cmd_mmc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. /*
  2. * (C) Copyright 2003
  3. * Kyle Harris, kharris@nexus-tech.net
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <command.h>
  9. #include <mmc.h>
  10. static int curr_device = -1;
  11. #ifndef CONFIG_GENERIC_MMC
  12. int do_mmc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  13. {
  14. int dev;
  15. if (argc < 2)
  16. return CMD_RET_USAGE;
  17. if (strcmp(argv[1], "init") == 0) {
  18. if (argc == 2) {
  19. if (curr_device < 0)
  20. dev = 1;
  21. else
  22. dev = curr_device;
  23. } else if (argc == 3) {
  24. dev = (int)simple_strtoul(argv[2], NULL, 10);
  25. } else {
  26. return CMD_RET_USAGE;
  27. }
  28. if (mmc_legacy_init(dev) != 0) {
  29. puts("No MMC card found\n");
  30. return 1;
  31. }
  32. curr_device = dev;
  33. printf("mmc%d is available\n", curr_device);
  34. } else if (strcmp(argv[1], "device") == 0) {
  35. if (argc == 2) {
  36. if (curr_device < 0) {
  37. puts("No MMC device available\n");
  38. return 1;
  39. }
  40. } else if (argc == 3) {
  41. dev = (int)simple_strtoul(argv[2], NULL, 10);
  42. #ifdef CONFIG_SYS_MMC_SET_DEV
  43. if (mmc_set_dev(dev) != 0)
  44. return 1;
  45. #endif
  46. curr_device = dev;
  47. } else {
  48. return CMD_RET_USAGE;
  49. }
  50. printf("mmc%d is current device\n", curr_device);
  51. } else {
  52. return CMD_RET_USAGE;
  53. }
  54. return 0;
  55. }
  56. U_BOOT_CMD(
  57. mmc, 3, 1, do_mmc,
  58. "MMC sub-system",
  59. "init [dev] - init MMC sub system\n"
  60. "mmc device [dev] - show or set current device"
  61. );
  62. #else /* !CONFIG_GENERIC_MMC */
  63. static void print_mmcinfo(struct mmc *mmc)
  64. {
  65. printf("Device: %s\n", mmc->cfg->name);
  66. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  67. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  68. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  69. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  70. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  71. printf("Tran Speed: %d\n", mmc->tran_speed);
  72. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  73. printf("%s version %d.%d\n", IS_SD(mmc) ? "SD" : "MMC",
  74. (mmc->version >> 8) & 0xf, mmc->version & 0xff);
  75. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  76. puts("Capacity: ");
  77. print_size(mmc->capacity, "\n");
  78. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  79. mmc->ddr_mode ? " DDR" : "");
  80. }
  81. static struct mmc *init_mmc_device(int dev, bool force_init)
  82. {
  83. struct mmc *mmc;
  84. mmc = find_mmc_device(dev);
  85. if (!mmc) {
  86. printf("no mmc device at slot %x\n", dev);
  87. return NULL;
  88. }
  89. if (force_init)
  90. mmc->has_init = 0;
  91. if (mmc_init(mmc))
  92. return NULL;
  93. return mmc;
  94. }
  95. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  96. {
  97. struct mmc *mmc;
  98. if (curr_device < 0) {
  99. if (get_mmc_num() > 0)
  100. curr_device = 0;
  101. else {
  102. puts("No MMC device available\n");
  103. return 1;
  104. }
  105. }
  106. mmc = init_mmc_device(curr_device, false);
  107. if (!mmc)
  108. return CMD_RET_FAILURE;
  109. print_mmcinfo(mmc);
  110. return CMD_RET_SUCCESS;
  111. }
  112. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  113. static int confirm_key_prog(void)
  114. {
  115. puts("Warning: Programming authentication key can be done only once !\n"
  116. " Use this command only if you are sure of what you are doing,\n"
  117. "Really perform the key programming? <y/N> ");
  118. if (confirm_yesno())
  119. return 1;
  120. puts("Authentication key programming aborted\n");
  121. return 0;
  122. }
  123. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  124. int argc, char * const argv[])
  125. {
  126. void *key_addr;
  127. struct mmc *mmc = find_mmc_device(curr_device);
  128. if (argc != 2)
  129. return CMD_RET_USAGE;
  130. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  131. if (!confirm_key_prog())
  132. return CMD_RET_FAILURE;
  133. if (mmc_rpmb_set_key(mmc, key_addr)) {
  134. printf("ERROR - Key already programmed ?\n");
  135. return CMD_RET_FAILURE;
  136. }
  137. return CMD_RET_SUCCESS;
  138. }
  139. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  140. int argc, char * const argv[])
  141. {
  142. u16 blk, cnt;
  143. void *addr;
  144. int n;
  145. void *key_addr = NULL;
  146. struct mmc *mmc = find_mmc_device(curr_device);
  147. if (argc < 4)
  148. return CMD_RET_USAGE;
  149. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  150. blk = simple_strtoul(argv[2], NULL, 16);
  151. cnt = simple_strtoul(argv[3], NULL, 16);
  152. if (argc == 5)
  153. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  154. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  155. curr_device, blk, cnt);
  156. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  157. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  158. if (n != cnt)
  159. return CMD_RET_FAILURE;
  160. return CMD_RET_SUCCESS;
  161. }
  162. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  163. int argc, char * const argv[])
  164. {
  165. u16 blk, cnt;
  166. void *addr;
  167. int n;
  168. void *key_addr;
  169. struct mmc *mmc = find_mmc_device(curr_device);
  170. if (argc != 5)
  171. return CMD_RET_USAGE;
  172. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  173. blk = simple_strtoul(argv[2], NULL, 16);
  174. cnt = simple_strtoul(argv[3], NULL, 16);
  175. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  176. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  177. curr_device, blk, cnt);
  178. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  179. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  180. if (n != cnt)
  181. return CMD_RET_FAILURE;
  182. return CMD_RET_SUCCESS;
  183. }
  184. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  185. int argc, char * const argv[])
  186. {
  187. unsigned long counter;
  188. struct mmc *mmc = find_mmc_device(curr_device);
  189. if (mmc_rpmb_get_counter(mmc, &counter))
  190. return CMD_RET_FAILURE;
  191. printf("RPMB Write counter= %lx\n", counter);
  192. return CMD_RET_SUCCESS;
  193. }
  194. static cmd_tbl_t cmd_rpmb[] = {
  195. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  196. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  197. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  198. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  199. };
  200. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  201. int argc, char * const argv[])
  202. {
  203. cmd_tbl_t *cp;
  204. struct mmc *mmc;
  205. char original_part;
  206. int ret;
  207. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  208. /* Drop the rpmb subcommand */
  209. argc--;
  210. argv++;
  211. if (cp == NULL || argc > cp->maxargs)
  212. return CMD_RET_USAGE;
  213. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  214. return CMD_RET_SUCCESS;
  215. mmc = init_mmc_device(curr_device, false);
  216. if (!mmc)
  217. return CMD_RET_FAILURE;
  218. if (!(mmc->version & MMC_VERSION_MMC)) {
  219. printf("It is not a EMMC device\n");
  220. return CMD_RET_FAILURE;
  221. }
  222. if (mmc->version < MMC_VERSION_4_41) {
  223. printf("RPMB not supported before version 4.41\n");
  224. return CMD_RET_FAILURE;
  225. }
  226. /* Switch to the RPMB partition */
  227. original_part = mmc->part_num;
  228. if (mmc->part_num != MMC_PART_RPMB) {
  229. if (mmc_switch_part(curr_device, MMC_PART_RPMB) != 0)
  230. return CMD_RET_FAILURE;
  231. mmc->part_num = MMC_PART_RPMB;
  232. }
  233. ret = cp->cmd(cmdtp, flag, argc, argv);
  234. /* Return to original partition */
  235. if (mmc->part_num != original_part) {
  236. if (mmc_switch_part(curr_device, original_part) != 0)
  237. return CMD_RET_FAILURE;
  238. mmc->part_num = original_part;
  239. }
  240. return ret;
  241. }
  242. #endif
  243. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  244. int argc, char * const argv[])
  245. {
  246. struct mmc *mmc;
  247. u32 blk, cnt, n;
  248. void *addr;
  249. if (argc != 4)
  250. return CMD_RET_USAGE;
  251. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  252. blk = simple_strtoul(argv[2], NULL, 16);
  253. cnt = simple_strtoul(argv[3], NULL, 16);
  254. mmc = init_mmc_device(curr_device, false);
  255. if (!mmc)
  256. return CMD_RET_FAILURE;
  257. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  258. curr_device, blk, cnt);
  259. n = mmc->block_dev.block_read(curr_device, blk, cnt, addr);
  260. /* flush cache after read */
  261. flush_cache((ulong)addr, cnt * 512); /* FIXME */
  262. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  263. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  264. }
  265. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  266. int argc, char * const argv[])
  267. {
  268. struct mmc *mmc;
  269. u32 blk, cnt, n;
  270. void *addr;
  271. if (argc != 4)
  272. return CMD_RET_USAGE;
  273. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  274. blk = simple_strtoul(argv[2], NULL, 16);
  275. cnt = simple_strtoul(argv[3], NULL, 16);
  276. mmc = init_mmc_device(curr_device, false);
  277. if (!mmc)
  278. return CMD_RET_FAILURE;
  279. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  280. curr_device, blk, cnt);
  281. if (mmc_getwp(mmc) == 1) {
  282. printf("Error: card is write protected!\n");
  283. return CMD_RET_FAILURE;
  284. }
  285. n = mmc->block_dev.block_write(curr_device, blk, cnt, addr);
  286. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  287. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  288. }
  289. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  290. int argc, char * const argv[])
  291. {
  292. struct mmc *mmc;
  293. u32 blk, cnt, n;
  294. if (argc != 3)
  295. return CMD_RET_USAGE;
  296. blk = simple_strtoul(argv[1], NULL, 16);
  297. cnt = simple_strtoul(argv[2], NULL, 16);
  298. mmc = init_mmc_device(curr_device, false);
  299. if (!mmc)
  300. return CMD_RET_FAILURE;
  301. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  302. curr_device, blk, cnt);
  303. if (mmc_getwp(mmc) == 1) {
  304. printf("Error: card is write protected!\n");
  305. return CMD_RET_FAILURE;
  306. }
  307. n = mmc->block_dev.block_erase(curr_device, blk, cnt);
  308. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  309. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  310. }
  311. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  312. int argc, char * const argv[])
  313. {
  314. struct mmc *mmc;
  315. mmc = init_mmc_device(curr_device, true);
  316. if (!mmc)
  317. return CMD_RET_FAILURE;
  318. return CMD_RET_SUCCESS;
  319. }
  320. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  321. int argc, char * const argv[])
  322. {
  323. block_dev_desc_t *mmc_dev;
  324. struct mmc *mmc;
  325. mmc = init_mmc_device(curr_device, false);
  326. if (!mmc)
  327. return CMD_RET_FAILURE;
  328. mmc_dev = mmc_get_dev(curr_device);
  329. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  330. print_part(mmc_dev);
  331. return CMD_RET_SUCCESS;
  332. }
  333. puts("get mmc type error!\n");
  334. return CMD_RET_FAILURE;
  335. }
  336. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  337. int argc, char * const argv[])
  338. {
  339. int dev, part = 0, ret;
  340. struct mmc *mmc;
  341. if (argc == 1) {
  342. dev = curr_device;
  343. } else if (argc == 2) {
  344. dev = simple_strtoul(argv[1], NULL, 10);
  345. } else if (argc == 3) {
  346. dev = (int)simple_strtoul(argv[1], NULL, 10);
  347. part = (int)simple_strtoul(argv[2], NULL, 10);
  348. if (part > PART_ACCESS_MASK) {
  349. printf("#part_num shouldn't be larger than %d\n",
  350. PART_ACCESS_MASK);
  351. return CMD_RET_FAILURE;
  352. }
  353. } else {
  354. return CMD_RET_USAGE;
  355. }
  356. mmc = init_mmc_device(dev, true);
  357. if (!mmc)
  358. return CMD_RET_FAILURE;
  359. ret = mmc_select_hwpart(dev, part);
  360. printf("switch to partitions #%d, %s\n",
  361. part, (!ret) ? "OK" : "ERROR");
  362. if (ret)
  363. return 1;
  364. curr_device = dev;
  365. if (mmc->part_config == MMCPART_NOAVAILABLE)
  366. printf("mmc%d is current device\n", curr_device);
  367. else
  368. printf("mmc%d(part %d) is current device\n",
  369. curr_device, mmc->part_num);
  370. return CMD_RET_SUCCESS;
  371. }
  372. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  373. int argc, char * const argv[])
  374. {
  375. print_mmc_devices('\n');
  376. return CMD_RET_SUCCESS;
  377. }
  378. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  379. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  380. int argc, char * const argv[])
  381. {
  382. int dev;
  383. struct mmc *mmc;
  384. u8 width, reset, mode;
  385. if (argc != 5)
  386. return CMD_RET_USAGE;
  387. dev = simple_strtoul(argv[1], NULL, 10);
  388. width = simple_strtoul(argv[2], NULL, 10);
  389. reset = simple_strtoul(argv[3], NULL, 10);
  390. mode = simple_strtoul(argv[4], NULL, 10);
  391. mmc = init_mmc_device(dev, false);
  392. if (!mmc)
  393. return CMD_RET_FAILURE;
  394. if (IS_SD(mmc)) {
  395. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  396. return CMD_RET_FAILURE;
  397. }
  398. /* acknowledge to be sent during boot operation */
  399. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  400. }
  401. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  402. int argc, char * const argv[])
  403. {
  404. int dev;
  405. struct mmc *mmc;
  406. u32 bootsize, rpmbsize;
  407. if (argc != 4)
  408. return CMD_RET_USAGE;
  409. dev = simple_strtoul(argv[1], NULL, 10);
  410. bootsize = simple_strtoul(argv[2], NULL, 10);
  411. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  412. mmc = init_mmc_device(dev, false);
  413. if (!mmc)
  414. return CMD_RET_FAILURE;
  415. if (IS_SD(mmc)) {
  416. printf("It is not a EMMC device\n");
  417. return CMD_RET_FAILURE;
  418. }
  419. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  420. printf("EMMC boot partition Size change Failed.\n");
  421. return CMD_RET_FAILURE;
  422. }
  423. printf("EMMC boot partition Size %d MB\n", bootsize);
  424. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  425. return CMD_RET_SUCCESS;
  426. }
  427. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  428. int argc, char * const argv[])
  429. {
  430. int dev;
  431. struct mmc *mmc;
  432. u8 ack, part_num, access;
  433. if (argc != 5)
  434. return CMD_RET_USAGE;
  435. dev = simple_strtoul(argv[1], NULL, 10);
  436. ack = simple_strtoul(argv[2], NULL, 10);
  437. part_num = simple_strtoul(argv[3], NULL, 10);
  438. access = simple_strtoul(argv[4], NULL, 10);
  439. mmc = init_mmc_device(dev, false);
  440. if (!mmc)
  441. return CMD_RET_FAILURE;
  442. if (IS_SD(mmc)) {
  443. puts("PARTITION_CONFIG only exists on eMMC\n");
  444. return CMD_RET_FAILURE;
  445. }
  446. /* acknowledge to be sent during boot operation */
  447. return mmc_set_part_conf(mmc, ack, part_num, access);
  448. }
  449. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  450. int argc, char * const argv[])
  451. {
  452. int dev;
  453. struct mmc *mmc;
  454. u8 enable;
  455. /*
  456. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  457. * The only valid values are 0x0, 0x1 and 0x2 and writing
  458. * a value of 0x1 or 0x2 sets the value permanently.
  459. */
  460. if (argc != 3)
  461. return CMD_RET_USAGE;
  462. dev = simple_strtoul(argv[1], NULL, 10);
  463. enable = simple_strtoul(argv[2], NULL, 10);
  464. if (enable > 2 || enable < 0) {
  465. puts("Invalid RST_n_ENABLE value\n");
  466. return CMD_RET_USAGE;
  467. }
  468. mmc = init_mmc_device(dev, false);
  469. if (!mmc)
  470. return CMD_RET_FAILURE;
  471. if (IS_SD(mmc)) {
  472. puts("RST_n_FUNCTION only exists on eMMC\n");
  473. return CMD_RET_FAILURE;
  474. }
  475. return mmc_set_rst_n_function(mmc, enable);
  476. }
  477. #endif
  478. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  479. int argc, char * const argv[])
  480. {
  481. struct mmc *mmc;
  482. u32 val;
  483. int ret;
  484. if (argc != 2)
  485. return CMD_RET_USAGE;
  486. val = simple_strtoul(argv[2], NULL, 16);
  487. mmc = find_mmc_device(curr_device);
  488. if (!mmc) {
  489. printf("no mmc device at slot %x\n", curr_device);
  490. return CMD_RET_FAILURE;
  491. }
  492. ret = mmc_set_dsr(mmc, val);
  493. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  494. if (!ret) {
  495. mmc->has_init = 0;
  496. if (mmc_init(mmc))
  497. return CMD_RET_FAILURE;
  498. else
  499. return CMD_RET_SUCCESS;
  500. }
  501. return ret;
  502. }
  503. static cmd_tbl_t cmd_mmc[] = {
  504. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  505. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  506. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  507. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  508. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  509. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  510. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  511. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  512. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  513. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  514. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  515. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  516. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  517. #endif
  518. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  519. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  520. #endif
  521. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  522. };
  523. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  524. {
  525. cmd_tbl_t *cp;
  526. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  527. /* Drop the mmc command */
  528. argc--;
  529. argv++;
  530. if (cp == NULL || argc > cp->maxargs)
  531. return CMD_RET_USAGE;
  532. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  533. return CMD_RET_SUCCESS;
  534. if (curr_device < 0) {
  535. if (get_mmc_num() > 0) {
  536. curr_device = 0;
  537. } else {
  538. puts("No MMC device available\n");
  539. return CMD_RET_FAILURE;
  540. }
  541. }
  542. return cp->cmd(cmdtp, flag, argc, argv);
  543. }
  544. U_BOOT_CMD(
  545. mmc, 7, 1, do_mmcops,
  546. "MMC sub system",
  547. "info - display info of the current MMC device\n"
  548. "mmc read addr blk# cnt\n"
  549. "mmc write addr blk# cnt\n"
  550. "mmc erase blk# cnt\n"
  551. "mmc rescan\n"
  552. "mmc part - lists available partition on current mmc device\n"
  553. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  554. "mmc list - lists available devices\n"
  555. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  556. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  557. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  558. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  559. " - Change sizes of boot and RPMB partitions of specified device\n"
  560. "mmc partconf dev boot_ack boot_partition partition_access\n"
  561. " - Change the bits of the PARTITION_CONFIG field of the specified device\n"
  562. "mmc rst-function dev value\n"
  563. " - Change the RST_n_FUNCTION field of the specified device\n"
  564. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  565. #endif
  566. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  567. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  568. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  569. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  570. "mmc rpmb counter - read the value of the write counter\n"
  571. #endif
  572. "mmc setdsr <value> - set DSR register value\n"
  573. );
  574. /* Old command kept for compatibility. Same as 'mmc info' */
  575. U_BOOT_CMD(
  576. mmcinfo, 1, 0, do_mmcinfo,
  577. "display MMC info",
  578. "- display info of the current MMC device"
  579. );
  580. #endif /* !CONFIG_GENERIC_MMC */