cpu.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*
  2. * (C) Copyright 2008-2011
  3. * Graeme Russ, <graeme.russ@gmail.com>
  4. *
  5. * (C) Copyright 2002
  6. * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
  7. *
  8. * (C) Copyright 2002
  9. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  10. * Marius Groeger <mgroeger@sysgo.de>
  11. *
  12. * (C) Copyright 2002
  13. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  14. * Alex Zuepke <azu@sysgo.de>
  15. *
  16. * Part of this file is adapted from coreboot
  17. * src/arch/x86/lib/cpu.c
  18. *
  19. * SPDX-License-Identifier: GPL-2.0+
  20. */
  21. #include <common.h>
  22. #include <command.h>
  23. #include <dm.h>
  24. #include <errno.h>
  25. #include <malloc.h>
  26. #include <asm/control_regs.h>
  27. #include <asm/cpu.h>
  28. #include <asm/lapic.h>
  29. #include <asm/mp.h>
  30. #include <asm/msr.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/post.h>
  33. #include <asm/processor.h>
  34. #include <asm/processor-flags.h>
  35. #include <asm/interrupt.h>
  36. #include <asm/tables.h>
  37. #include <linux/compiler.h>
  38. DECLARE_GLOBAL_DATA_PTR;
  39. /*
  40. * Constructor for a conventional segment GDT (or LDT) entry
  41. * This is a macro so it can be used in initialisers
  42. */
  43. #define GDT_ENTRY(flags, base, limit) \
  44. ((((base) & 0xff000000ULL) << (56-24)) | \
  45. (((flags) & 0x0000f0ffULL) << 40) | \
  46. (((limit) & 0x000f0000ULL) << (48-16)) | \
  47. (((base) & 0x00ffffffULL) << 16) | \
  48. (((limit) & 0x0000ffffULL)))
  49. struct gdt_ptr {
  50. u16 len;
  51. u32 ptr;
  52. } __packed;
  53. struct cpu_device_id {
  54. unsigned vendor;
  55. unsigned device;
  56. };
  57. struct cpuinfo_x86 {
  58. uint8_t x86; /* CPU family */
  59. uint8_t x86_vendor; /* CPU vendor */
  60. uint8_t x86_model;
  61. uint8_t x86_mask;
  62. };
  63. /*
  64. * List of cpu vendor strings along with their normalized
  65. * id values.
  66. */
  67. static const struct {
  68. int vendor;
  69. const char *name;
  70. } x86_vendors[] = {
  71. { X86_VENDOR_INTEL, "GenuineIntel", },
  72. { X86_VENDOR_CYRIX, "CyrixInstead", },
  73. { X86_VENDOR_AMD, "AuthenticAMD", },
  74. { X86_VENDOR_UMC, "UMC UMC UMC ", },
  75. { X86_VENDOR_NEXGEN, "NexGenDriven", },
  76. { X86_VENDOR_CENTAUR, "CentaurHauls", },
  77. { X86_VENDOR_RISE, "RiseRiseRise", },
  78. { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
  79. { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
  80. { X86_VENDOR_NSC, "Geode by NSC", },
  81. { X86_VENDOR_SIS, "SiS SiS SiS ", },
  82. };
  83. static const char *const x86_vendor_name[] = {
  84. [X86_VENDOR_INTEL] = "Intel",
  85. [X86_VENDOR_CYRIX] = "Cyrix",
  86. [X86_VENDOR_AMD] = "AMD",
  87. [X86_VENDOR_UMC] = "UMC",
  88. [X86_VENDOR_NEXGEN] = "NexGen",
  89. [X86_VENDOR_CENTAUR] = "Centaur",
  90. [X86_VENDOR_RISE] = "Rise",
  91. [X86_VENDOR_TRANSMETA] = "Transmeta",
  92. [X86_VENDOR_NSC] = "NSC",
  93. [X86_VENDOR_SIS] = "SiS",
  94. };
  95. static void load_ds(u32 segment)
  96. {
  97. asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  98. }
  99. static void load_es(u32 segment)
  100. {
  101. asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  102. }
  103. static void load_fs(u32 segment)
  104. {
  105. asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  106. }
  107. static void load_gs(u32 segment)
  108. {
  109. asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  110. }
  111. static void load_ss(u32 segment)
  112. {
  113. asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  114. }
  115. static void load_gdt(const u64 *boot_gdt, u16 num_entries)
  116. {
  117. struct gdt_ptr gdt;
  118. gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
  119. gdt.ptr = (u32)boot_gdt;
  120. asm volatile("lgdtl %0\n" : : "m" (gdt));
  121. }
  122. void arch_setup_gd(gd_t *new_gd)
  123. {
  124. u64 *gdt_addr;
  125. gdt_addr = new_gd->arch.gdt;
  126. /*
  127. * CS: code, read/execute, 4 GB, base 0
  128. *
  129. * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
  130. */
  131. gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
  132. gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
  133. /* DS: data, read/write, 4 GB, base 0 */
  134. gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
  135. /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
  136. new_gd->arch.gd_addr = new_gd;
  137. gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
  138. (ulong)&new_gd->arch.gd_addr, 0xfffff);
  139. /* 16-bit CS: code, read/execute, 64 kB, base 0 */
  140. gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
  141. /* 16-bit DS: data, read/write, 64 kB, base 0 */
  142. gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
  143. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
  144. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
  145. load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
  146. load_ds(X86_GDT_ENTRY_32BIT_DS);
  147. load_es(X86_GDT_ENTRY_32BIT_DS);
  148. load_gs(X86_GDT_ENTRY_32BIT_DS);
  149. load_ss(X86_GDT_ENTRY_32BIT_DS);
  150. load_fs(X86_GDT_ENTRY_32BIT_FS);
  151. }
  152. #ifdef CONFIG_HAVE_FSP
  153. /*
  154. * Setup FSP execution environment GDT
  155. *
  156. * Per Intel FSP external architecture specification, before calling any FSP
  157. * APIs, we need make sure the system is in flat 32-bit mode and both the code
  158. * and data selectors should have full 4GB access range. Here we reuse the one
  159. * we used in arch/x86/cpu/start16.S, and reload the segement registers.
  160. */
  161. void setup_fsp_gdt(void)
  162. {
  163. load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
  164. load_ds(X86_GDT_ENTRY_32BIT_DS);
  165. load_ss(X86_GDT_ENTRY_32BIT_DS);
  166. load_es(X86_GDT_ENTRY_32BIT_DS);
  167. load_fs(X86_GDT_ENTRY_32BIT_DS);
  168. load_gs(X86_GDT_ENTRY_32BIT_DS);
  169. }
  170. #endif
  171. int __weak x86_cleanup_before_linux(void)
  172. {
  173. #ifdef CONFIG_BOOTSTAGE_STASH
  174. bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
  175. CONFIG_BOOTSTAGE_STASH_SIZE);
  176. #endif
  177. return 0;
  178. }
  179. /*
  180. * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
  181. * by the fact that they preserve the flags across the division of 5/2.
  182. * PII and PPro exhibit this behavior too, but they have cpuid available.
  183. */
  184. /*
  185. * Perform the Cyrix 5/2 test. A Cyrix won't change
  186. * the flags, while other 486 chips will.
  187. */
  188. static inline int test_cyrix_52div(void)
  189. {
  190. unsigned int test;
  191. __asm__ __volatile__(
  192. "sahf\n\t" /* clear flags (%eax = 0x0005) */
  193. "div %b2\n\t" /* divide 5 by 2 */
  194. "lahf" /* store flags into %ah */
  195. : "=a" (test)
  196. : "0" (5), "q" (2)
  197. : "cc");
  198. /* AH is 0x02 on Cyrix after the divide.. */
  199. return (unsigned char) (test >> 8) == 0x02;
  200. }
  201. /*
  202. * Detect a NexGen CPU running without BIOS hypercode new enough
  203. * to have CPUID. (Thanks to Herbert Oppmann)
  204. */
  205. static int deep_magic_nexgen_probe(void)
  206. {
  207. int ret;
  208. __asm__ __volatile__ (
  209. " movw $0x5555, %%ax\n"
  210. " xorw %%dx,%%dx\n"
  211. " movw $2, %%cx\n"
  212. " divw %%cx\n"
  213. " movl $0, %%eax\n"
  214. " jnz 1f\n"
  215. " movl $1, %%eax\n"
  216. "1:\n"
  217. : "=a" (ret) : : "cx", "dx");
  218. return ret;
  219. }
  220. static bool has_cpuid(void)
  221. {
  222. return flag_is_changeable_p(X86_EFLAGS_ID);
  223. }
  224. static bool has_mtrr(void)
  225. {
  226. return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
  227. }
  228. static int build_vendor_name(char *vendor_name)
  229. {
  230. struct cpuid_result result;
  231. result = cpuid(0x00000000);
  232. unsigned int *name_as_ints = (unsigned int *)vendor_name;
  233. name_as_ints[0] = result.ebx;
  234. name_as_ints[1] = result.edx;
  235. name_as_ints[2] = result.ecx;
  236. return result.eax;
  237. }
  238. static void identify_cpu(struct cpu_device_id *cpu)
  239. {
  240. char vendor_name[16];
  241. int i;
  242. vendor_name[0] = '\0'; /* Unset */
  243. cpu->device = 0; /* fix gcc 4.4.4 warning */
  244. /* Find the id and vendor_name */
  245. if (!has_cpuid()) {
  246. /* Its a 486 if we can modify the AC flag */
  247. if (flag_is_changeable_p(X86_EFLAGS_AC))
  248. cpu->device = 0x00000400; /* 486 */
  249. else
  250. cpu->device = 0x00000300; /* 386 */
  251. if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
  252. memcpy(vendor_name, "CyrixInstead", 13);
  253. /* If we ever care we can enable cpuid here */
  254. }
  255. /* Detect NexGen with old hypercode */
  256. else if (deep_magic_nexgen_probe())
  257. memcpy(vendor_name, "NexGenDriven", 13);
  258. }
  259. if (has_cpuid()) {
  260. int cpuid_level;
  261. cpuid_level = build_vendor_name(vendor_name);
  262. vendor_name[12] = '\0';
  263. /* Intel-defined flags: level 0x00000001 */
  264. if (cpuid_level >= 0x00000001) {
  265. cpu->device = cpuid_eax(0x00000001);
  266. } else {
  267. /* Have CPUID level 0 only unheard of */
  268. cpu->device = 0x00000400;
  269. }
  270. }
  271. cpu->vendor = X86_VENDOR_UNKNOWN;
  272. for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
  273. if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
  274. cpu->vendor = x86_vendors[i].vendor;
  275. break;
  276. }
  277. }
  278. }
  279. static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
  280. {
  281. c->x86 = (tfms >> 8) & 0xf;
  282. c->x86_model = (tfms >> 4) & 0xf;
  283. c->x86_mask = tfms & 0xf;
  284. if (c->x86 == 0xf)
  285. c->x86 += (tfms >> 20) & 0xff;
  286. if (c->x86 >= 0x6)
  287. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  288. }
  289. u32 cpu_get_family_model(void)
  290. {
  291. return gd->arch.x86_device & 0x0fff0ff0;
  292. }
  293. u32 cpu_get_stepping(void)
  294. {
  295. return gd->arch.x86_mask;
  296. }
  297. int x86_cpu_init_f(void)
  298. {
  299. const u32 em_rst = ~X86_CR0_EM;
  300. const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
  301. if (ll_boot_init()) {
  302. /* initialize FPU, reset EM, set MP and NE */
  303. asm ("fninit\n" \
  304. "movl %%cr0, %%eax\n" \
  305. "andl %0, %%eax\n" \
  306. "orl %1, %%eax\n" \
  307. "movl %%eax, %%cr0\n" \
  308. : : "i" (em_rst), "i" (mp_ne_set) : "eax");
  309. }
  310. /* identify CPU via cpuid and store the decoded info into gd->arch */
  311. if (has_cpuid()) {
  312. struct cpu_device_id cpu;
  313. struct cpuinfo_x86 c;
  314. identify_cpu(&cpu);
  315. get_fms(&c, cpu.device);
  316. gd->arch.x86 = c.x86;
  317. gd->arch.x86_vendor = cpu.vendor;
  318. gd->arch.x86_model = c.x86_model;
  319. gd->arch.x86_mask = c.x86_mask;
  320. gd->arch.x86_device = cpu.device;
  321. gd->arch.has_mtrr = has_mtrr();
  322. }
  323. /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
  324. gd->pci_ram_top = 0x80000000U;
  325. /* Configure fixed range MTRRs for some legacy regions */
  326. if (gd->arch.has_mtrr) {
  327. u64 mtrr_cap;
  328. mtrr_cap = native_read_msr(MTRR_CAP_MSR);
  329. if (mtrr_cap & MTRR_CAP_FIX) {
  330. /* Mark the VGA RAM area as uncacheable */
  331. native_write_msr(MTRR_FIX_16K_A0000_MSR,
  332. MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
  333. MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
  334. /*
  335. * Mark the PCI ROM area as cacheable to improve ROM
  336. * execution performance.
  337. */
  338. native_write_msr(MTRR_FIX_4K_C0000_MSR,
  339. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  340. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  341. native_write_msr(MTRR_FIX_4K_C8000_MSR,
  342. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  343. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  344. native_write_msr(MTRR_FIX_4K_D0000_MSR,
  345. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  346. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  347. native_write_msr(MTRR_FIX_4K_D8000_MSR,
  348. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  349. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  350. /* Enable the fixed range MTRRs */
  351. msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
  352. }
  353. }
  354. #ifdef CONFIG_I8254_TIMER
  355. /* Set up the i8254 timer if required */
  356. i8254_init();
  357. #endif
  358. return 0;
  359. }
  360. void x86_enable_caches(void)
  361. {
  362. unsigned long cr0;
  363. cr0 = read_cr0();
  364. cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
  365. write_cr0(cr0);
  366. wbinvd();
  367. }
  368. void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
  369. void x86_disable_caches(void)
  370. {
  371. unsigned long cr0;
  372. cr0 = read_cr0();
  373. cr0 |= X86_CR0_NW | X86_CR0_CD;
  374. wbinvd();
  375. write_cr0(cr0);
  376. wbinvd();
  377. }
  378. void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
  379. int x86_init_cache(void)
  380. {
  381. enable_caches();
  382. return 0;
  383. }
  384. int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
  385. int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  386. {
  387. printf("resetting ...\n");
  388. /* wait 50 ms */
  389. udelay(50000);
  390. disable_interrupts();
  391. reset_cpu(0);
  392. /*NOTREACHED*/
  393. return 0;
  394. }
  395. void flush_cache(unsigned long dummy1, unsigned long dummy2)
  396. {
  397. asm("wbinvd\n");
  398. }
  399. __weak void reset_cpu(ulong addr)
  400. {
  401. /* Do a hard reset through the chipset's reset control register */
  402. outb(SYS_RST | RST_CPU, IO_PORT_RESET);
  403. for (;;)
  404. cpu_hlt();
  405. }
  406. void x86_full_reset(void)
  407. {
  408. outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
  409. }
  410. int dcache_status(void)
  411. {
  412. return !(read_cr0() & X86_CR0_CD);
  413. }
  414. /* Define these functions to allow ehch-hcd to function */
  415. void flush_dcache_range(unsigned long start, unsigned long stop)
  416. {
  417. }
  418. void invalidate_dcache_range(unsigned long start, unsigned long stop)
  419. {
  420. }
  421. void dcache_enable(void)
  422. {
  423. enable_caches();
  424. }
  425. void dcache_disable(void)
  426. {
  427. disable_caches();
  428. }
  429. void icache_enable(void)
  430. {
  431. }
  432. void icache_disable(void)
  433. {
  434. }
  435. int icache_status(void)
  436. {
  437. return 1;
  438. }
  439. void cpu_enable_paging_pae(ulong cr3)
  440. {
  441. __asm__ __volatile__(
  442. /* Load the page table address */
  443. "movl %0, %%cr3\n"
  444. /* Enable pae */
  445. "movl %%cr4, %%eax\n"
  446. "orl $0x00000020, %%eax\n"
  447. "movl %%eax, %%cr4\n"
  448. /* Enable paging */
  449. "movl %%cr0, %%eax\n"
  450. "orl $0x80000000, %%eax\n"
  451. "movl %%eax, %%cr0\n"
  452. :
  453. : "r" (cr3)
  454. : "eax");
  455. }
  456. void cpu_disable_paging_pae(void)
  457. {
  458. /* Turn off paging */
  459. __asm__ __volatile__ (
  460. /* Disable paging */
  461. "movl %%cr0, %%eax\n"
  462. "andl $0x7fffffff, %%eax\n"
  463. "movl %%eax, %%cr0\n"
  464. /* Disable pae */
  465. "movl %%cr4, %%eax\n"
  466. "andl $0xffffffdf, %%eax\n"
  467. "movl %%eax, %%cr4\n"
  468. :
  469. :
  470. : "eax");
  471. }
  472. static bool can_detect_long_mode(void)
  473. {
  474. return cpuid_eax(0x80000000) > 0x80000000UL;
  475. }
  476. static bool has_long_mode(void)
  477. {
  478. return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
  479. }
  480. int cpu_has_64bit(void)
  481. {
  482. return has_cpuid() && can_detect_long_mode() &&
  483. has_long_mode();
  484. }
  485. const char *cpu_vendor_name(int vendor)
  486. {
  487. const char *name;
  488. name = "<invalid cpu vendor>";
  489. if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
  490. (x86_vendor_name[vendor] != 0))
  491. name = x86_vendor_name[vendor];
  492. return name;
  493. }
  494. char *cpu_get_name(char *name)
  495. {
  496. unsigned int *name_as_ints = (unsigned int *)name;
  497. struct cpuid_result regs;
  498. char *ptr;
  499. int i;
  500. /* This bit adds up to 48 bytes */
  501. for (i = 0; i < 3; i++) {
  502. regs = cpuid(0x80000002 + i);
  503. name_as_ints[i * 4 + 0] = regs.eax;
  504. name_as_ints[i * 4 + 1] = regs.ebx;
  505. name_as_ints[i * 4 + 2] = regs.ecx;
  506. name_as_ints[i * 4 + 3] = regs.edx;
  507. }
  508. name[CPU_MAX_NAME_LEN - 1] = '\0';
  509. /* Skip leading spaces. */
  510. ptr = name;
  511. while (*ptr == ' ')
  512. ptr++;
  513. return ptr;
  514. }
  515. int default_print_cpuinfo(void)
  516. {
  517. printf("CPU: %s, vendor %s, device %xh\n",
  518. cpu_has_64bit() ? "x86_64" : "x86",
  519. cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
  520. return 0;
  521. }
  522. #define PAGETABLE_SIZE (6 * 4096)
  523. /**
  524. * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
  525. *
  526. * @pgtable: Pointer to a 24iKB block of memory
  527. */
  528. static void build_pagetable(uint32_t *pgtable)
  529. {
  530. uint i;
  531. memset(pgtable, '\0', PAGETABLE_SIZE);
  532. /* Level 4 needs a single entry */
  533. pgtable[0] = (uint32_t)&pgtable[1024] + 7;
  534. /* Level 3 has one 64-bit entry for each GiB of memory */
  535. for (i = 0; i < 4; i++) {
  536. pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
  537. 0x1000 * i + 7;
  538. }
  539. /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
  540. for (i = 0; i < 2048; i++)
  541. pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
  542. }
  543. int cpu_jump_to_64bit(ulong setup_base, ulong target)
  544. {
  545. uint32_t *pgtable;
  546. pgtable = memalign(4096, PAGETABLE_SIZE);
  547. if (!pgtable)
  548. return -ENOMEM;
  549. build_pagetable(pgtable);
  550. cpu_call64((ulong)pgtable, setup_base, target);
  551. free(pgtable);
  552. return -EFAULT;
  553. }
  554. void show_boot_progress(int val)
  555. {
  556. outb(val, POST_PORT);
  557. }
  558. #ifndef CONFIG_SYS_COREBOOT
  559. int last_stage_init(void)
  560. {
  561. write_tables();
  562. return 0;
  563. }
  564. #endif
  565. #ifdef CONFIG_SMP
  566. static int enable_smis(struct udevice *cpu, void *unused)
  567. {
  568. return 0;
  569. }
  570. static struct mp_flight_record mp_steps[] = {
  571. MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
  572. /* Wait for APs to finish initialization before proceeding */
  573. MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
  574. };
  575. static int x86_mp_init(void)
  576. {
  577. struct mp_params mp_params;
  578. mp_params.parallel_microcode_load = 0,
  579. mp_params.flight_plan = &mp_steps[0];
  580. mp_params.num_records = ARRAY_SIZE(mp_steps);
  581. mp_params.microcode_pointer = 0;
  582. if (mp_init(&mp_params)) {
  583. printf("Warning: MP init failure\n");
  584. return -EIO;
  585. }
  586. return 0;
  587. }
  588. #endif
  589. static int x86_init_cpus(void)
  590. {
  591. #ifdef CONFIG_SMP
  592. debug("Init additional CPUs\n");
  593. x86_mp_init();
  594. #else
  595. struct udevice *dev;
  596. /*
  597. * This causes the cpu-x86 driver to be probed.
  598. * We don't check return value here as we want to allow boards
  599. * which have not been converted to use cpu uclass driver to boot.
  600. */
  601. uclass_first_device(UCLASS_CPU, &dev);
  602. #endif
  603. return 0;
  604. }
  605. int cpu_init_r(void)
  606. {
  607. struct udevice *dev;
  608. int ret;
  609. if (!ll_boot_init())
  610. return 0;
  611. ret = x86_init_cpus();
  612. if (ret)
  613. return ret;
  614. /*
  615. * Set up the northbridge, PCH and LPC if available. Note that these
  616. * may have had some limited pre-relocation init if they were probed
  617. * before relocation, but this is post relocation.
  618. */
  619. uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
  620. uclass_first_device(UCLASS_PCH, &dev);
  621. uclass_first_device(UCLASS_LPC, &dev);
  622. return 0;
  623. }