tegra20_sflash.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. /*
  2. * Copyright (c) 2010-2012 NVIDIA Corporation
  3. * With help from the mpc8xxx SPI driver
  4. * With more help from omap3_spi SPI driver
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation; either version 2 of
  12. * the License, or (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <common.h>
  25. #include <malloc.h>
  26. #include <asm/io.h>
  27. #include <asm/gpio.h>
  28. #include <asm/arch/clock.h>
  29. #include <asm/arch/pinmux.h>
  30. #include <asm/arch-tegra/clk_rst.h>
  31. #include <asm/arch-tegra20/tegra20_sflash.h>
  32. #include <spi.h>
  33. #include <fdtdec.h>
  34. DECLARE_GLOBAL_DATA_PTR;
  35. struct tegra_spi_slave {
  36. struct spi_slave slave;
  37. struct spi_tegra *regs;
  38. unsigned int freq;
  39. unsigned int mode;
  40. int periph_id;
  41. };
  42. static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
  43. {
  44. return container_of(slave, struct tegra_spi_slave, slave);
  45. }
  46. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  47. {
  48. /* Tegra20 SPI-Flash - only 1 device ('bus/cs') */
  49. if (bus != 0 || cs != 0)
  50. return 0;
  51. else
  52. return 1;
  53. }
  54. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  55. unsigned int max_hz, unsigned int mode)
  56. {
  57. struct tegra_spi_slave *spi;
  58. int node;
  59. if (!spi_cs_is_valid(bus, cs)) {
  60. printf("SPI error: unsupported bus %d / chip select %d\n",
  61. bus, cs);
  62. return NULL;
  63. }
  64. if (max_hz > TEGRA_SPI_MAX_FREQ) {
  65. printf("SPI error: unsupported frequency %d Hz. Max frequency"
  66. " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
  67. return NULL;
  68. }
  69. spi = malloc(sizeof(struct tegra_spi_slave));
  70. if (!spi) {
  71. printf("SPI error: malloc of SPI structure failed\n");
  72. return NULL;
  73. }
  74. spi->slave.bus = bus;
  75. spi->slave.cs = cs;
  76. node = fdtdec_next_compatible(gd->fdt_blob, 0,
  77. COMPAT_NVIDIA_TEGRA20_SFLASH);
  78. if (node < 0) {
  79. debug("%s: cannot locate sflash node\n", __func__);
  80. return NULL;
  81. }
  82. if (!fdtdec_get_is_enabled(gd->fdt_blob, node)) {
  83. debug("%s: sflash is disabled\n", __func__);
  84. return NULL;
  85. }
  86. spi->regs = (struct spi_tegra *)fdtdec_get_addr(gd->fdt_blob,
  87. node, "reg");
  88. if ((fdt_addr_t)spi->regs == FDT_ADDR_T_NONE) {
  89. debug("%s: no sflash register found\n", __func__);
  90. return NULL;
  91. }
  92. spi->freq = fdtdec_get_int(gd->fdt_blob, node, "spi-max-frequency", 0);
  93. if (!spi->freq) {
  94. debug("%s: no sflash max frequency found\n", __func__);
  95. return NULL;
  96. }
  97. spi->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
  98. if (spi->periph_id == PERIPH_ID_NONE) {
  99. debug("%s: could not decode periph id\n", __func__);
  100. return NULL;
  101. }
  102. if (max_hz < spi->freq) {
  103. debug("%s: limiting frequency from %u to %u\n", __func__,
  104. spi->freq, max_hz);
  105. spi->freq = max_hz;
  106. }
  107. debug("%s: controller initialized at %p, freq = %u, periph_id = %d\n",
  108. __func__, spi->regs, spi->freq, spi->periph_id);
  109. spi->mode = mode;
  110. return &spi->slave;
  111. }
  112. void spi_free_slave(struct spi_slave *slave)
  113. {
  114. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  115. free(spi);
  116. }
  117. void spi_init(void)
  118. {
  119. /* do nothing */
  120. }
  121. int spi_claim_bus(struct spi_slave *slave)
  122. {
  123. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  124. struct spi_tegra *regs = spi->regs;
  125. u32 reg;
  126. /* Change SPI clock to correct frequency, PLLP_OUT0 source */
  127. clock_start_periph_pll(spi->periph_id, CLOCK_ID_PERIPH, spi->freq);
  128. /* Clear stale status here */
  129. reg = SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH | \
  130. SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF;
  131. writel(reg, &regs->status);
  132. debug("spi_init: STATUS = %08x\n", readl(&regs->status));
  133. /*
  134. * Use sw-controlled CS, so we can clock in data after ReadID, etc.
  135. */
  136. reg = (spi->mode & 1) << SPI_CMD_ACTIVE_SDA_SHIFT;
  137. if (spi->mode & 2)
  138. reg |= 1 << SPI_CMD_ACTIVE_SCLK_SHIFT;
  139. clrsetbits_le32(&regs->command, SPI_CMD_ACTIVE_SCLK_MASK |
  140. SPI_CMD_ACTIVE_SDA_MASK, SPI_CMD_CS_SOFT | reg);
  141. debug("spi_init: COMMAND = %08x\n", readl(&regs->command));
  142. /*
  143. * SPI pins on Tegra20 are muxed - change pinmux later due to UART
  144. * issue.
  145. */
  146. pinmux_set_func(PINGRP_GMD, PMUX_FUNC_SFLASH);
  147. pinmux_tristate_disable(PINGRP_LSPI);
  148. pinmux_set_func(PINGRP_GMC, PMUX_FUNC_SFLASH);
  149. return 0;
  150. }
  151. void spi_release_bus(struct spi_slave *slave)
  152. {
  153. /*
  154. * We can't release UART_DISABLE and set pinmux to UART4 here since
  155. * some code (e,g, spi_flash_probe) uses printf() while the SPI
  156. * bus is held. That is arguably bad, but it has the advantage of
  157. * already being in the source tree.
  158. */
  159. }
  160. void spi_cs_activate(struct spi_slave *slave)
  161. {
  162. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  163. /* CS is negated on Tegra, so drive a 1 to get a 0 */
  164. setbits_le32(&spi->regs->command, SPI_CMD_CS_VAL);
  165. }
  166. void spi_cs_deactivate(struct spi_slave *slave)
  167. {
  168. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  169. /* CS is negated on Tegra, so drive a 0 to get a 1 */
  170. clrbits_le32(&spi->regs->command, SPI_CMD_CS_VAL);
  171. }
  172. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  173. const void *data_out, void *data_in, unsigned long flags)
  174. {
  175. struct tegra_spi_slave *spi = to_tegra_spi(slave);
  176. struct spi_tegra *regs = spi->regs;
  177. u32 reg, tmpdout, tmpdin = 0;
  178. const u8 *dout = data_out;
  179. u8 *din = data_in;
  180. int num_bytes;
  181. int ret;
  182. debug("spi_xfer: slave %u:%u dout %08X din %08X bitlen %u\n",
  183. slave->bus, slave->cs, *(u8 *)dout, *(u8 *)din, bitlen);
  184. if (bitlen % 8)
  185. return -1;
  186. num_bytes = bitlen / 8;
  187. ret = 0;
  188. reg = readl(&regs->status);
  189. writel(reg, &regs->status); /* Clear all SPI events via R/W */
  190. debug("spi_xfer entry: STATUS = %08x\n", reg);
  191. reg = readl(&regs->command);
  192. reg |= SPI_CMD_TXEN | SPI_CMD_RXEN;
  193. writel(reg, &regs->command);
  194. debug("spi_xfer: COMMAND = %08x\n", readl(&regs->command));
  195. if (flags & SPI_XFER_BEGIN)
  196. spi_cs_activate(slave);
  197. /* handle data in 32-bit chunks */
  198. while (num_bytes > 0) {
  199. int bytes;
  200. int is_read = 0;
  201. int tm, i;
  202. tmpdout = 0;
  203. bytes = (num_bytes > 4) ? 4 : num_bytes;
  204. if (dout != NULL) {
  205. for (i = 0; i < bytes; ++i)
  206. tmpdout = (tmpdout << 8) | dout[i];
  207. }
  208. num_bytes -= bytes;
  209. if (dout)
  210. dout += bytes;
  211. clrsetbits_le32(&regs->command, SPI_CMD_BIT_LENGTH_MASK,
  212. bytes * 8 - 1);
  213. writel(tmpdout, &regs->tx_fifo);
  214. setbits_le32(&regs->command, SPI_CMD_GO);
  215. /*
  216. * Wait for SPI transmit FIFO to empty, or to time out.
  217. * The RX FIFO status will be read and cleared last
  218. */
  219. for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
  220. u32 status;
  221. status = readl(&regs->status);
  222. /* We can exit when we've had both RX and TX activity */
  223. if (is_read && (status & SPI_STAT_TXF_EMPTY))
  224. break;
  225. if ((status & (SPI_STAT_BSY | SPI_STAT_RDY)) !=
  226. SPI_STAT_RDY)
  227. tm++;
  228. else if (!(status & SPI_STAT_RXF_EMPTY)) {
  229. tmpdin = readl(&regs->rx_fifo);
  230. is_read = 1;
  231. /* swap bytes read in */
  232. if (din != NULL) {
  233. for (i = bytes - 1; i >= 0; --i) {
  234. din[i] = tmpdin & 0xff;
  235. tmpdin >>= 8;
  236. }
  237. din += bytes;
  238. }
  239. }
  240. }
  241. if (tm >= SPI_TIMEOUT)
  242. ret = tm;
  243. /* clear ACK RDY, etc. bits */
  244. writel(readl(&regs->status), &regs->status);
  245. }
  246. if (flags & SPI_XFER_END)
  247. spi_cs_deactivate(slave);
  248. debug("spi_xfer: transfer ended. Value=%08x, status = %08x\n",
  249. tmpdin, readl(&regs->status));
  250. if (ret) {
  251. printf("spi_xfer: timeout during SPI transfer, tm %d\n", ret);
  252. return -1;
  253. }
  254. return 0;
  255. }