zynqpl.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. /*
  2. * (C) Copyright 2012-2013, Xilinx, Michal Simek
  3. *
  4. * (C) Copyright 2012
  5. * Joe Hershberger <joe.hershberger@ni.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <asm/io.h>
  11. #include <zynqpl.h>
  12. #include <linux/sizes.h>
  13. #include <asm/arch/hardware.h>
  14. #include <asm/arch/sys_proto.h>
  15. #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
  16. #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
  17. #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
  18. #define DEVCFG_ISR_RX_FIFO_OV 0x00040000
  19. #define DEVCFG_ISR_DMA_DONE 0x00002000
  20. #define DEVCFG_ISR_PCFG_DONE 0x00000004
  21. #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
  22. #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
  23. #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
  24. #define DEVCFG_STATUS_PCFG_INIT 0x00000010
  25. #define DEVCFG_MCTRL_PCAP_LPBK 0x00000010
  26. #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
  27. #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
  28. #ifndef CONFIG_SYS_FPGA_WAIT
  29. #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
  30. #endif
  31. #ifndef CONFIG_SYS_FPGA_PROG_TIME
  32. #define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
  33. #endif
  34. static int zynq_info(xilinx_desc *desc)
  35. {
  36. return FPGA_SUCCESS;
  37. }
  38. #define DUMMY_WORD 0xffffffff
  39. /* Xilinx binary format header */
  40. static const u32 bin_format[] = {
  41. DUMMY_WORD, /* Dummy words */
  42. DUMMY_WORD,
  43. DUMMY_WORD,
  44. DUMMY_WORD,
  45. DUMMY_WORD,
  46. DUMMY_WORD,
  47. DUMMY_WORD,
  48. DUMMY_WORD,
  49. 0x000000bb, /* Sync word */
  50. 0x11220044, /* Sync word */
  51. DUMMY_WORD,
  52. DUMMY_WORD,
  53. 0xaa995566, /* Sync word */
  54. };
  55. #define SWAP_NO 1
  56. #define SWAP_DONE 2
  57. /*
  58. * Load the whole word from unaligned buffer
  59. * Keep in your mind that it is byte loading on little-endian system
  60. */
  61. static u32 load_word(const void *buf, u32 swap)
  62. {
  63. u32 word = 0;
  64. u8 *bitc = (u8 *)buf;
  65. int p;
  66. if (swap == SWAP_NO) {
  67. for (p = 0; p < 4; p++) {
  68. word <<= 8;
  69. word |= bitc[p];
  70. }
  71. } else {
  72. for (p = 3; p >= 0; p--) {
  73. word <<= 8;
  74. word |= bitc[p];
  75. }
  76. }
  77. return word;
  78. }
  79. static u32 check_header(const void *buf)
  80. {
  81. u32 i, pattern;
  82. int swap = SWAP_NO;
  83. u32 *test = (u32 *)buf;
  84. debug("%s: Let's check bitstream header\n", __func__);
  85. /* Checking that passing bin is not a bitstream */
  86. for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
  87. pattern = load_word(&test[i], swap);
  88. /*
  89. * Bitstreams in binary format are swapped
  90. * compare to regular bistream.
  91. * Do not swap dummy word but if swap is done assume
  92. * that parsing buffer is binary format
  93. */
  94. if ((__swab32(pattern) != DUMMY_WORD) &&
  95. (__swab32(pattern) == bin_format[i])) {
  96. pattern = __swab32(pattern);
  97. swap = SWAP_DONE;
  98. debug("%s: data swapped - let's swap\n", __func__);
  99. }
  100. debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
  101. (u32)&test[i], pattern, bin_format[i]);
  102. if (pattern != bin_format[i]) {
  103. debug("%s: Bitstream is not recognized\n", __func__);
  104. return 0;
  105. }
  106. }
  107. debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
  108. (u32)buf, swap == SWAP_NO ? "without" : "with");
  109. return swap;
  110. }
  111. static void *check_data(u8 *buf, size_t bsize, u32 *swap)
  112. {
  113. u32 word, p = 0; /* possition */
  114. /* Because buf doesn't need to be aligned let's read it by chars */
  115. for (p = 0; p < bsize; p++) {
  116. word = load_word(&buf[p], SWAP_NO);
  117. debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
  118. /* Find the first bitstream dummy word */
  119. if (word == DUMMY_WORD) {
  120. debug("%s: Found dummy word at position %x/%x\n",
  121. __func__, p, (u32)&buf[p]);
  122. *swap = check_header(&buf[p]);
  123. if (*swap) {
  124. /* FIXME add full bitstream checking here */
  125. return &buf[p];
  126. }
  127. }
  128. /* Loop can be huge - support CTRL + C */
  129. if (ctrlc())
  130. return NULL;
  131. }
  132. return NULL;
  133. }
  134. static int zynq_dma_transfer(u32 srcbuf, u32 srclen, u32 dstbuf, u32 dstlen)
  135. {
  136. unsigned long ts;
  137. u32 isr_status;
  138. /* Set up the transfer */
  139. writel((u32)srcbuf, &devcfg_base->dma_src_addr);
  140. writel(dstbuf, &devcfg_base->dma_dst_addr);
  141. writel(srclen, &devcfg_base->dma_src_len);
  142. writel(dstlen, &devcfg_base->dma_dst_len);
  143. isr_status = readl(&devcfg_base->int_sts);
  144. /* Polling the PCAP_INIT status for Set */
  145. ts = get_timer(0);
  146. while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
  147. if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
  148. debug("%s: Error: isr = 0x%08X\n", __func__,
  149. isr_status);
  150. debug("%s: Write count = 0x%08X\n", __func__,
  151. readl(&devcfg_base->write_count));
  152. debug("%s: Read count = 0x%08X\n", __func__,
  153. readl(&devcfg_base->read_count));
  154. return FPGA_FAIL;
  155. }
  156. if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
  157. printf("%s: Timeout wait for DMA to complete\n",
  158. __func__);
  159. return FPGA_FAIL;
  160. }
  161. isr_status = readl(&devcfg_base->int_sts);
  162. }
  163. debug("%s: DMA transfer is done\n", __func__);
  164. /* Clear out the DMA status */
  165. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  166. return FPGA_SUCCESS;
  167. }
  168. static int zynq_dma_xfer_init(u32 partialbit)
  169. {
  170. u32 status, control, isr_status;
  171. unsigned long ts;
  172. /* Clear loopback bit */
  173. clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
  174. if (!partialbit) {
  175. zynq_slcr_devcfg_disable();
  176. /* Setting PCFG_PROG_B signal to high */
  177. control = readl(&devcfg_base->ctrl);
  178. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  179. /* Setting PCFG_PROG_B signal to low */
  180. writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  181. /* Polling the PCAP_INIT status for Reset */
  182. ts = get_timer(0);
  183. while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
  184. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  185. printf("%s: Timeout wait for INIT to clear\n",
  186. __func__);
  187. return FPGA_FAIL;
  188. }
  189. }
  190. /* Setting PCFG_PROG_B signal to high */
  191. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  192. /* Polling the PCAP_INIT status for Set */
  193. ts = get_timer(0);
  194. while (!(readl(&devcfg_base->status) &
  195. DEVCFG_STATUS_PCFG_INIT)) {
  196. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  197. printf("%s: Timeout wait for INIT to set\n",
  198. __func__);
  199. return FPGA_FAIL;
  200. }
  201. }
  202. }
  203. isr_status = readl(&devcfg_base->int_sts);
  204. /* Clear it all, so if Boot ROM comes back, it can proceed */
  205. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  206. if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
  207. debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
  208. /* If RX FIFO overflow, need to flush RX FIFO first */
  209. if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
  210. writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
  211. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  212. }
  213. return FPGA_FAIL;
  214. }
  215. status = readl(&devcfg_base->status);
  216. debug("%s: Status = 0x%08X\n", __func__, status);
  217. if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
  218. debug("%s: Error: device busy\n", __func__);
  219. return FPGA_FAIL;
  220. }
  221. debug("%s: Device ready\n", __func__);
  222. if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
  223. if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
  224. /* Error state, transfer cannot occur */
  225. debug("%s: ISR indicates error\n", __func__);
  226. return FPGA_FAIL;
  227. } else {
  228. /* Clear out the status */
  229. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  230. }
  231. }
  232. if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
  233. /* Clear the count of completed DMA transfers */
  234. writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
  235. }
  236. return FPGA_SUCCESS;
  237. }
  238. static u32 *zynq_align_dma_buffer(u32 *buf, u32 len, u32 swap)
  239. {
  240. u32 *new_buf;
  241. u32 i;
  242. if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
  243. new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
  244. /*
  245. * This might be dangerous but permits to flash if
  246. * ARCH_DMA_MINALIGN is greater than header size
  247. */
  248. if (new_buf > buf) {
  249. debug("%s: Aligned buffer is after buffer start\n",
  250. __func__);
  251. new_buf -= ARCH_DMA_MINALIGN;
  252. }
  253. printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
  254. (u32)buf, (u32)new_buf, swap);
  255. for (i = 0; i < (len/4); i++)
  256. new_buf[i] = load_word(&buf[i], swap);
  257. buf = new_buf;
  258. } else if (swap != SWAP_DONE) {
  259. /* For bitstream which are aligned */
  260. u32 *new_buf = (u32 *)buf;
  261. printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
  262. swap);
  263. for (i = 0; i < (len/4); i++)
  264. new_buf[i] = load_word(&buf[i], swap);
  265. }
  266. return buf;
  267. }
  268. static int zynq_validate_bitstream(xilinx_desc *desc, const void *buf,
  269. size_t bsize, u32 blocksize, u32 *swap,
  270. u32 *partialbit)
  271. {
  272. u32 *buf_start;
  273. u32 diff;
  274. /* Detect if we are going working with partial or full bitstream */
  275. if (bsize != desc->size) {
  276. printf("%s: Working with partial bitstream\n", __func__);
  277. *partialbit = 1;
  278. }
  279. buf_start = check_data((u8 *)buf, blocksize, swap);
  280. if (!buf_start)
  281. return FPGA_FAIL;
  282. /* Check if data is postpone from start */
  283. diff = (u32)buf_start - (u32)buf;
  284. if (diff) {
  285. printf("%s: Bitstream is not validated yet (diff %x)\n",
  286. __func__, diff);
  287. return FPGA_FAIL;
  288. }
  289. if ((u32)buf < SZ_1M) {
  290. printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
  291. __func__, (u32)buf);
  292. return FPGA_FAIL;
  293. }
  294. if (zynq_dma_xfer_init(*partialbit))
  295. return FPGA_FAIL;
  296. return 0;
  297. }
  298. static int zynq_load(xilinx_desc *desc, const void *buf, size_t bsize)
  299. {
  300. unsigned long ts; /* Timestamp */
  301. u32 partialbit = 0;
  302. u32 isr_status, swap;
  303. /*
  304. * send bsize inplace of blocksize as it was not a bitstream
  305. * in chunks
  306. */
  307. if (zynq_validate_bitstream(desc, buf, bsize, bsize, &swap,
  308. &partialbit))
  309. return FPGA_FAIL;
  310. buf = zynq_align_dma_buffer((u32 *)buf, bsize, swap);
  311. debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
  312. debug("%s: Size = %zu\n", __func__, bsize);
  313. /* flush(clean & invalidate) d-cache range buf */
  314. flush_dcache_range((u32)buf, (u32)buf +
  315. roundup(bsize, ARCH_DMA_MINALIGN));
  316. if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
  317. return FPGA_FAIL;
  318. isr_status = readl(&devcfg_base->int_sts);
  319. /* Check FPGA configuration completion */
  320. ts = get_timer(0);
  321. while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
  322. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  323. printf("%s: Timeout wait for FPGA to config\n",
  324. __func__);
  325. return FPGA_FAIL;
  326. }
  327. isr_status = readl(&devcfg_base->int_sts);
  328. }
  329. debug("%s: FPGA config done\n", __func__);
  330. if (!partialbit)
  331. zynq_slcr_devcfg_enable();
  332. return FPGA_SUCCESS;
  333. }
  334. static int zynq_dump(xilinx_desc *desc, const void *buf, size_t bsize)
  335. {
  336. return FPGA_FAIL;
  337. }
  338. struct xilinx_fpga_op zynq_op = {
  339. .load = zynq_load,
  340. .dump = zynq_dump,
  341. .info = zynq_info,
  342. };