clk_rk3399.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. *
  4. * SPDX-License-Identifier: GPL-2.0
  5. */
  6. #include <common.h>
  7. #include <clk-uclass.h>
  8. #include <dm.h>
  9. #include <errno.h>
  10. #include <syscon.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/cru_rk3399.h>
  14. #include <asm/arch/hardware.h>
  15. #include <dm/lists.h>
  16. #include <dt-bindings/clock/rk3399-cru.h>
  17. DECLARE_GLOBAL_DATA_PTR;
  18. struct rk3399_clk_priv {
  19. struct rk3399_cru *cru;
  20. ulong rate;
  21. };
  22. struct rk3399_pmuclk_priv {
  23. struct rk3399_pmucru *pmucru;
  24. };
  25. struct pll_div {
  26. u32 refdiv;
  27. u32 fbdiv;
  28. u32 postdiv1;
  29. u32 postdiv2;
  30. u32 frac;
  31. };
  32. #define RATE_TO_DIV(input_rate, output_rate) \
  33. ((input_rate) / (output_rate) - 1);
  34. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  35. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  36. .refdiv = _refdiv,\
  37. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  38. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
  39. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  40. static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
  41. static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
  42. static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
  43. static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
  44. static const struct pll_div *apll_l_cfgs[] = {
  45. [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
  46. [APLL_L_600_MHZ] = &apll_l_600_cfg,
  47. };
  48. enum {
  49. /* PLL_CON0 */
  50. PLL_FBDIV_MASK = 0xfff,
  51. PLL_FBDIV_SHIFT = 0,
  52. /* PLL_CON1 */
  53. PLL_POSTDIV2_SHIFT = 12,
  54. PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
  55. PLL_POSTDIV1_SHIFT = 8,
  56. PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
  57. PLL_REFDIV_MASK = 0x3f,
  58. PLL_REFDIV_SHIFT = 0,
  59. /* PLL_CON2 */
  60. PLL_LOCK_STATUS_SHIFT = 31,
  61. PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
  62. PLL_FRACDIV_MASK = 0xffffff,
  63. PLL_FRACDIV_SHIFT = 0,
  64. /* PLL_CON3 */
  65. PLL_MODE_SHIFT = 8,
  66. PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
  67. PLL_MODE_SLOW = 0,
  68. PLL_MODE_NORM,
  69. PLL_MODE_DEEP,
  70. PLL_DSMPD_SHIFT = 3,
  71. PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
  72. PLL_INTEGER_MODE = 1,
  73. /* PMUCRU_CLKSEL_CON0 */
  74. PMU_PCLK_DIV_CON_MASK = 0x1f,
  75. PMU_PCLK_DIV_CON_SHIFT = 0,
  76. /* PMUCRU_CLKSEL_CON1 */
  77. SPI3_PLL_SEL_SHIFT = 7,
  78. SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
  79. SPI3_PLL_SEL_24M = 0,
  80. SPI3_PLL_SEL_PPLL = 1,
  81. SPI3_DIV_CON_SHIFT = 0x0,
  82. SPI3_DIV_CON_MASK = 0x7f,
  83. /* PMUCRU_CLKSEL_CON2 */
  84. I2C_DIV_CON_MASK = 0x7f,
  85. CLK_I2C8_DIV_CON_SHIFT = 8,
  86. CLK_I2C0_DIV_CON_SHIFT = 0,
  87. /* PMUCRU_CLKSEL_CON3 */
  88. CLK_I2C4_DIV_CON_SHIFT = 0,
  89. /* CLKSEL_CON0 */
  90. ACLKM_CORE_L_DIV_CON_SHIFT = 8,
  91. ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
  92. CLK_CORE_L_PLL_SEL_SHIFT = 6,
  93. CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
  94. CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
  95. CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
  96. CLK_CORE_L_PLL_SEL_DPLL = 0x10,
  97. CLK_CORE_L_PLL_SEL_GPLL = 0x11,
  98. CLK_CORE_L_DIV_MASK = 0x1f,
  99. CLK_CORE_L_DIV_SHIFT = 0,
  100. /* CLKSEL_CON1 */
  101. PCLK_DBG_L_DIV_SHIFT = 0x8,
  102. PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
  103. ATCLK_CORE_L_DIV_SHIFT = 0,
  104. ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
  105. /* CLKSEL_CON14 */
  106. PCLK_PERIHP_DIV_CON_SHIFT = 12,
  107. PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
  108. HCLK_PERIHP_DIV_CON_SHIFT = 8,
  109. HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
  110. ACLK_PERIHP_PLL_SEL_SHIFT = 7,
  111. ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
  112. ACLK_PERIHP_PLL_SEL_CPLL = 0,
  113. ACLK_PERIHP_PLL_SEL_GPLL = 1,
  114. ACLK_PERIHP_DIV_CON_SHIFT = 0,
  115. ACLK_PERIHP_DIV_CON_MASK = 0x1f,
  116. /* CLKSEL_CON21 */
  117. ACLK_EMMC_PLL_SEL_SHIFT = 7,
  118. ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
  119. ACLK_EMMC_PLL_SEL_GPLL = 0x1,
  120. ACLK_EMMC_DIV_CON_SHIFT = 0,
  121. ACLK_EMMC_DIV_CON_MASK = 0x1f,
  122. /* CLKSEL_CON22 */
  123. CLK_EMMC_PLL_SHIFT = 8,
  124. CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
  125. CLK_EMMC_PLL_SEL_GPLL = 0x1,
  126. CLK_EMMC_PLL_SEL_24M = 0x5,
  127. CLK_EMMC_DIV_CON_SHIFT = 0,
  128. CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
  129. /* CLKSEL_CON23 */
  130. PCLK_PERILP0_DIV_CON_SHIFT = 12,
  131. PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
  132. HCLK_PERILP0_DIV_CON_SHIFT = 8,
  133. HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
  134. ACLK_PERILP0_PLL_SEL_SHIFT = 7,
  135. ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
  136. ACLK_PERILP0_PLL_SEL_CPLL = 0,
  137. ACLK_PERILP0_PLL_SEL_GPLL = 1,
  138. ACLK_PERILP0_DIV_CON_SHIFT = 0,
  139. ACLK_PERILP0_DIV_CON_MASK = 0x1f,
  140. /* CLKSEL_CON25 */
  141. PCLK_PERILP1_DIV_CON_SHIFT = 8,
  142. PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
  143. HCLK_PERILP1_PLL_SEL_SHIFT = 7,
  144. HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
  145. HCLK_PERILP1_PLL_SEL_CPLL = 0,
  146. HCLK_PERILP1_PLL_SEL_GPLL = 1,
  147. HCLK_PERILP1_DIV_CON_SHIFT = 0,
  148. HCLK_PERILP1_DIV_CON_MASK = 0x1f,
  149. /* CLKSEL_CON26 */
  150. CLK_SARADC_DIV_CON_SHIFT = 8,
  151. CLK_SARADC_DIV_CON_MASK = 0xff << CLK_SARADC_DIV_CON_SHIFT,
  152. /* CLKSEL_CON27 */
  153. CLK_TSADC_SEL_X24M = 0x0,
  154. CLK_TSADC_SEL_SHIFT = 15,
  155. CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
  156. CLK_TSADC_DIV_CON_SHIFT = 0,
  157. CLK_TSADC_DIV_CON_MASK = 0x3ff,
  158. /* CLKSEL_CON47 & CLKSEL_CON48 */
  159. ACLK_VOP_PLL_SEL_SHIFT = 6,
  160. ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
  161. ACLK_VOP_PLL_SEL_CPLL = 0x1,
  162. ACLK_VOP_DIV_CON_SHIFT = 0,
  163. ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
  164. /* CLKSEL_CON49 & CLKSEL_CON50 */
  165. DCLK_VOP_DCLK_SEL_SHIFT = 11,
  166. DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
  167. DCLK_VOP_DCLK_SEL_DIVOUT = 0,
  168. DCLK_VOP_PLL_SEL_SHIFT = 8,
  169. DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
  170. DCLK_VOP_PLL_SEL_VPLL = 0,
  171. DCLK_VOP_DIV_CON_MASK = 0xff,
  172. DCLK_VOP_DIV_CON_SHIFT = 0,
  173. /* CLKSEL_CON58 */
  174. CLK_SPI_PLL_SEL_MASK = 1,
  175. CLK_SPI_PLL_SEL_CPLL = 0,
  176. CLK_SPI_PLL_SEL_GPLL = 1,
  177. CLK_SPI_PLL_DIV_CON_MASK = 0x7f,
  178. CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
  179. CLK_SPI5_PLL_SEL_SHIFT = 15,
  180. /* CLKSEL_CON59 */
  181. CLK_SPI1_PLL_SEL_SHIFT = 15,
  182. CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
  183. CLK_SPI0_PLL_SEL_SHIFT = 7,
  184. CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
  185. /* CLKSEL_CON60 */
  186. CLK_SPI4_PLL_SEL_SHIFT = 15,
  187. CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
  188. CLK_SPI2_PLL_SEL_SHIFT = 7,
  189. CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
  190. /* CLKSEL_CON61 */
  191. CLK_I2C_PLL_SEL_MASK = 1,
  192. CLK_I2C_PLL_SEL_CPLL = 0,
  193. CLK_I2C_PLL_SEL_GPLL = 1,
  194. CLK_I2C5_PLL_SEL_SHIFT = 15,
  195. CLK_I2C5_DIV_CON_SHIFT = 8,
  196. CLK_I2C1_PLL_SEL_SHIFT = 7,
  197. CLK_I2C1_DIV_CON_SHIFT = 0,
  198. /* CLKSEL_CON62 */
  199. CLK_I2C6_PLL_SEL_SHIFT = 15,
  200. CLK_I2C6_DIV_CON_SHIFT = 8,
  201. CLK_I2C2_PLL_SEL_SHIFT = 7,
  202. CLK_I2C2_DIV_CON_SHIFT = 0,
  203. /* CLKSEL_CON63 */
  204. CLK_I2C7_PLL_SEL_SHIFT = 15,
  205. CLK_I2C7_DIV_CON_SHIFT = 8,
  206. CLK_I2C3_PLL_SEL_SHIFT = 7,
  207. CLK_I2C3_DIV_CON_SHIFT = 0,
  208. /* CRU_SOFTRST_CON4 */
  209. RESETN_DDR0_REQ_SHIFT = 8,
  210. RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
  211. RESETN_DDRPHY0_REQ_SHIFT = 9,
  212. RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
  213. RESETN_DDR1_REQ_SHIFT = 12,
  214. RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
  215. RESETN_DDRPHY1_REQ_SHIFT = 13,
  216. RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
  217. };
  218. #define VCO_MAX_KHZ (3200 * (MHz / KHz))
  219. #define VCO_MIN_KHZ (800 * (MHz / KHz))
  220. #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
  221. #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
  222. /*
  223. * the div restructions of pll in integer mode, these are defined in
  224. * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
  225. */
  226. #define PLL_DIV_MIN 16
  227. #define PLL_DIV_MAX 3200
  228. /*
  229. * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
  230. * Formulas also embedded within the Fractional PLL Verilog model:
  231. * If DSMPD = 1 (DSM is disabled, "integer mode")
  232. * FOUTVCO = FREF / REFDIV * FBDIV
  233. * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
  234. * Where:
  235. * FOUTVCO = Fractional PLL non-divided output frequency
  236. * FOUTPOSTDIV = Fractional PLL divided output frequency
  237. * (output of second post divider)
  238. * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
  239. * REFDIV = Fractional PLL input reference clock divider
  240. * FBDIV = Integer value programmed into feedback divide
  241. *
  242. */
  243. static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
  244. {
  245. /* All 8 PLLs have same VCO and output frequency range restrictions. */
  246. u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
  247. u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
  248. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
  249. "postdiv2=%d, vco=%u khz, output=%u khz\n",
  250. pll_con, div->fbdiv, div->refdiv, div->postdiv1,
  251. div->postdiv2, vco_khz, output_khz);
  252. assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
  253. output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
  254. div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
  255. /*
  256. * When power on or changing PLL setting,
  257. * we must force PLL into slow mode to ensure output stable clock.
  258. */
  259. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  260. PLL_MODE_SLOW << PLL_MODE_SHIFT);
  261. /* use integer mode */
  262. rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
  263. PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
  264. rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
  265. div->fbdiv << PLL_FBDIV_SHIFT);
  266. rk_clrsetreg(&pll_con[1],
  267. PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
  268. PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
  269. (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
  270. (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
  271. (div->refdiv << PLL_REFDIV_SHIFT));
  272. /* waiting for pll lock */
  273. while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
  274. udelay(1);
  275. /* pll enter normal mode */
  276. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  277. PLL_MODE_NORM << PLL_MODE_SHIFT);
  278. }
  279. static int pll_para_config(u32 freq_hz, struct pll_div *div)
  280. {
  281. u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
  282. u32 postdiv1, postdiv2 = 1;
  283. u32 fref_khz;
  284. u32 diff_khz, best_diff_khz;
  285. const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
  286. const u32 max_postdiv1 = 7, max_postdiv2 = 7;
  287. u32 vco_khz;
  288. u32 freq_khz = freq_hz / KHz;
  289. if (!freq_hz) {
  290. printf("%s: the frequency can't be 0 Hz\n", __func__);
  291. return -1;
  292. }
  293. postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
  294. if (postdiv1 > max_postdiv1) {
  295. postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
  296. postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
  297. }
  298. vco_khz = freq_khz * postdiv1 * postdiv2;
  299. if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
  300. postdiv2 > max_postdiv2) {
  301. printf("%s: Cannot find out a supported VCO"
  302. " for Frequency (%uHz).\n", __func__, freq_hz);
  303. return -1;
  304. }
  305. div->postdiv1 = postdiv1;
  306. div->postdiv2 = postdiv2;
  307. best_diff_khz = vco_khz;
  308. for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
  309. fref_khz = ref_khz / refdiv;
  310. fbdiv = vco_khz / fref_khz;
  311. if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
  312. continue;
  313. diff_khz = vco_khz - fbdiv * fref_khz;
  314. if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
  315. fbdiv++;
  316. diff_khz = fref_khz - diff_khz;
  317. }
  318. if (diff_khz >= best_diff_khz)
  319. continue;
  320. best_diff_khz = diff_khz;
  321. div->refdiv = refdiv;
  322. div->fbdiv = fbdiv;
  323. }
  324. if (best_diff_khz > 4 * (MHz/KHz)) {
  325. printf("%s: Failed to match output frequency %u, "
  326. "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
  327. best_diff_khz * KHz);
  328. return -1;
  329. }
  330. return 0;
  331. }
  332. static void rkclk_init(struct rk3399_cru *cru)
  333. {
  334. u32 aclk_div;
  335. u32 hclk_div;
  336. u32 pclk_div;
  337. /*
  338. * some cru registers changed by bootrom, we'd better reset them to
  339. * reset/default values described in TRM to avoid confusion in kernel.
  340. * Please consider these three lines as a fix of bootrom bug.
  341. */
  342. rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
  343. rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
  344. rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
  345. /* configure gpll cpll */
  346. rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
  347. rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
  348. /* configure perihp aclk, hclk, pclk */
  349. aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
  350. assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  351. hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
  352. assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
  353. PERIHP_ACLK_HZ && (hclk_div < 0x4));
  354. pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
  355. assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
  356. PERIHP_ACLK_HZ && (pclk_div < 0x7));
  357. rk_clrsetreg(&cru->clksel_con[14],
  358. PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
  359. ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
  360. pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
  361. hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
  362. ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
  363. aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
  364. /* configure perilp0 aclk, hclk, pclk */
  365. aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
  366. assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  367. hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
  368. assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
  369. PERILP0_ACLK_HZ && (hclk_div < 0x4));
  370. pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
  371. assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
  372. PERILP0_ACLK_HZ && (pclk_div < 0x7));
  373. rk_clrsetreg(&cru->clksel_con[23],
  374. PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
  375. ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
  376. pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
  377. hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
  378. ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
  379. aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
  380. /* perilp1 hclk select gpll as source */
  381. hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
  382. assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
  383. GPLL_HZ && (hclk_div < 0x1f));
  384. pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
  385. assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
  386. PERILP1_HCLK_HZ && (hclk_div < 0x7));
  387. rk_clrsetreg(&cru->clksel_con[25],
  388. PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
  389. HCLK_PERILP1_PLL_SEL_MASK,
  390. pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
  391. hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
  392. HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
  393. }
  394. void rk3399_configure_cpu(struct rk3399_cru *cru,
  395. enum apll_l_frequencies apll_l_freq)
  396. {
  397. u32 aclkm_div;
  398. u32 pclk_dbg_div;
  399. u32 atclk_div;
  400. rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
  401. aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
  402. assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
  403. aclkm_div < 0x1f);
  404. pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
  405. assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
  406. pclk_dbg_div < 0x1f);
  407. atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
  408. assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
  409. atclk_div < 0x1f);
  410. rk_clrsetreg(&cru->clksel_con[0],
  411. ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
  412. CLK_CORE_L_DIV_MASK,
  413. aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
  414. CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
  415. 0 << CLK_CORE_L_DIV_SHIFT);
  416. rk_clrsetreg(&cru->clksel_con[1],
  417. PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
  418. pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
  419. atclk_div << ATCLK_CORE_L_DIV_SHIFT);
  420. }
  421. #define I2C_CLK_REG_MASK(bus) \
  422. (I2C_DIV_CON_MASK << \
  423. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  424. CLK_I2C_PLL_SEL_MASK << \
  425. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  426. #define I2C_CLK_REG_VALUE(bus, clk_div) \
  427. ((clk_div - 1) << \
  428. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  429. CLK_I2C_PLL_SEL_GPLL << \
  430. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  431. #define I2C_CLK_DIV_VALUE(con, bus) \
  432. (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
  433. I2C_DIV_CON_MASK;
  434. #define I2C_PMUCLK_REG_MASK(bus) \
  435. (I2C_DIV_CON_MASK << \
  436. CLK_I2C ##bus## _DIV_CON_SHIFT)
  437. #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
  438. ((clk_div - 1) << \
  439. CLK_I2C ##bus## _DIV_CON_SHIFT)
  440. static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
  441. {
  442. u32 div, con;
  443. switch (clk_id) {
  444. case SCLK_I2C1:
  445. con = readl(&cru->clksel_con[61]);
  446. div = I2C_CLK_DIV_VALUE(con, 1);
  447. break;
  448. case SCLK_I2C2:
  449. con = readl(&cru->clksel_con[62]);
  450. div = I2C_CLK_DIV_VALUE(con, 2);
  451. break;
  452. case SCLK_I2C3:
  453. con = readl(&cru->clksel_con[63]);
  454. div = I2C_CLK_DIV_VALUE(con, 3);
  455. break;
  456. case SCLK_I2C5:
  457. con = readl(&cru->clksel_con[61]);
  458. div = I2C_CLK_DIV_VALUE(con, 5);
  459. break;
  460. case SCLK_I2C6:
  461. con = readl(&cru->clksel_con[62]);
  462. div = I2C_CLK_DIV_VALUE(con, 6);
  463. break;
  464. case SCLK_I2C7:
  465. con = readl(&cru->clksel_con[63]);
  466. div = I2C_CLK_DIV_VALUE(con, 7);
  467. break;
  468. default:
  469. printf("do not support this i2c bus\n");
  470. return -EINVAL;
  471. }
  472. return DIV_TO_RATE(GPLL_HZ, div);
  473. }
  474. static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  475. {
  476. int src_clk_div;
  477. /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
  478. src_clk_div = GPLL_HZ / hz;
  479. assert(src_clk_div - 1 < 127);
  480. switch (clk_id) {
  481. case SCLK_I2C1:
  482. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
  483. I2C_CLK_REG_VALUE(1, src_clk_div));
  484. break;
  485. case SCLK_I2C2:
  486. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
  487. I2C_CLK_REG_VALUE(2, src_clk_div));
  488. break;
  489. case SCLK_I2C3:
  490. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
  491. I2C_CLK_REG_VALUE(3, src_clk_div));
  492. break;
  493. case SCLK_I2C5:
  494. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
  495. I2C_CLK_REG_VALUE(5, src_clk_div));
  496. break;
  497. case SCLK_I2C6:
  498. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
  499. I2C_CLK_REG_VALUE(6, src_clk_div));
  500. break;
  501. case SCLK_I2C7:
  502. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
  503. I2C_CLK_REG_VALUE(7, src_clk_div));
  504. break;
  505. default:
  506. printf("do not support this i2c bus\n");
  507. return -EINVAL;
  508. }
  509. return DIV_TO_RATE(GPLL_HZ, src_clk_div);
  510. }
  511. static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
  512. {
  513. struct pll_div vpll_config = {0};
  514. int aclk_vop = 198*MHz;
  515. void *aclkreg_addr, *dclkreg_addr;
  516. u32 div;
  517. switch (clk_id) {
  518. case DCLK_VOP0:
  519. aclkreg_addr = &cru->clksel_con[47];
  520. dclkreg_addr = &cru->clksel_con[49];
  521. break;
  522. case DCLK_VOP1:
  523. aclkreg_addr = &cru->clksel_con[48];
  524. dclkreg_addr = &cru->clksel_con[50];
  525. break;
  526. default:
  527. return -EINVAL;
  528. }
  529. /* vop aclk source clk: cpll */
  530. div = CPLL_HZ / aclk_vop;
  531. assert(div - 1 < 32);
  532. rk_clrsetreg(aclkreg_addr,
  533. ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
  534. ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
  535. (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
  536. /* vop dclk source from vpll, and equals to vpll(means div == 1) */
  537. if (pll_para_config(hz, &vpll_config))
  538. return -1;
  539. rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
  540. rk_clrsetreg(dclkreg_addr,
  541. DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
  542. DCLK_VOP_DIV_CON_MASK,
  543. DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
  544. DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
  545. (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
  546. return hz;
  547. }
  548. static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
  549. {
  550. u32 div, con;
  551. switch (clk_id) {
  552. case SCLK_SDMMC:
  553. con = readl(&cru->clksel_con[16]);
  554. break;
  555. case SCLK_EMMC:
  556. con = readl(&cru->clksel_con[21]);
  557. break;
  558. default:
  559. return -EINVAL;
  560. }
  561. div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
  562. if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
  563. == CLK_EMMC_PLL_SEL_24M)
  564. return DIV_TO_RATE(24*1024*1024, div);
  565. else
  566. return DIV_TO_RATE(GPLL_HZ, div);
  567. }
  568. static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
  569. ulong clk_id, ulong set_rate)
  570. {
  571. int src_clk_div;
  572. int aclk_emmc = 198*MHz;
  573. switch (clk_id) {
  574. case SCLK_SDMMC:
  575. /* Select clk_sdmmc source from GPLL by default */
  576. src_clk_div = GPLL_HZ / set_rate;
  577. if (src_clk_div > 127) {
  578. /* use 24MHz source for 400KHz clock */
  579. src_clk_div = 24*1024*1024 / set_rate;
  580. rk_clrsetreg(&cru->clksel_con[16],
  581. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  582. CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
  583. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  584. } else {
  585. rk_clrsetreg(&cru->clksel_con[16],
  586. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  587. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  588. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  589. }
  590. break;
  591. case SCLK_EMMC:
  592. /* Select aclk_emmc source from GPLL */
  593. src_clk_div = GPLL_HZ / aclk_emmc;
  594. assert(src_clk_div - 1 < 31);
  595. rk_clrsetreg(&cru->clksel_con[21],
  596. ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
  597. ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
  598. (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
  599. /* Select clk_emmc source from GPLL too */
  600. src_clk_div = GPLL_HZ / set_rate;
  601. assert(src_clk_div - 1 < 127);
  602. rk_clrsetreg(&cru->clksel_con[22],
  603. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  604. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  605. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  606. break;
  607. default:
  608. return -EINVAL;
  609. }
  610. return rk3399_mmc_get_clk(cru, clk_id);
  611. }
  612. static ulong rk3399_clk_get_rate(struct clk *clk)
  613. {
  614. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  615. ulong rate = 0;
  616. switch (clk->id) {
  617. case 0 ... 63:
  618. return 0;
  619. case SCLK_SDMMC:
  620. case SCLK_EMMC:
  621. rate = rk3399_mmc_get_clk(priv->cru, clk->id);
  622. break;
  623. case SCLK_I2C1:
  624. case SCLK_I2C2:
  625. case SCLK_I2C3:
  626. case SCLK_I2C5:
  627. case SCLK_I2C6:
  628. case SCLK_I2C7:
  629. rate = rk3399_i2c_get_clk(priv->cru, clk->id);
  630. break;
  631. case DCLK_VOP0:
  632. case DCLK_VOP1:
  633. break;
  634. default:
  635. return -ENOENT;
  636. }
  637. return rate;
  638. }
  639. static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
  640. {
  641. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  642. ulong ret = 0;
  643. switch (clk->id) {
  644. case 0 ... 63:
  645. return 0;
  646. case SCLK_SDMMC:
  647. case SCLK_EMMC:
  648. ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
  649. break;
  650. case SCLK_I2C1:
  651. case SCLK_I2C2:
  652. case SCLK_I2C3:
  653. case SCLK_I2C5:
  654. case SCLK_I2C6:
  655. case SCLK_I2C7:
  656. ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
  657. break;
  658. case DCLK_VOP0:
  659. case DCLK_VOP1:
  660. ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
  661. break;
  662. default:
  663. return -ENOENT;
  664. }
  665. return ret;
  666. }
  667. static struct clk_ops rk3399_clk_ops = {
  668. .get_rate = rk3399_clk_get_rate,
  669. .set_rate = rk3399_clk_set_rate,
  670. };
  671. void *rockchip_get_cru(void)
  672. {
  673. struct udevice *dev;
  674. fdt_addr_t *addr;
  675. int ret;
  676. ret = uclass_get_device_by_name(UCLASS_CLK, "clk_rk3399", &dev);
  677. if (ret)
  678. return ERR_PTR(ret);
  679. addr = dev_get_addr_ptr(dev);
  680. if ((fdt_addr_t)addr == FDT_ADDR_T_NONE)
  681. return ERR_PTR(-EINVAL);
  682. return addr;
  683. }
  684. static int rk3399_clk_probe(struct udevice *dev)
  685. {
  686. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  687. rkclk_init(priv->cru);
  688. return 0;
  689. }
  690. static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
  691. {
  692. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  693. priv->cru = (struct rk3399_cru *)dev_get_addr(dev);
  694. return 0;
  695. }
  696. static int rk3399_clk_bind(struct udevice *dev)
  697. {
  698. int ret;
  699. /* The reset driver does not have a device node, so bind it here */
  700. ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
  701. if (ret)
  702. printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
  703. return 0;
  704. }
  705. static const struct udevice_id rk3399_clk_ids[] = {
  706. { .compatible = "rockchip,rk3399-cru" },
  707. { }
  708. };
  709. U_BOOT_DRIVER(clk_rk3399) = {
  710. .name = "clk_rk3399",
  711. .id = UCLASS_CLK,
  712. .of_match = rk3399_clk_ids,
  713. .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
  714. .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
  715. .ops = &rk3399_clk_ops,
  716. .bind = rk3399_clk_bind,
  717. .probe = rk3399_clk_probe,
  718. };
  719. static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
  720. {
  721. u32 div, con;
  722. switch (clk_id) {
  723. case SCLK_I2C0_PMU:
  724. con = readl(&pmucru->pmucru_clksel[2]);
  725. div = I2C_CLK_DIV_VALUE(con, 0);
  726. break;
  727. case SCLK_I2C4_PMU:
  728. con = readl(&pmucru->pmucru_clksel[3]);
  729. div = I2C_CLK_DIV_VALUE(con, 4);
  730. break;
  731. case SCLK_I2C8_PMU:
  732. con = readl(&pmucru->pmucru_clksel[2]);
  733. div = I2C_CLK_DIV_VALUE(con, 8);
  734. break;
  735. default:
  736. printf("do not support this i2c bus\n");
  737. return -EINVAL;
  738. }
  739. return DIV_TO_RATE(PPLL_HZ, div);
  740. }
  741. static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
  742. uint hz)
  743. {
  744. int src_clk_div;
  745. src_clk_div = PPLL_HZ / hz;
  746. assert(src_clk_div - 1 < 127);
  747. switch (clk_id) {
  748. case SCLK_I2C0_PMU:
  749. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
  750. I2C_PMUCLK_REG_VALUE(0, src_clk_div));
  751. break;
  752. case SCLK_I2C4_PMU:
  753. rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
  754. I2C_PMUCLK_REG_VALUE(4, src_clk_div));
  755. break;
  756. case SCLK_I2C8_PMU:
  757. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
  758. I2C_PMUCLK_REG_VALUE(8, src_clk_div));
  759. break;
  760. default:
  761. printf("do not support this i2c bus\n");
  762. return -EINVAL;
  763. }
  764. return DIV_TO_RATE(PPLL_HZ, src_clk_div);
  765. }
  766. static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
  767. {
  768. u32 div, con;
  769. /* PWM closk rate is same as pclk_pmu */
  770. con = readl(&pmucru->pmucru_clksel[0]);
  771. div = con & PMU_PCLK_DIV_CON_MASK;
  772. return DIV_TO_RATE(PPLL_HZ, div);
  773. }
  774. static ulong rk3399_pmuclk_get_rate(struct clk *clk)
  775. {
  776. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  777. ulong rate = 0;
  778. switch (clk->id) {
  779. case PCLK_RKPWM_PMU:
  780. rate = rk3399_pwm_get_clk(priv->pmucru);
  781. break;
  782. case SCLK_I2C0_PMU:
  783. case SCLK_I2C4_PMU:
  784. case SCLK_I2C8_PMU:
  785. rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
  786. break;
  787. default:
  788. return -ENOENT;
  789. }
  790. return rate;
  791. }
  792. static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
  793. {
  794. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  795. ulong ret = 0;
  796. switch (clk->id) {
  797. case SCLK_I2C0_PMU:
  798. case SCLK_I2C4_PMU:
  799. case SCLK_I2C8_PMU:
  800. ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
  801. break;
  802. default:
  803. return -ENOENT;
  804. }
  805. return ret;
  806. }
  807. static struct clk_ops rk3399_pmuclk_ops = {
  808. .get_rate = rk3399_pmuclk_get_rate,
  809. .set_rate = rk3399_pmuclk_set_rate,
  810. };
  811. static void pmuclk_init(struct rk3399_pmucru *pmucru)
  812. {
  813. u32 pclk_div;
  814. /* configure pmu pll(ppll) */
  815. rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
  816. /* configure pmu pclk */
  817. pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
  818. assert((pclk_div + 1) * PMU_PCLK_HZ == PPLL_HZ && pclk_div < 0x1f);
  819. rk_clrsetreg(&pmucru->pmucru_clksel[0],
  820. PMU_PCLK_DIV_CON_MASK,
  821. pclk_div << PMU_PCLK_DIV_CON_SHIFT);
  822. }
  823. static int rk3399_pmuclk_probe(struct udevice *dev)
  824. {
  825. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  826. pmuclk_init(priv->pmucru);
  827. return 0;
  828. }
  829. static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
  830. {
  831. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  832. priv->pmucru = (struct rk3399_pmucru *)dev_get_addr(dev);
  833. return 0;
  834. }
  835. static const struct udevice_id rk3399_pmuclk_ids[] = {
  836. { .compatible = "rockchip,rk3399-pmucru" },
  837. { }
  838. };
  839. U_BOOT_DRIVER(pmuclk_rk3399) = {
  840. .name = "pmuclk_rk3399",
  841. .id = UCLASS_CLK,
  842. .of_match = rk3399_pmuclk_ids,
  843. .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
  844. .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
  845. .ops = &rk3399_pmuclk_ops,
  846. .probe = rk3399_pmuclk_probe,
  847. };