSELR);
  870. switch (reg & RCC_SELR_SRC_MASK) {
  871. case RCC_MSSCKSELR_HSI:
  872. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  873. break;
  874. case RCC_MSSCKSELR_HSE:
  875. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  876. break;
  877. case RCC_MSSCKSELR_CSI:
  878. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  879. break;
  880. case RCC_MSSCKSELR_PLL:
  881. clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
  882. break;
  883. }
  884. /* MCU clock divider */
  885. reg = readl(priv->base + RCC_MCUDIVR);
  886. clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
  887. switch (p) {
  888. case _PCLK1:
  889. reg = readl(priv->base + RCC_APB1DIVR);
  890. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  891. break;
  892. case _PCLK2:
  893. reg = readl(priv->base + RCC_APB2DIVR);
  894. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  895. break;
  896. case _PCLK3:
  897. reg = readl(priv->base + RCC_APB3DIVR);
  898. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  899. break;
  900. case _CK_MCU:
  901. default:
  902. break;
  903. }
  904. break;
  905. case _CK_PER:
  906. reg = readl(priv->base + RCC_CPERCKSELR);
  907. switch (reg & RCC_SELR_SRC_MASK) {
  908. case RCC_CPERCKSELR_HSI:
  909. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  910. break;
  911. case RCC_CPERCKSELR_HSE:
  912. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  913. break;
  914. case RCC_CPERCKSELR_CSI:
  915. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  916. break;
  917. }
  918. break;
  919. case _HSI:
  920. case _HSI_KER:
  921. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  922. break;
  923. case _CSI:
  924. case _CSI_KER:
  925. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  926. break;
  927. case _HSE:
  928. case _HSE_KER:
  929. case _HSE_KER_DIV2:
  930. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  931. if (p == _HSE_KER_DIV2)
  932. clock >>= 1;
  933. break;
  934. case _LSI:
  935. clock = stm32mp1_clk_get_fixed(priv, _LSI);
  936. break;
  937. case _LSE:
  938. clock = stm32mp1_clk_get_fixed(priv, _LSE);
  939. break;
  940. /* PLL */
  941. case _PLL1_P:
  942. case _PLL1_Q:
  943. case _PLL1_R:
  944. clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
  945. break;
  946. case _PLL2_P:
  947. case _PLL2_Q:
  948. case _PLL2_R:
  949. clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
  950. break;
  951. case _PLL3_P:
  952. case _PLL3_Q:
  953. case _PLL3_R:
  954. clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
  955. break;
  956. case _PLL4_P:
  957. case _PLL4_Q:
  958. case _PLL4_R:
  959. clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
  960. break;
  961. /* other */
  962. case _USB_PHY_48:
  963. clock = stm32mp1_clk_get_fixed(priv, _USB_PHY_48);
  964. break;
  965. case _DSI_PHY:
  966. {
  967. struct clk clk;
  968. struct udevice *dev = NULL;
  969. if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
  970. &dev)) {
  971. if (clk_request(dev, &clk)) {
  972. pr_err("ck_dsi_phy request");
  973. } else {
  974. clk.id = 0;
  975. clock = clk_get_rate(&clk);
  976. }
  977. }
  978. break;
  979. }
  980. default:
  981. break;
  982. }
  983. debug("%s(%d) clock = %lx : %ld kHz\n",
  984. __func__, p, clock, clock / 1000);
  985. return clock;
  986. }
  987. static int stm32mp1_clk_enable(struct clk *clk)
  988. {
  989. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  990. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  991. int i = stm32mp1_clk_get_id(priv, clk->id);
  992. if (i < 0)
  993. return i;
  994. if (gate[i].set_clr)
  995. writel(BIT(gate[i].bit), priv->base + gate[i].offset);
  996. else
  997. setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  998. debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
  999. return 0;
  1000. }
  1001. static int stm32mp1_clk_disable(struct clk *clk)
  1002. {
  1003. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1004. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  1005. int i = stm32mp1_clk_get_id(priv, clk->id);
  1006. if (i < 0)
  1007. return i;
  1008. if (gate[i].set_clr)
  1009. writel(BIT(gate[i].bit),
  1010. priv->base + gate[i].offset
  1011. + RCC_MP_ENCLRR_OFFSET);
  1012. else
  1013. clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  1014. debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
  1015. return 0;
  1016. }
  1017. static ulong stm32mp1_clk_get_rate(struct clk *clk)
  1018. {
  1019. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1020. int p = stm32mp1_clk_get_parent(priv, clk->id);
  1021. ulong rate;
  1022. if (p < 0)
  1023. return 0;
  1024. rate = stm32mp1_clk_get(priv, p);
  1025. #ifdef DEBUG
  1026. debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
  1027. __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
  1028. #endif
  1029. return rate;
  1030. }
  1031. #ifdef STM32MP1_CLOCK_TREE_INIT
  1032. static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
  1033. u32 mask_on)
  1034. {
  1035. u32 address = rcc + offset;
  1036. if (enable)
  1037. setbits_le32(address, mask_on);
  1038. else
  1039. clrbits_le32(address, mask_on);
  1040. }
  1041. static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
  1042. {
  1043. if (enable)
  1044. setbits_le32(rcc + RCC_OCENSETR, mask_on);
  1045. else
  1046. setbits_le32(rcc + RCC_OCENCLRR, mask_on);
  1047. }
  1048. static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
  1049. u32 mask_rdy)
  1050. {
  1051. u32 mask_test = 0;
  1052. u32 address = rcc + offset;
  1053. u32 val;
  1054. int ret;
  1055. if (enable)
  1056. mask_test = mask_rdy;
  1057. ret = readl_poll_timeout(address, val,
  1058. (val & mask_rdy) == mask_test,
  1059. TIMEOUT_1S);
  1060. if (ret)
  1061. pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
  1062. mask_rdy, address, enable, readl(address));
  1063. return ret;
  1064. }
  1065. static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
  1066. int lsedrv)
  1067. {
  1068. u32 value;
  1069. if (digbyp)
  1070. setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
  1071. if (bypass || digbyp)
  1072. setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
  1073. /*
  1074. * warning: not recommended to switch directly from "high drive"
  1075. * to "medium low drive", and vice-versa.
  1076. */
  1077. value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
  1078. >> RCC_BDCR_LSEDRV_SHIFT;
  1079. while (value != lsedrv) {
  1080. if (value > lsedrv)
  1081. value--;
  1082. else
  1083. value++;
  1084. clrsetbits_le32(rcc + RCC_BDCR,
  1085. RCC_BDCR_LSEDRV_MASK,
  1086. value << RCC_BDCR_LSEDRV_SHIFT);
  1087. }
  1088. stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
  1089. }
  1090. static void stm32mp1_lse_wait(fdt_addr_t rcc)
  1091. {
  1092. stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
  1093. }
  1094. static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
  1095. {
  1096. stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
  1097. stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
  1098. }
  1099. static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
  1100. {
  1101. if (digbyp)
  1102. setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_DIGBYP);
  1103. if (bypass || digbyp)
  1104. setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSEBYP);
  1105. stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
  1106. stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
  1107. if (css)
  1108. setbits_le32(rcc + RCC_OCENSETR, RCC_OCENR_HSECSSON);
  1109. }
  1110. static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
  1111. {
  1112. stm32mp1_ls_osc_set(enable, rcc, RCC_OCENSETR, RCC_OCENR_CSION);
  1113. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
  1114. }
  1115. static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
  1116. {
  1117. stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
  1118. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
  1119. }
  1120. static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
  1121. {
  1122. u32 address = rcc + RCC_OCRDYR;
  1123. u32 val;
  1124. int ret;
  1125. clrsetbits_le32(rcc + RCC_HSICFGR,
  1126. RCC_HSICFGR_HSIDIV_MASK,
  1127. RCC_HSICFGR_HSIDIV_MASK & hsidiv);
  1128. ret = readl_poll_timeout(address, val,
  1129. val & RCC_OCRDYR_HSIDIVRDY,
  1130. TIMEOUT_200MS);
  1131. if (ret)
  1132. pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
  1133. address, readl(address));
  1134. return ret;
  1135. }
  1136. static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
  1137. {
  1138. u8 hsidiv;
  1139. u32 hsidivfreq = MAX_HSI_HZ;
  1140. for (hsidiv = 0; hsidiv < 4; hsidiv++,
  1141. hsidivfreq = hsidivfreq / 2)
  1142. if (hsidivfreq == hsifreq)
  1143. break;
  1144. if (hsidiv == 4) {
  1145. pr_err("clk-hsi frequency invalid");
  1146. return -1;
  1147. }
  1148. if (hsidiv > 0)
  1149. return stm32mp1_set_hsidiv(rcc, hsidiv);
  1150. return 0;
  1151. }
  1152. static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
  1153. {
  1154. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1155. writel(RCC_PLLNCR_PLLON, priv->base + pll[pll_id].pllxcr);
  1156. }
  1157. static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
  1158. {
  1159. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1160. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1161. u32 val;
  1162. int ret;
  1163. ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
  1164. TIMEOUT_200MS);
  1165. if (ret) {
  1166. pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
  1167. pll_id, pllxcr, readl(pllxcr));
  1168. return ret;
  1169. }
  1170. /* start the requested output */
  1171. setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
  1172. return 0;
  1173. }
  1174. static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
  1175. {
  1176. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1177. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1178. u32 val;
  1179. /* stop all output */
  1180. clrbits_le32(pllxcr,
  1181. RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
  1182. /* stop PLL */
  1183. clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
  1184. /* wait PLL stopped */
  1185. return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
  1186. TIMEOUT_200MS);
  1187. }
  1188. static void pll_config_output(struct stm32mp1_clk_priv *priv,
  1189. int pll_id, u32 *pllcfg)
  1190. {
  1191. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1192. fdt_addr_t rcc = priv->base;
  1193. u32 value;
  1194. value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
  1195. & RCC_PLLNCFGR2_DIVP_MASK;
  1196. value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
  1197. & RCC_PLLNCFGR2_DIVQ_MASK;
  1198. value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
  1199. & RCC_PLLNCFGR2_DIVR_MASK;
  1200. writel(value, rcc + pll[pll_id].pllxcfgr2);
  1201. }
  1202. static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
  1203. u32 *pllcfg, u32 fracv)
  1204. {
  1205. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1206. fdt_addr_t rcc = priv->base;
  1207. enum stm32mp1_plltype type = pll[pll_id].plltype;
  1208. int src;
  1209. ulong refclk;
  1210. u8 ifrge = 0;
  1211. u32 value;
  1212. src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
  1213. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
  1214. (pllcfg[PLLCFG_M] + 1);
  1215. if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
  1216. refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
  1217. debug("invalid refclk = %x\n", (u32)refclk);
  1218. return -EINVAL;
  1219. }
  1220. if (type == PLL_800 && refclk >= 8000000)
  1221. ifrge = 1;
  1222. value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
  1223. & RCC_PLLNCFGR1_DIVN_MASK;
  1224. value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
  1225. & RCC_PLLNCFGR1_DIVM_MASK;
  1226. value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
  1227. & RCC_PLLNCFGR1_IFRGE_MASK;
  1228. writel(value, rcc + pll[pll_id].pllxcfgr1);
  1229. /* fractional configuration: load sigma-delta modulator (SDM) */
  1230. /* Write into FRACV the new fractional value , and FRACLE to 0 */
  1231. writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
  1232. rcc + pll[pll_id].pllxfracr);
  1233. /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
  1234. setbits_le32(rcc + pll[pll_id].pllxfracr,
  1235. RCC_PLLNFRACR_FRACLE);
  1236. pll_config_output(priv, pll_id, pllcfg);
  1237. return 0;
  1238. }
  1239. static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
  1240. {
  1241. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1242. u32 pllxcsg;
  1243. pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
  1244. RCC_PLLNCSGR_MOD_PER_MASK) |
  1245. ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
  1246. RCC_PLLNCSGR_INC_STEP_MASK) |
  1247. ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
  1248. RCC_PLLNCSGR_SSCG_MODE_MASK);
  1249. writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
  1250. }
  1251. static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
  1252. {
  1253. u32 address = priv->base + (clksrc >> 4);
  1254. u32 val;
  1255. int ret;
  1256. clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
  1257. ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
  1258. TIMEOUT_200MS);
  1259. if (ret)
  1260. pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
  1261. clksrc, address, readl(address));
  1262. return ret;
  1263. }
  1264. static void stgen_config(struct stm32mp1_clk_priv *priv)
  1265. {
  1266. int p;
  1267. u32 stgenc, cntfid0;
  1268. ulong rate;
  1269. stgenc = (u32)syscon_get_first_range(STM32MP_SYSCON_STGEN);
  1270. cntfid0 = readl(stgenc + STGENC_CNTFID0);
  1271. p = stm32mp1_clk_get_parent(priv, STGEN_K);
  1272. rate = stm32mp1_clk_get(priv, p);
  1273. if (cntfid0 != rate) {
  1274. pr_debug("System Generic Counter (STGEN) update\n");
  1275. clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
  1276. writel(0x0, stgenc + STGENC_CNTCVL);
  1277. writel(0x0, stgenc + STGENC_CNTCVU);
  1278. writel(rate, stgenc + STGENC_CNTFID0);
  1279. setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
  1280. __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
  1281. /* need to update gd->arch.timer_rate_hz with new frequency */
  1282. timer_init();
  1283. pr_debug("gd->arch.timer_rate_hz = %x\n",
  1284. (u32)gd->arch.timer_rate_hz);
  1285. pr_debug("Tick = %x\n", (u32)(get_ticks()));
  1286. }
  1287. }
  1288. static int set_clkdiv(unsigned int clkdiv, u32 address)
  1289. {
  1290. u32 val;
  1291. int ret;
  1292. clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
  1293. ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
  1294. TIMEOUT_200MS);
  1295. if (ret)
  1296. pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
  1297. clkdiv, address, readl(address));
  1298. return ret;
  1299. }
  1300. static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
  1301. u32 clksrc, u32 clkdiv)
  1302. {
  1303. u32 address = priv->base + (clksrc >> 4);
  1304. /*
  1305. * binding clksrc : bit15-4 offset
  1306. * bit3: disable
  1307. * bit2-0: MCOSEL[2:0]
  1308. */
  1309. if (clksrc & 0x8) {
  1310. clrbits_le32(address, RCC_MCOCFG_MCOON);
  1311. } else {
  1312. clrsetbits_le32(address,
  1313. RCC_MCOCFG_MCOSRC_MASK,
  1314. clksrc & RCC_MCOCFG_MCOSRC_MASK);
  1315. clrsetbits_le32(address,
  1316. RCC_MCOCFG_MCODIV_MASK,
  1317. clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
  1318. setbits_le32(address, RCC_MCOCFG_MCOON);
  1319. }
  1320. }
  1321. static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
  1322. unsigned int clksrc,
  1323. int lse_css)
  1324. {
  1325. u32 address = priv->base + RCC_BDCR;
  1326. if (readl(address) & RCC_BDCR_RTCCKEN)
  1327. goto skip_rtc;
  1328. if (clksrc == CLK_RTC_DISABLED)
  1329. goto skip_rtc;
  1330. clrsetbits_le32(address,
  1331. RCC_BDCR_RTCSRC_MASK,
  1332. clksrc << RCC_BDCR_RTCSRC_SHIFT);
  1333. setbits_le32(address, RCC_BDCR_RTCCKEN);
  1334. skip_rtc:
  1335. if (lse_css)
  1336. setbits_le32(address, RCC_BDCR_LSECSSON);
  1337. }
  1338. static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
  1339. {
  1340. u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
  1341. u32 value = pkcs & 0xF;
  1342. u32 mask = 0xF;
  1343. if (pkcs & BIT(31)) {
  1344. mask <<= 4;
  1345. value <<= 4;
  1346. }
  1347. clrsetbits_le32(address, mask, value);
  1348. }
  1349. static int stm32mp1_clktree(struct udevice *dev)
  1350. {
  1351. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1352. fdt_addr_t rcc = priv->base;
  1353. unsigned int clksrc[CLKSRC_NB];
  1354. unsigned int clkdiv[CLKDIV_NB];
  1355. unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
  1356. ofnode plloff[_PLL_NB];
  1357. int ret;
  1358. int i, len;
  1359. int lse_css = 0;
  1360. const u32 *pkcs_cell;
  1361. /* check mandatory field */
  1362. ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
  1363. if (ret < 0) {
  1364. debug("field st,clksrc invalid: error %d\n", ret);
  1365. return -FDT_ERR_NOTFOUND;
  1366. }
  1367. ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
  1368. if (ret < 0) {
  1369. debug("field st,clkdiv invalid: error %d\n", ret);
  1370. return -FDT_ERR_NOTFOUND;
  1371. }
  1372. /* check mandatory field in each pll */
  1373. for (i = 0; i < _PLL_NB; i++) {
  1374. char name[12];
  1375. sprintf(name, "st,pll@%d", i);
  1376. plloff[i] = dev_read_subnode(dev, name);
  1377. if (!ofnode_valid(plloff[i]))
  1378. continue;
  1379. ret = ofnode_read_u32_array(plloff[i], "cfg",
  1380. pllcfg[i], PLLCFG_NB);
  1381. if (ret < 0) {
  1382. debug("field cfg invalid: error %d\n", ret);
  1383. return -FDT_ERR_NOTFOUND;
  1384. }
  1385. }
  1386. debug("configuration MCO\n");
  1387. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
  1388. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
  1389. debug("switch ON osillator\n");
  1390. /*
  1391. * switch ON oscillator found in device-tree,
  1392. * HSI already ON after bootrom
  1393. */
  1394. if (priv->osc[_LSI])
  1395. stm32mp1_lsi_set(rcc, 1);
  1396. if (priv->osc[_LSE]) {
  1397. int bypass, digbyp, lsedrv;
  1398. struct udevice *dev = priv->osc_dev[_LSE];
  1399. bypass = dev_read_bool(dev, "st,bypass");
  1400. digbyp = dev_read_bool(dev, "st,digbypass");
  1401. lse_css = dev_read_bool(dev, "st,css");
  1402. lsedrv = dev_read_u32_default(dev, "st,drive",
  1403. LSEDRV_MEDIUM_HIGH);
  1404. stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
  1405. }
  1406. if (priv->osc[_HSE]) {
  1407. int bypass, digbyp, css;
  1408. struct udevice *dev = priv->osc_dev[_HSE];
  1409. bypass = dev_read_bool(dev, "st,bypass");
  1410. digbyp = dev_read_bool(dev, "st,digbypass");
  1411. css = dev_read_bool(dev, "st,css");
  1412. stm32mp1_hse_enable(rcc, bypass, digbyp, css);
  1413. }
  1414. /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
  1415. * => switch on CSI even if node is not present in device tree
  1416. */
  1417. stm32mp1_csi_set(rcc, 1);
  1418. /* come back to HSI */
  1419. debug("come back to HSI\n");
  1420. set_clksrc(priv, CLK_MPU_HSI);
  1421. set_clksrc(priv, CLK_AXI_HSI);
  1422. set_clksrc(priv, CLK_MCU_HSI);
  1423. debug("pll stop\n");
  1424. for (i = 0; i < _PLL_NB; i++)
  1425. pll_stop(priv, i);
  1426. /* configure HSIDIV */
  1427. debug("configure HSIDIV\n");
  1428. if (priv->osc[_HSI]) {
  1429. stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
  1430. stgen_config(priv);
  1431. }
  1432. /* select DIV */
  1433. debug("select DIV\n");
  1434. /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
  1435. writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
  1436. set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
  1437. set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
  1438. set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
  1439. set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
  1440. set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
  1441. set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
  1442. set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
  1443. /* no ready bit for RTC */
  1444. writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
  1445. /* configure PLLs source */
  1446. debug("configure PLLs source\n");
  1447. set_clksrc(priv, clksrc[CLKSRC_PLL12]);
  1448. set_clksrc(priv, clksrc[CLKSRC_PLL3]);
  1449. set_clksrc(priv, clksrc[CLKSRC_PLL4]);
  1450. /* configure and start PLLs */
  1451. debug("configure PLLs\n");
  1452. for (i = 0; i < _PLL_NB; i++) {
  1453. u32 fracv;
  1454. u32 csg[PLLCSG_NB];
  1455. debug("configure PLL %d @ %d\n", i,
  1456. ofnode_to_offset(plloff[i]));
  1457. if (!ofnode_valid(plloff[i]))
  1458. continue;
  1459. fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
  1460. pll_config(priv, i, pllcfg[i], fracv);
  1461. ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
  1462. if (!ret) {
  1463. pll_csg(priv, i, csg);
  1464. } else if (ret != -FDT_ERR_NOTFOUND) {
  1465. debug("invalid csg node for pll@%d res=%d\n", i, ret);
  1466. return ret;
  1467. }
  1468. pll_start(priv, i);
  1469. }
  1470. /* wait and start PLLs ouptut when ready */
  1471. for (i = 0; i < _PLL_NB; i++) {
  1472. if (!ofnode_valid(plloff[i]))
  1473. continue;
  1474. debug("output PLL %d\n", i);
  1475. pll_output(priv, i, pllcfg[i][PLLCFG_O]);
  1476. }
  1477. /* wait LSE ready before to use it */
  1478. if (priv->osc[_LSE])
  1479. stm32mp1_lse_wait(rcc);
  1480. /* configure with expected clock source */
  1481. debug("CLKSRC\n");
  1482. set_clksrc(priv, clksrc[CLKSRC_MPU]);
  1483. set_clksrc(priv, clksrc[CLKSRC_AXI]);
  1484. set_clksrc(priv, clksrc[CLKSRC_MCU]);
  1485. set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
  1486. /* configure PKCK */
  1487. debug("PKCK\n");
  1488. pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
  1489. if (pkcs_cell) {
  1490. bool ckper_disabled = false;
  1491. for (i = 0; i < len / sizeof(u32); i++) {
  1492. u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
  1493. if (pkcs == CLK_CKPER_DISABLED) {
  1494. ckper_disabled = true;
  1495. continue;
  1496. }
  1497. pkcs_config(priv, pkcs);
  1498. }
  1499. /* CKPER is source for some peripheral clock
  1500. * (FMC-NAND / QPSI-NOR) and switching source is allowed
  1501. * only if previous clock is still ON
  1502. * => deactivated CKPER only after switching clock
  1503. */
  1504. if (ckper_disabled)
  1505. pkcs_config(priv, CLK_CKPER_DISABLED);
  1506. }
  1507. /* STGEN clock source can change with CLK_STGEN_XXX */
  1508. stgen_config(priv);
  1509. debug("oscillator off\n");
  1510. /* switch OFF HSI if not found in device-tree */
  1511. if (!priv->osc[_HSI])
  1512. stm32mp1_hsi_set(rcc, 0);
  1513. /* Software Self-Refresh mode (SSR) during DDR initilialization */
  1514. clrsetbits_le32(priv->base + RCC_DDRITFCR,
  1515. RCC_DDRITFCR_DDRCKMOD_MASK,
  1516. RCC_DDRITFCR_DDRCKMOD_SSR <<
  1517. RCC_DDRITFCR_DDRCKMOD_SHIFT);
  1518. return 0;
  1519. }
  1520. #endif /* STM32MP1_CLOCK_TREE_INIT */
  1521. static int pll_set_output_rate(struct udevice *dev,
  1522. int pll_id,
  1523. int div_id,
  1524. unsigned long clk_rate)
  1525. {
  1526. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1527. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1528. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1529. int div;
  1530. ulong fvco;
  1531. if (div_id > _DIV_NB)
  1532. return -EINVAL;
  1533. fvco = pll_get_fvco(priv, pll_id);
  1534. if (fvco <= clk_rate)
  1535. div = 1;
  1536. else
  1537. div = DIV_ROUND_UP(fvco, clk_rate);
  1538. if (div > 128)
  1539. div = 128;
  1540. debug("fvco = %ld, clk_rate = %ld, div=%d\n", fvco, clk_rate, div);
  1541. /* stop the requested output */
  1542. clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
  1543. /* change divider */
  1544. clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
  1545. RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
  1546. (div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
  1547. /* start the requested output */
  1548. setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
  1549. return 0;
  1550. }
  1551. static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
  1552. {
  1553. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1554. int p;
  1555. switch (clk->id) {
  1556. case LTDC_PX:
  1557. case DSI_PX:
  1558. break;
  1559. default:
  1560. pr_err("not supported");
  1561. return -EINVAL;
  1562. }
  1563. p = stm32mp1_clk_get_parent(priv, clk->id);
  1564. if (p < 0)
  1565. return -EINVAL;
  1566. switch (p) {
  1567. case _PLL4_Q:
  1568. /* for LTDC_PX and DSI_PX case */
  1569. return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
  1570. }
  1571. return -EINVAL;
  1572. }
  1573. static void stm32mp1_osc_clk_init(const char *name,
  1574. struct stm32mp1_clk_priv *priv,
  1575. int index)
  1576. {
  1577. struct clk clk;
  1578. struct udevice *dev = NULL;
  1579. priv->osc[index] = 0;
  1580. clk.id = 0;
  1581. if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
  1582. if (clk_request(dev, &clk))
  1583. pr_err("%s request", name);
  1584. else
  1585. priv->osc[index] = clk_get_rate(&clk);
  1586. }
  1587. priv->osc_dev[index] = dev;
  1588. }
  1589. static void stm32mp1_osc_init(struct udevice *dev)
  1590. {
  1591. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1592. int i;
  1593. const char *name[NB_OSC] = {
  1594. [_LSI] = "clk-lsi",
  1595. [_LSE] = "clk-lse",
  1596. [_HSI] = "clk-hsi",
  1597. [_HSE] = "clk-hse",
  1598. [_CSI] = "clk-csi",
  1599. [_I2S_CKIN] = "i2s_ckin",
  1600. [_USB_PHY_48] = "ck_usbo_48m"};
  1601. for (i = 0; i < NB_OSC; i++) {
  1602. stm32mp1_osc_clk_init(name[i], priv, i);
  1603. debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
  1604. }
  1605. }
  1606. static int stm32mp1_clk_probe(struct udevice *dev)
  1607. {
  1608. int result = 0;
  1609. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1610. priv->base = dev_read_addr(dev->parent);
  1611. if (priv->base == FDT_ADDR_T_NONE)
  1612. return -EINVAL;
  1613. priv->data = (void *)&stm32mp1_data;
  1614. if (!priv->data->gate || !priv->data->sel ||
  1615. !priv->data->pll)
  1616. return -EINVAL;
  1617. stm32mp1_osc_init(dev);
  1618. #ifdef STM32MP1_CLOCK_TREE_INIT
  1619. /* clock tree init is done only one time, before relocation */
  1620. if (!(gd->flags & GD_FLG_RELOC))
  1621. result = stm32mp1_clktree(dev);
  1622. #endif
  1623. return result;
  1624. }
  1625. static const struct clk_ops stm32mp1_clk_ops = {
  1626. .enable = stm32mp1_clk_enable,
  1627. .disable = stm32mp1_clk_disable,
  1628. .get_rate = stm32mp1_clk_get_rate,
  1629. .set_rate = stm32mp1_clk_set_rate,
  1630. };
  1631. U_BOOT_DRIVER(stm32mp1_clock) = {
  1632. .name = "stm32mp1_clk",
  1633. .id = UCLASS_CLK,
  1634. .ops = &stm32mp1_clk_ops,
  1635. .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
  1636. .probe = stm32mp1_clk_probe,
  1637. };