stm32_qspi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2016
  4. *
  5. * Michael Kurz, <michi.kurz@gmail.com>
  6. *
  7. * STM32 QSPI driver
  8. */
  9. #include <common.h>
  10. #include <clk.h>
  11. #include <dm.h>
  12. #include <errno.h>
  13. #include <malloc.h>
  14. #include <spi.h>
  15. #include <spi_flash.h>
  16. #include <asm/io.h>
  17. #include <asm/arch/stm32.h>
  18. #include <linux/ioport.h>
  19. struct stm32_qspi_regs {
  20. u32 cr; /* 0x00 */
  21. u32 dcr; /* 0x04 */
  22. u32 sr; /* 0x08 */
  23. u32 fcr; /* 0x0C */
  24. u32 dlr; /* 0x10 */
  25. u32 ccr; /* 0x14 */
  26. u32 ar; /* 0x18 */
  27. u32 abr; /* 0x1C */
  28. u32 dr; /* 0x20 */
  29. u32 psmkr; /* 0x24 */
  30. u32 psmar; /* 0x28 */
  31. u32 pir; /* 0x2C */
  32. u32 lptr; /* 0x30 */
  33. };
  34. /*
  35. * QUADSPI control register
  36. */
  37. #define STM32_QSPI_CR_EN BIT(0)
  38. #define STM32_QSPI_CR_ABORT BIT(1)
  39. #define STM32_QSPI_CR_DMAEN BIT(2)
  40. #define STM32_QSPI_CR_TCEN BIT(3)
  41. #define STM32_QSPI_CR_SSHIFT BIT(4)
  42. #define STM32_QSPI_CR_DFM BIT(6)
  43. #define STM32_QSPI_CR_FSEL BIT(7)
  44. #define STM32_QSPI_CR_FTHRES_MASK GENMASK(4, 0)
  45. #define STM32_QSPI_CR_FTHRES_SHIFT (8)
  46. #define STM32_QSPI_CR_TEIE BIT(16)
  47. #define STM32_QSPI_CR_TCIE BIT(17)
  48. #define STM32_QSPI_CR_FTIE BIT(18)
  49. #define STM32_QSPI_CR_SMIE BIT(19)
  50. #define STM32_QSPI_CR_TOIE BIT(20)
  51. #define STM32_QSPI_CR_APMS BIT(22)
  52. #define STM32_QSPI_CR_PMM BIT(23)
  53. #define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0)
  54. #define STM32_QSPI_CR_PRESCALER_SHIFT (24)
  55. /*
  56. * QUADSPI device configuration register
  57. */
  58. #define STM32_QSPI_DCR_CKMODE BIT(0)
  59. #define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0)
  60. #define STM32_QSPI_DCR_CSHT_SHIFT (8)
  61. #define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0)
  62. #define STM32_QSPI_DCR_FSIZE_SHIFT (16)
  63. /*
  64. * QUADSPI status register
  65. */
  66. #define STM32_QSPI_SR_TEF BIT(0)
  67. #define STM32_QSPI_SR_TCF BIT(1)
  68. #define STM32_QSPI_SR_FTF BIT(2)
  69. #define STM32_QSPI_SR_SMF BIT(3)
  70. #define STM32_QSPI_SR_TOF BIT(4)
  71. #define STM32_QSPI_SR_BUSY BIT(5)
  72. #define STM32_QSPI_SR_FLEVEL_MASK GENMASK(5, 0)
  73. #define STM32_QSPI_SR_FLEVEL_SHIFT (8)
  74. /*
  75. * QUADSPI flag clear register
  76. */
  77. #define STM32_QSPI_FCR_CTEF BIT(0)
  78. #define STM32_QSPI_FCR_CTCF BIT(1)
  79. #define STM32_QSPI_FCR_CSMF BIT(3)
  80. #define STM32_QSPI_FCR_CTOF BIT(4)
  81. /*
  82. * QUADSPI communication configuration register
  83. */
  84. #define STM32_QSPI_CCR_DDRM BIT(31)
  85. #define STM32_QSPI_CCR_DHHC BIT(30)
  86. #define STM32_QSPI_CCR_SIOO BIT(28)
  87. #define STM32_QSPI_CCR_FMODE_SHIFT (26)
  88. #define STM32_QSPI_CCR_DMODE_SHIFT (24)
  89. #define STM32_QSPI_CCR_DCYC_SHIFT (18)
  90. #define STM32_QSPI_CCR_DCYC_MASK GENMASK(4, 0)
  91. #define STM32_QSPI_CCR_ABSIZE_SHIFT (16)
  92. #define STM32_QSPI_CCR_ABMODE_SHIFT (14)
  93. #define STM32_QSPI_CCR_ADSIZE_SHIFT (12)
  94. #define STM32_QSPI_CCR_ADMODE_SHIFT (10)
  95. #define STM32_QSPI_CCR_IMODE_SHIFT (8)
  96. #define STM32_QSPI_CCR_INSTRUCTION_MASK GENMASK(7, 0)
  97. enum STM32_QSPI_CCR_IMODE {
  98. STM32_QSPI_CCR_IMODE_NONE = 0,
  99. STM32_QSPI_CCR_IMODE_ONE_LINE = 1,
  100. STM32_QSPI_CCR_IMODE_TWO_LINE = 2,
  101. STM32_QSPI_CCR_IMODE_FOUR_LINE = 3,
  102. };
  103. enum STM32_QSPI_CCR_ADMODE {
  104. STM32_QSPI_CCR_ADMODE_NONE = 0,
  105. STM32_QSPI_CCR_ADMODE_ONE_LINE = 1,
  106. STM32_QSPI_CCR_ADMODE_TWO_LINE = 2,
  107. STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3,
  108. };
  109. enum STM32_QSPI_CCR_ADSIZE {
  110. STM32_QSPI_CCR_ADSIZE_8BIT = 0,
  111. STM32_QSPI_CCR_ADSIZE_16BIT = 1,
  112. STM32_QSPI_CCR_ADSIZE_24BIT = 2,
  113. STM32_QSPI_CCR_ADSIZE_32BIT = 3,
  114. };
  115. enum STM32_QSPI_CCR_ABMODE {
  116. STM32_QSPI_CCR_ABMODE_NONE = 0,
  117. STM32_QSPI_CCR_ABMODE_ONE_LINE = 1,
  118. STM32_QSPI_CCR_ABMODE_TWO_LINE = 2,
  119. STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3,
  120. };
  121. enum STM32_QSPI_CCR_ABSIZE {
  122. STM32_QSPI_CCR_ABSIZE_8BIT = 0,
  123. STM32_QSPI_CCR_ABSIZE_16BIT = 1,
  124. STM32_QSPI_CCR_ABSIZE_24BIT = 2,
  125. STM32_QSPI_CCR_ABSIZE_32BIT = 3,
  126. };
  127. enum STM32_QSPI_CCR_DMODE {
  128. STM32_QSPI_CCR_DMODE_NONE = 0,
  129. STM32_QSPI_CCR_DMODE_ONE_LINE = 1,
  130. STM32_QSPI_CCR_DMODE_TWO_LINE = 2,
  131. STM32_QSPI_CCR_DMODE_FOUR_LINE = 3,
  132. };
  133. enum STM32_QSPI_CCR_FMODE {
  134. STM32_QSPI_CCR_IND_WRITE = 0,
  135. STM32_QSPI_CCR_IND_READ = 1,
  136. STM32_QSPI_CCR_AUTO_POLL = 2,
  137. STM32_QSPI_CCR_MEM_MAP = 3,
  138. };
  139. /* default SCK frequency, unit: HZ */
  140. #define STM32_QSPI_DEFAULT_SCK_FREQ 108000000
  141. #define STM32_MAX_NORCHIP 2
  142. struct stm32_qspi_platdata {
  143. u32 base;
  144. u32 memory_map;
  145. u32 max_hz;
  146. };
  147. struct stm32_qspi_priv {
  148. struct stm32_qspi_regs *regs;
  149. ulong clock_rate;
  150. u32 max_hz;
  151. u32 mode;
  152. u32 command;
  153. u32 address;
  154. u32 dummycycles;
  155. #define CMD_HAS_ADR BIT(24)
  156. #define CMD_HAS_DUMMY BIT(25)
  157. #define CMD_HAS_DATA BIT(26)
  158. };
  159. static void _stm32_qspi_disable(struct stm32_qspi_priv *priv)
  160. {
  161. clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  162. }
  163. static void _stm32_qspi_enable(struct stm32_qspi_priv *priv)
  164. {
  165. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  166. }
  167. static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
  168. {
  169. while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY)
  170. ;
  171. }
  172. static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv)
  173. {
  174. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF))
  175. ;
  176. }
  177. static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv)
  178. {
  179. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF))
  180. ;
  181. }
  182. static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size)
  183. {
  184. u32 fsize = fls(size) - 1;
  185. clrsetbits_le32(&priv->regs->dcr,
  186. STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT,
  187. fsize << STM32_QSPI_DCR_FSIZE_SHIFT);
  188. }
  189. static void _stm32_qspi_set_cs(struct stm32_qspi_priv *priv, unsigned int cs)
  190. {
  191. clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL,
  192. cs ? STM32_QSPI_CR_FSEL : 0);
  193. }
  194. static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv)
  195. {
  196. unsigned int ccr_reg = 0;
  197. u8 imode, admode, dmode;
  198. u32 mode = priv->mode;
  199. u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK);
  200. imode = STM32_QSPI_CCR_IMODE_ONE_LINE;
  201. admode = STM32_QSPI_CCR_ADMODE_ONE_LINE;
  202. if (mode & SPI_RX_QUAD) {
  203. dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
  204. if (mode & SPI_TX_QUAD) {
  205. imode = STM32_QSPI_CCR_IMODE_FOUR_LINE;
  206. admode = STM32_QSPI_CCR_ADMODE_FOUR_LINE;
  207. }
  208. } else if (mode & SPI_RX_DUAL) {
  209. dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
  210. if (mode & SPI_TX_DUAL) {
  211. imode = STM32_QSPI_CCR_IMODE_TWO_LINE;
  212. admode = STM32_QSPI_CCR_ADMODE_TWO_LINE;
  213. }
  214. } else {
  215. dmode = STM32_QSPI_CCR_DMODE_ONE_LINE;
  216. }
  217. if (priv->command & CMD_HAS_DATA)
  218. ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT);
  219. if (priv->command & CMD_HAS_DUMMY)
  220. ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK)
  221. << STM32_QSPI_CCR_DCYC_SHIFT);
  222. if (priv->command & CMD_HAS_ADR) {
  223. ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT
  224. << STM32_QSPI_CCR_ADSIZE_SHIFT);
  225. ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT);
  226. }
  227. ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT);
  228. ccr_reg |= cmd;
  229. return ccr_reg;
  230. }
  231. static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv,
  232. struct spi_flash *flash)
  233. {
  234. unsigned int ccr_reg;
  235. priv->command = flash->read_cmd | CMD_HAS_ADR | CMD_HAS_DATA
  236. | CMD_HAS_DUMMY;
  237. priv->dummycycles = flash->dummy_byte * 8;
  238. ccr_reg = _stm32_qspi_gen_ccr(priv);
  239. ccr_reg |= (STM32_QSPI_CCR_MEM_MAP << STM32_QSPI_CCR_FMODE_SHIFT);
  240. _stm32_qspi_wait_for_not_busy(priv);
  241. writel(ccr_reg, &priv->regs->ccr);
  242. priv->dummycycles = 0;
  243. }
  244. static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv)
  245. {
  246. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
  247. }
  248. static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv,
  249. u32 length)
  250. {
  251. writel(length - 1, &priv->regs->dlr);
  252. }
  253. static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg)
  254. {
  255. writel(cr_reg, &priv->regs->ccr);
  256. if (priv->command & CMD_HAS_ADR)
  257. writel(priv->address, &priv->regs->ar);
  258. }
  259. static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv,
  260. struct spi_flash *flash, unsigned int bitlen,
  261. const u8 *dout, u8 *din, unsigned long flags)
  262. {
  263. unsigned int words = bitlen / 8;
  264. u32 ccr_reg;
  265. int i;
  266. if (flags & SPI_XFER_MMAP) {
  267. _stm32_qspi_enable_mmap(priv, flash);
  268. return 0;
  269. } else if (flags & SPI_XFER_MMAP_END) {
  270. _stm32_qspi_disable_mmap(priv);
  271. return 0;
  272. }
  273. if (bitlen == 0)
  274. return -1;
  275. if (bitlen % 8) {
  276. debug("spi_xfer: Non byte aligned SPI transfer\n");
  277. return -1;
  278. }
  279. if (dout && din) {
  280. debug("spi_xfer: QSPI cannot have data in and data out set\n");
  281. return -1;
  282. }
  283. if (!dout && (flags & SPI_XFER_BEGIN)) {
  284. debug("spi_xfer: QSPI transfer must begin with command\n");
  285. return -1;
  286. }
  287. if (dout) {
  288. if (flags & SPI_XFER_BEGIN) {
  289. /* data is command */
  290. priv->command = dout[0] | CMD_HAS_DATA;
  291. if (words >= 4) {
  292. /* address is here too */
  293. priv->address = (dout[1] << 16) |
  294. (dout[2] << 8) | dout[3];
  295. priv->command |= CMD_HAS_ADR;
  296. }
  297. if (words > 4) {
  298. /* rest is dummy bytes */
  299. priv->dummycycles = (words - 4) * 8;
  300. priv->command |= CMD_HAS_DUMMY;
  301. }
  302. if (flags & SPI_XFER_END) {
  303. /* command without data */
  304. priv->command &= ~(CMD_HAS_DATA);
  305. }
  306. }
  307. if (flags & SPI_XFER_END) {
  308. ccr_reg = _stm32_qspi_gen_ccr(priv);
  309. ccr_reg |= STM32_QSPI_CCR_IND_WRITE
  310. << STM32_QSPI_CCR_FMODE_SHIFT;
  311. _stm32_qspi_wait_for_not_busy(priv);
  312. if (priv->command & CMD_HAS_DATA)
  313. _stm32_qspi_set_xfer_length(priv, words);
  314. _stm32_qspi_start_xfer(priv, ccr_reg);
  315. debug("%s: write: ccr:0x%08x adr:0x%08x\n",
  316. __func__, priv->regs->ccr, priv->regs->ar);
  317. if (priv->command & CMD_HAS_DATA) {
  318. _stm32_qspi_wait_for_ftf(priv);
  319. debug("%s: words:%d data:", __func__, words);
  320. i = 0;
  321. while (words > i) {
  322. writeb(dout[i], &priv->regs->dr);
  323. debug("%02x ", dout[i]);
  324. i++;
  325. }
  326. debug("\n");
  327. _stm32_qspi_wait_for_complete(priv);
  328. } else {
  329. _stm32_qspi_wait_for_not_busy(priv);
  330. }
  331. }
  332. } else if (din) {
  333. ccr_reg = _stm32_qspi_gen_ccr(priv);
  334. ccr_reg |= STM32_QSPI_CCR_IND_READ
  335. << STM32_QSPI_CCR_FMODE_SHIFT;
  336. _stm32_qspi_wait_for_not_busy(priv);
  337. _stm32_qspi_set_xfer_length(priv, words);
  338. _stm32_qspi_start_xfer(priv, ccr_reg);
  339. debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__,
  340. priv->regs->ccr, priv->regs->ar, priv->regs->dlr);
  341. debug("%s: data:", __func__);
  342. i = 0;
  343. while (words > i) {
  344. din[i] = readb(&priv->regs->dr);
  345. debug("%02x ", din[i]);
  346. i++;
  347. }
  348. debug("\n");
  349. }
  350. return 0;
  351. }
  352. static int stm32_qspi_ofdata_to_platdata(struct udevice *bus)
  353. {
  354. struct resource res_regs, res_mem;
  355. struct stm32_qspi_platdata *plat = bus->platdata;
  356. int ret;
  357. ret = dev_read_resource_byname(bus, "qspi", &res_regs);
  358. if (ret) {
  359. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  360. return -ENOMEM;
  361. }
  362. ret = dev_read_resource_byname(bus, "qspi_mm", &res_mem);
  363. if (ret) {
  364. debug("Error: can't get mmap base address(ret = %d)!\n", ret);
  365. return -ENOMEM;
  366. }
  367. plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency",
  368. STM32_QSPI_DEFAULT_SCK_FREQ);
  369. plat->base = res_regs.start;
  370. plat->memory_map = res_mem.start;
  371. debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n",
  372. __func__,
  373. plat->base,
  374. plat->memory_map,
  375. plat->max_hz
  376. );
  377. return 0;
  378. }
  379. static int stm32_qspi_probe(struct udevice *bus)
  380. {
  381. struct stm32_qspi_platdata *plat = dev_get_platdata(bus);
  382. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  383. struct dm_spi_bus *dm_spi_bus;
  384. struct clk clk;
  385. int ret;
  386. dm_spi_bus = bus->uclass_priv;
  387. dm_spi_bus->max_hz = plat->max_hz;
  388. priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base;
  389. priv->max_hz = plat->max_hz;
  390. ret = clk_get_by_index(bus, 0, &clk);
  391. if (ret < 0)
  392. return ret;
  393. ret = clk_enable(&clk);
  394. if (ret) {
  395. dev_err(bus, "failed to enable clock\n");
  396. return ret;
  397. }
  398. priv->clock_rate = clk_get_rate(&clk);
  399. if (priv->clock_rate < 0) {
  400. clk_disable(&clk);
  401. return priv->clock_rate;
  402. }
  403. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
  404. return 0;
  405. }
  406. static int stm32_qspi_remove(struct udevice *bus)
  407. {
  408. return 0;
  409. }
  410. static int stm32_qspi_claim_bus(struct udevice *dev)
  411. {
  412. struct stm32_qspi_priv *priv;
  413. struct udevice *bus;
  414. struct spi_flash *flash;
  415. struct dm_spi_slave_platdata *slave_plat;
  416. bus = dev->parent;
  417. priv = dev_get_priv(bus);
  418. flash = dev_get_uclass_priv(dev);
  419. slave_plat = dev_get_parent_platdata(dev);
  420. if (slave_plat->cs >= STM32_MAX_NORCHIP)
  421. return -ENODEV;
  422. _stm32_qspi_set_cs(priv, slave_plat->cs);
  423. _stm32_qspi_set_flash_size(priv, flash->size);
  424. _stm32_qspi_enable(priv);
  425. return 0;
  426. }
  427. static int stm32_qspi_release_bus(struct udevice *dev)
  428. {
  429. struct stm32_qspi_priv *priv;
  430. struct udevice *bus;
  431. bus = dev->parent;
  432. priv = dev_get_priv(bus);
  433. _stm32_qspi_disable(priv);
  434. return 0;
  435. }
  436. static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  437. const void *dout, void *din, unsigned long flags)
  438. {
  439. struct stm32_qspi_priv *priv;
  440. struct udevice *bus;
  441. struct spi_flash *flash;
  442. bus = dev->parent;
  443. priv = dev_get_priv(bus);
  444. flash = dev_get_uclass_priv(dev);
  445. return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout,
  446. (u8 *)din, flags);
  447. }
  448. static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
  449. {
  450. struct stm32_qspi_platdata *plat = bus->platdata;
  451. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  452. u32 qspi_clk = priv->clock_rate;
  453. u32 prescaler = 255;
  454. u32 csht;
  455. if (speed > plat->max_hz)
  456. speed = plat->max_hz;
  457. if (speed > 0) {
  458. prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
  459. if (prescaler > 255)
  460. prescaler = 255;
  461. else if (prescaler < 0)
  462. prescaler = 0;
  463. }
  464. csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
  465. csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
  466. _stm32_qspi_wait_for_not_busy(priv);
  467. clrsetbits_le32(&priv->regs->cr,
  468. STM32_QSPI_CR_PRESCALER_MASK <<
  469. STM32_QSPI_CR_PRESCALER_SHIFT,
  470. prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
  471. clrsetbits_le32(&priv->regs->dcr,
  472. STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
  473. csht << STM32_QSPI_DCR_CSHT_SHIFT);
  474. debug("%s: regs=%p, speed=%d\n", __func__, priv->regs,
  475. (qspi_clk / (prescaler + 1)));
  476. return 0;
  477. }
  478. static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
  479. {
  480. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  481. _stm32_qspi_wait_for_not_busy(priv);
  482. if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
  483. setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  484. else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
  485. clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  486. else
  487. return -ENODEV;
  488. if (mode & SPI_CS_HIGH)
  489. return -ENODEV;
  490. if (mode & SPI_RX_QUAD)
  491. priv->mode |= SPI_RX_QUAD;
  492. else if (mode & SPI_RX_DUAL)
  493. priv->mode |= SPI_RX_DUAL;
  494. else
  495. priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL);
  496. if (mode & SPI_TX_QUAD)
  497. priv->mode |= SPI_TX_QUAD;
  498. else if (mode & SPI_TX_DUAL)
  499. priv->mode |= SPI_TX_DUAL;
  500. else
  501. priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL);
  502. debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode);
  503. if (mode & SPI_RX_QUAD)
  504. debug("quad, tx: ");
  505. else if (mode & SPI_RX_DUAL)
  506. debug("dual, tx: ");
  507. else
  508. debug("single, tx: ");
  509. if (mode & SPI_TX_QUAD)
  510. debug("quad\n");
  511. else if (mode & SPI_TX_DUAL)
  512. debug("dual\n");
  513. else
  514. debug("single\n");
  515. return 0;
  516. }
  517. static const struct dm_spi_ops stm32_qspi_ops = {
  518. .claim_bus = stm32_qspi_claim_bus,
  519. .release_bus = stm32_qspi_release_bus,
  520. .xfer = stm32_qspi_xfer,
  521. .set_speed = stm32_qspi_set_speed,
  522. .set_mode = stm32_qspi_set_mode,
  523. };
  524. static const struct udevice_id stm32_qspi_ids[] = {
  525. { .compatible = "st,stm32-qspi" },
  526. { .compatible = "st,stm32f469-qspi" },
  527. { }
  528. };
  529. U_BOOT_DRIVER(stm32_qspi) = {
  530. .name = "stm32_qspi",
  531. .id = UCLASS_SPI,
  532. .of_match = stm32_qspi_ids,
  533. .ops = &stm32_qspi_ops,
  534. .ofdata_to_platdata = stm32_qspi_ofdata_to_platdata,
  535. .platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata),
  536. .priv_auto_alloc_size = sizeof(struct stm32_qspi_priv),
  537. .probe = stm32_qspi_probe,
  538. .remove = stm32_qspi_remove,
  539. };