mmc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * (C) Copyright 2003
  3. * Kyle Harris, kharris@nexus-tech.net
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <command.h>
  9. #include <console.h>
  10. #include <mmc.h>
  11. static int curr_device = -1;
  12. static void print_mmcinfo(struct mmc *mmc)
  13. {
  14. int i;
  15. printf("Device: %s\n", mmc->cfg->name);
  16. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  17. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  18. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  19. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  20. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  21. printf("Tran Speed: %d\n", mmc->tran_speed);
  22. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  23. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  24. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  25. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  26. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  27. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  28. printf("\n");
  29. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  30. puts("Capacity: ");
  31. print_size(mmc->capacity, "\n");
  32. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  33. mmc->ddr_mode ? " DDR" : "");
  34. puts("Erase Group Size: ");
  35. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  36. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  37. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  38. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  39. puts("HC WP Group Size: ");
  40. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  41. puts("User Capacity: ");
  42. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  43. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  44. puts(" WRREL\n");
  45. else
  46. putc('\n');
  47. if (usr_enh) {
  48. puts("User Enhanced Start: ");
  49. print_size(mmc->enh_user_start, "\n");
  50. puts("User Enhanced Size: ");
  51. print_size(mmc->enh_user_size, "\n");
  52. }
  53. puts("Boot Capacity: ");
  54. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  55. puts("RPMB Capacity: ");
  56. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  57. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  58. bool is_enh = has_enh &&
  59. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  60. if (mmc->capacity_gp[i]) {
  61. printf("GP%i Capacity: ", i+1);
  62. print_size(mmc->capacity_gp[i],
  63. is_enh ? " ENH" : "");
  64. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  65. puts(" WRREL\n");
  66. else
  67. putc('\n');
  68. }
  69. }
  70. }
  71. }
  72. static struct mmc *init_mmc_device(int dev, bool force_init)
  73. {
  74. struct mmc *mmc;
  75. mmc = find_mmc_device(dev);
  76. if (!mmc) {
  77. printf("no mmc device at slot %x\n", dev);
  78. return NULL;
  79. }
  80. if (force_init)
  81. mmc->has_init = 0;
  82. if (mmc_init(mmc))
  83. return NULL;
  84. return mmc;
  85. }
  86. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  87. {
  88. struct mmc *mmc;
  89. if (curr_device < 0) {
  90. if (get_mmc_num() > 0)
  91. curr_device = 0;
  92. else {
  93. puts("No MMC device available\n");
  94. return 1;
  95. }
  96. }
  97. mmc = init_mmc_device(curr_device, false);
  98. if (!mmc)
  99. return CMD_RET_FAILURE;
  100. print_mmcinfo(mmc);
  101. return CMD_RET_SUCCESS;
  102. }
  103. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  104. static int confirm_key_prog(void)
  105. {
  106. puts("Warning: Programming authentication key can be done only once !\n"
  107. " Use this command only if you are sure of what you are doing,\n"
  108. "Really perform the key programming? <y/N> ");
  109. if (confirm_yesno())
  110. return 1;
  111. puts("Authentication key programming aborted\n");
  112. return 0;
  113. }
  114. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  115. int argc, char * const argv[])
  116. {
  117. void *key_addr;
  118. struct mmc *mmc = find_mmc_device(curr_device);
  119. if (argc != 2)
  120. return CMD_RET_USAGE;
  121. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  122. if (!confirm_key_prog())
  123. return CMD_RET_FAILURE;
  124. if (mmc_rpmb_set_key(mmc, key_addr)) {
  125. printf("ERROR - Key already programmed ?\n");
  126. return CMD_RET_FAILURE;
  127. }
  128. return CMD_RET_SUCCESS;
  129. }
  130. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  131. int argc, char * const argv[])
  132. {
  133. u16 blk, cnt;
  134. void *addr;
  135. int n;
  136. void *key_addr = NULL;
  137. struct mmc *mmc = find_mmc_device(curr_device);
  138. if (argc < 4)
  139. return CMD_RET_USAGE;
  140. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  141. blk = simple_strtoul(argv[2], NULL, 16);
  142. cnt = simple_strtoul(argv[3], NULL, 16);
  143. if (argc == 5)
  144. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  145. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  146. curr_device, blk, cnt);
  147. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  148. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  149. if (n != cnt)
  150. return CMD_RET_FAILURE;
  151. return CMD_RET_SUCCESS;
  152. }
  153. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  154. int argc, char * const argv[])
  155. {
  156. u16 blk, cnt;
  157. void *addr;
  158. int n;
  159. void *key_addr;
  160. struct mmc *mmc = find_mmc_device(curr_device);
  161. if (argc != 5)
  162. return CMD_RET_USAGE;
  163. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  164. blk = simple_strtoul(argv[2], NULL, 16);
  165. cnt = simple_strtoul(argv[3], NULL, 16);
  166. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  167. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  168. curr_device, blk, cnt);
  169. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  170. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  171. if (n != cnt)
  172. return CMD_RET_FAILURE;
  173. return CMD_RET_SUCCESS;
  174. }
  175. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  176. int argc, char * const argv[])
  177. {
  178. unsigned long counter;
  179. struct mmc *mmc = find_mmc_device(curr_device);
  180. if (mmc_rpmb_get_counter(mmc, &counter))
  181. return CMD_RET_FAILURE;
  182. printf("RPMB Write counter= %lx\n", counter);
  183. return CMD_RET_SUCCESS;
  184. }
  185. static cmd_tbl_t cmd_rpmb[] = {
  186. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  187. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  188. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  189. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  190. };
  191. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  192. int argc, char * const argv[])
  193. {
  194. cmd_tbl_t *cp;
  195. struct mmc *mmc;
  196. char original_part;
  197. int ret;
  198. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  199. /* Drop the rpmb subcommand */
  200. argc--;
  201. argv++;
  202. if (cp == NULL || argc > cp->maxargs)
  203. return CMD_RET_USAGE;
  204. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  205. return CMD_RET_SUCCESS;
  206. mmc = init_mmc_device(curr_device, false);
  207. if (!mmc)
  208. return CMD_RET_FAILURE;
  209. if (!(mmc->version & MMC_VERSION_MMC)) {
  210. printf("It is not a EMMC device\n");
  211. return CMD_RET_FAILURE;
  212. }
  213. if (mmc->version < MMC_VERSION_4_41) {
  214. printf("RPMB not supported before version 4.41\n");
  215. return CMD_RET_FAILURE;
  216. }
  217. /* Switch to the RPMB partition */
  218. #ifndef CONFIG_BLK
  219. original_part = mmc->block_dev.hwpart;
  220. #else
  221. original_part = mmc_get_blk_desc(mmc)->hwpart;
  222. #endif
  223. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  224. 0)
  225. return CMD_RET_FAILURE;
  226. ret = cp->cmd(cmdtp, flag, argc, argv);
  227. /* Return to original partition */
  228. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  229. 0)
  230. return CMD_RET_FAILURE;
  231. return ret;
  232. }
  233. #endif
  234. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  235. int argc, char * const argv[])
  236. {
  237. struct mmc *mmc;
  238. u32 blk, cnt, n;
  239. void *addr;
  240. if (argc != 4)
  241. return CMD_RET_USAGE;
  242. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  243. blk = simple_strtoul(argv[2], NULL, 16);
  244. cnt = simple_strtoul(argv[3], NULL, 16);
  245. mmc = init_mmc_device(curr_device, false);
  246. if (!mmc)
  247. return CMD_RET_FAILURE;
  248. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  249. curr_device, blk, cnt);
  250. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  251. /* flush cache after read */
  252. flush_cache((ulong)addr, cnt * 512); /* FIXME */
  253. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  254. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  255. }
  256. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  257. int argc, char * const argv[])
  258. {
  259. struct mmc *mmc;
  260. u32 blk, cnt, n;
  261. void *addr;
  262. if (argc != 4)
  263. return CMD_RET_USAGE;
  264. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  265. blk = simple_strtoul(argv[2], NULL, 16);
  266. cnt = simple_strtoul(argv[3], NULL, 16);
  267. mmc = init_mmc_device(curr_device, false);
  268. if (!mmc)
  269. return CMD_RET_FAILURE;
  270. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  271. curr_device, blk, cnt);
  272. if (mmc_getwp(mmc) == 1) {
  273. printf("Error: card is write protected!\n");
  274. return CMD_RET_FAILURE;
  275. }
  276. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  277. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  278. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  279. }
  280. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  281. int argc, char * const argv[])
  282. {
  283. struct mmc *mmc;
  284. u32 blk, cnt, n;
  285. if (argc != 3)
  286. return CMD_RET_USAGE;
  287. blk = simple_strtoul(argv[1], NULL, 16);
  288. cnt = simple_strtoul(argv[2], NULL, 16);
  289. mmc = init_mmc_device(curr_device, false);
  290. if (!mmc)
  291. return CMD_RET_FAILURE;
  292. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  293. curr_device, blk, cnt);
  294. if (mmc_getwp(mmc) == 1) {
  295. printf("Error: card is write protected!\n");
  296. return CMD_RET_FAILURE;
  297. }
  298. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  299. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  300. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  301. }
  302. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  303. int argc, char * const argv[])
  304. {
  305. struct mmc *mmc;
  306. mmc = init_mmc_device(curr_device, true);
  307. if (!mmc)
  308. return CMD_RET_FAILURE;
  309. return CMD_RET_SUCCESS;
  310. }
  311. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  312. int argc, char * const argv[])
  313. {
  314. struct blk_desc *mmc_dev;
  315. struct mmc *mmc;
  316. mmc = init_mmc_device(curr_device, false);
  317. if (!mmc)
  318. return CMD_RET_FAILURE;
  319. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  320. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  321. part_print(mmc_dev);
  322. return CMD_RET_SUCCESS;
  323. }
  324. puts("get mmc type error!\n");
  325. return CMD_RET_FAILURE;
  326. }
  327. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  328. int argc, char * const argv[])
  329. {
  330. int dev, part = 0, ret;
  331. struct mmc *mmc;
  332. if (argc == 1) {
  333. dev = curr_device;
  334. } else if (argc == 2) {
  335. dev = simple_strtoul(argv[1], NULL, 10);
  336. } else if (argc == 3) {
  337. dev = (int)simple_strtoul(argv[1], NULL, 10);
  338. part = (int)simple_strtoul(argv[2], NULL, 10);
  339. if (part > PART_ACCESS_MASK) {
  340. printf("#part_num shouldn't be larger than %d\n",
  341. PART_ACCESS_MASK);
  342. return CMD_RET_FAILURE;
  343. }
  344. } else {
  345. return CMD_RET_USAGE;
  346. }
  347. mmc = init_mmc_device(dev, true);
  348. if (!mmc)
  349. return CMD_RET_FAILURE;
  350. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  351. printf("switch to partitions #%d, %s\n",
  352. part, (!ret) ? "OK" : "ERROR");
  353. if (ret)
  354. return 1;
  355. curr_device = dev;
  356. if (mmc->part_config == MMCPART_NOAVAILABLE)
  357. printf("mmc%d is current device\n", curr_device);
  358. else
  359. printf("mmc%d(part %d) is current device\n",
  360. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  361. return CMD_RET_SUCCESS;
  362. }
  363. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  364. int argc, char * const argv[])
  365. {
  366. print_mmc_devices('\n');
  367. return CMD_RET_SUCCESS;
  368. }
  369. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  370. int argc, char * const argv[])
  371. {
  372. int i = 0;
  373. memset(&pconf->user, 0, sizeof(pconf->user));
  374. while (i < argc) {
  375. if (!strcmp(argv[i], "enh")) {
  376. if (i + 2 >= argc)
  377. return -1;
  378. pconf->user.enh_start =
  379. simple_strtoul(argv[i+1], NULL, 10);
  380. pconf->user.enh_size =
  381. simple_strtoul(argv[i+2], NULL, 10);
  382. i += 3;
  383. } else if (!strcmp(argv[i], "wrrel")) {
  384. if (i + 1 >= argc)
  385. return -1;
  386. pconf->user.wr_rel_change = 1;
  387. if (!strcmp(argv[i+1], "on"))
  388. pconf->user.wr_rel_set = 1;
  389. else if (!strcmp(argv[i+1], "off"))
  390. pconf->user.wr_rel_set = 0;
  391. else
  392. return -1;
  393. i += 2;
  394. } else {
  395. break;
  396. }
  397. }
  398. return i;
  399. }
  400. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  401. int argc, char * const argv[])
  402. {
  403. int i;
  404. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  405. if (1 >= argc)
  406. return -1;
  407. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  408. i = 1;
  409. while (i < argc) {
  410. if (!strcmp(argv[i], "enh")) {
  411. pconf->gp_part[pidx].enhanced = 1;
  412. i += 1;
  413. } else if (!strcmp(argv[i], "wrrel")) {
  414. if (i + 1 >= argc)
  415. return -1;
  416. pconf->gp_part[pidx].wr_rel_change = 1;
  417. if (!strcmp(argv[i+1], "on"))
  418. pconf->gp_part[pidx].wr_rel_set = 1;
  419. else if (!strcmp(argv[i+1], "off"))
  420. pconf->gp_part[pidx].wr_rel_set = 0;
  421. else
  422. return -1;
  423. i += 2;
  424. } else {
  425. break;
  426. }
  427. }
  428. return i;
  429. }
  430. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  431. int argc, char * const argv[])
  432. {
  433. struct mmc *mmc;
  434. struct mmc_hwpart_conf pconf = { };
  435. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  436. int i, r, pidx;
  437. mmc = init_mmc_device(curr_device, false);
  438. if (!mmc)
  439. return CMD_RET_FAILURE;
  440. if (argc < 1)
  441. return CMD_RET_USAGE;
  442. i = 1;
  443. while (i < argc) {
  444. if (!strcmp(argv[i], "user")) {
  445. i++;
  446. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  447. if (r < 0)
  448. return CMD_RET_USAGE;
  449. i += r;
  450. } else if (!strncmp(argv[i], "gp", 2) &&
  451. strlen(argv[i]) == 3 &&
  452. argv[i][2] >= '1' && argv[i][2] <= '4') {
  453. pidx = argv[i][2] - '1';
  454. i++;
  455. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  456. if (r < 0)
  457. return CMD_RET_USAGE;
  458. i += r;
  459. } else if (!strcmp(argv[i], "check")) {
  460. mode = MMC_HWPART_CONF_CHECK;
  461. i++;
  462. } else if (!strcmp(argv[i], "set")) {
  463. mode = MMC_HWPART_CONF_SET;
  464. i++;
  465. } else if (!strcmp(argv[i], "complete")) {
  466. mode = MMC_HWPART_CONF_COMPLETE;
  467. i++;
  468. } else {
  469. return CMD_RET_USAGE;
  470. }
  471. }
  472. puts("Partition configuration:\n");
  473. if (pconf.user.enh_size) {
  474. puts("\tUser Enhanced Start: ");
  475. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  476. puts("\tUser Enhanced Size: ");
  477. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  478. } else {
  479. puts("\tNo enhanced user data area\n");
  480. }
  481. if (pconf.user.wr_rel_change)
  482. printf("\tUser partition write reliability: %s\n",
  483. pconf.user.wr_rel_set ? "on" : "off");
  484. for (pidx = 0; pidx < 4; pidx++) {
  485. if (pconf.gp_part[pidx].size) {
  486. printf("\tGP%i Capacity: ", pidx+1);
  487. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  488. pconf.gp_part[pidx].enhanced ?
  489. " ENH\n" : "\n");
  490. } else {
  491. printf("\tNo GP%i partition\n", pidx+1);
  492. }
  493. if (pconf.gp_part[pidx].wr_rel_change)
  494. printf("\tGP%i write reliability: %s\n", pidx+1,
  495. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  496. }
  497. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  498. if (mode == MMC_HWPART_CONF_COMPLETE)
  499. puts("Partitioning successful, "
  500. "power-cycle to make effective\n");
  501. return CMD_RET_SUCCESS;
  502. } else {
  503. puts("Failed!\n");
  504. return CMD_RET_FAILURE;
  505. }
  506. }
  507. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  508. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  509. int argc, char * const argv[])
  510. {
  511. int dev;
  512. struct mmc *mmc;
  513. u8 width, reset, mode;
  514. if (argc != 5)
  515. return CMD_RET_USAGE;
  516. dev = simple_strtoul(argv[1], NULL, 10);
  517. width = simple_strtoul(argv[2], NULL, 10);
  518. reset = simple_strtoul(argv[3], NULL, 10);
  519. mode = simple_strtoul(argv[4], NULL, 10);
  520. mmc = init_mmc_device(dev, false);
  521. if (!mmc)
  522. return CMD_RET_FAILURE;
  523. if (IS_SD(mmc)) {
  524. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  525. return CMD_RET_FAILURE;
  526. }
  527. /* acknowledge to be sent during boot operation */
  528. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  529. }
  530. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  531. int argc, char * const argv[])
  532. {
  533. int dev;
  534. struct mmc *mmc;
  535. u32 bootsize, rpmbsize;
  536. if (argc != 4)
  537. return CMD_RET_USAGE;
  538. dev = simple_strtoul(argv[1], NULL, 10);
  539. bootsize = simple_strtoul(argv[2], NULL, 10);
  540. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  541. mmc = init_mmc_device(dev, false);
  542. if (!mmc)
  543. return CMD_RET_FAILURE;
  544. if (IS_SD(mmc)) {
  545. printf("It is not a EMMC device\n");
  546. return CMD_RET_FAILURE;
  547. }
  548. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  549. printf("EMMC boot partition Size change Failed.\n");
  550. return CMD_RET_FAILURE;
  551. }
  552. printf("EMMC boot partition Size %d MB\n", bootsize);
  553. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  554. return CMD_RET_SUCCESS;
  555. }
  556. static int mmc_partconf_print(struct mmc *mmc)
  557. {
  558. u8 ack, access, part;
  559. if (mmc->part_config == MMCPART_NOAVAILABLE) {
  560. printf("No part_config info for ver. 0x%x\n", mmc->version);
  561. return CMD_RET_FAILURE;
  562. }
  563. access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
  564. ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
  565. part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
  566. printf("EXT_CSD[179], PARTITION_CONFIG:\n"
  567. "BOOT_ACK: 0x%x\n"
  568. "BOOT_PARTITION_ENABLE: 0x%x\n"
  569. "PARTITION_ACCESS: 0x%x\n", ack, part, access);
  570. return CMD_RET_SUCCESS;
  571. }
  572. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  573. int argc, char * const argv[])
  574. {
  575. int dev;
  576. struct mmc *mmc;
  577. u8 ack, part_num, access;
  578. if (argc != 2 && argc != 5)
  579. return CMD_RET_USAGE;
  580. dev = simple_strtoul(argv[1], NULL, 10);
  581. mmc = init_mmc_device(dev, false);
  582. if (!mmc)
  583. return CMD_RET_FAILURE;
  584. if (IS_SD(mmc)) {
  585. puts("PARTITION_CONFIG only exists on eMMC\n");
  586. return CMD_RET_FAILURE;
  587. }
  588. if (argc == 2)
  589. return mmc_partconf_print(mmc);
  590. ack = simple_strtoul(argv[2], NULL, 10);
  591. part_num = simple_strtoul(argv[3], NULL, 10);
  592. access = simple_strtoul(argv[4], NULL, 10);
  593. /* acknowledge to be sent during boot operation */
  594. return mmc_set_part_conf(mmc, ack, part_num, access);
  595. }
  596. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  597. int argc, char * const argv[])
  598. {
  599. int dev;
  600. struct mmc *mmc;
  601. u8 enable;
  602. /*
  603. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  604. * The only valid values are 0x0, 0x1 and 0x2 and writing
  605. * a value of 0x1 or 0x2 sets the value permanently.
  606. */
  607. if (argc != 3)
  608. return CMD_RET_USAGE;
  609. dev = simple_strtoul(argv[1], NULL, 10);
  610. enable = simple_strtoul(argv[2], NULL, 10);
  611. if (enable > 2) {
  612. puts("Invalid RST_n_ENABLE value\n");
  613. return CMD_RET_USAGE;
  614. }
  615. mmc = init_mmc_device(dev, false);
  616. if (!mmc)
  617. return CMD_RET_FAILURE;
  618. if (IS_SD(mmc)) {
  619. puts("RST_n_FUNCTION only exists on eMMC\n");
  620. return CMD_RET_FAILURE;
  621. }
  622. return mmc_set_rst_n_function(mmc, enable);
  623. }
  624. #endif
  625. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  626. int argc, char * const argv[])
  627. {
  628. struct mmc *mmc;
  629. u32 val;
  630. int ret;
  631. if (argc != 2)
  632. return CMD_RET_USAGE;
  633. val = simple_strtoul(argv[1], NULL, 16);
  634. mmc = find_mmc_device(curr_device);
  635. if (!mmc) {
  636. printf("no mmc device at slot %x\n", curr_device);
  637. return CMD_RET_FAILURE;
  638. }
  639. ret = mmc_set_dsr(mmc, val);
  640. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  641. if (!ret) {
  642. mmc->has_init = 0;
  643. if (mmc_init(mmc))
  644. return CMD_RET_FAILURE;
  645. else
  646. return CMD_RET_SUCCESS;
  647. }
  648. return ret;
  649. }
  650. #ifdef CONFIG_CMD_BKOPS_ENABLE
  651. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  652. int argc, char * const argv[])
  653. {
  654. int dev;
  655. struct mmc *mmc;
  656. if (argc != 2)
  657. return CMD_RET_USAGE;
  658. dev = simple_strtoul(argv[1], NULL, 10);
  659. mmc = init_mmc_device(dev, false);
  660. if (!mmc)
  661. return CMD_RET_FAILURE;
  662. if (IS_SD(mmc)) {
  663. puts("BKOPS_EN only exists on eMMC\n");
  664. return CMD_RET_FAILURE;
  665. }
  666. return mmc_set_bkops_enable(mmc);
  667. }
  668. #endif
  669. static cmd_tbl_t cmd_mmc[] = {
  670. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  671. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  672. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  673. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  674. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  675. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  676. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  677. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  678. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  679. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  680. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  681. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  682. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  683. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  684. #endif
  685. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  686. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  687. #endif
  688. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  689. #ifdef CONFIG_CMD_BKOPS_ENABLE
  690. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  691. #endif
  692. };
  693. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  694. {
  695. cmd_tbl_t *cp;
  696. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  697. /* Drop the mmc command */
  698. argc--;
  699. argv++;
  700. if (cp == NULL || argc > cp->maxargs)
  701. return CMD_RET_USAGE;
  702. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  703. return CMD_RET_SUCCESS;
  704. if (curr_device < 0) {
  705. if (get_mmc_num() > 0) {
  706. curr_device = 0;
  707. } else {
  708. puts("No MMC device available\n");
  709. return CMD_RET_FAILURE;
  710. }
  711. }
  712. return cp->cmd(cmdtp, flag, argc, argv);
  713. }
  714. U_BOOT_CMD(
  715. mmc, 29, 1, do_mmcops,
  716. "MMC sub system",
  717. "info - display info of the current MMC device\n"
  718. "mmc read addr blk# cnt\n"
  719. "mmc write addr blk# cnt\n"
  720. "mmc erase blk# cnt\n"
  721. "mmc rescan\n"
  722. "mmc part - lists available partition on current mmc device\n"
  723. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  724. "mmc list - lists available devices\n"
  725. "mmc hwpartition [args...] - does hardware partitioning\n"
  726. " arguments (sizes in 512-byte blocks):\n"
  727. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  728. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  729. " [check|set|complete] - mode, complete set partitioning completed\n"
  730. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  731. " Power cycling is required to initialize partitions after set to complete.\n"
  732. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  733. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  734. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  735. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  736. " - Change sizes of boot and RPMB partitions of specified device\n"
  737. "mmc partconf dev [boot_ack boot_partition partition_access]\n"
  738. " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
  739. "mmc rst-function dev value\n"
  740. " - Change the RST_n_FUNCTION field of the specified device\n"
  741. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  742. #endif
  743. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  744. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  745. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  746. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  747. "mmc rpmb counter - read the value of the write counter\n"
  748. #endif
  749. "mmc setdsr <value> - set DSR register value\n"
  750. #ifdef CONFIG_CMD_BKOPS_ENABLE
  751. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  752. " WARNING: This is a write-once setting.\n"
  753. #endif
  754. );
  755. /* Old command kept for compatibility. Same as 'mmc info' */
  756. U_BOOT_CMD(
  757. mmcinfo, 1, 0, do_mmcinfo,
  758. "display MMC info",
  759. "- display info of the current MMC device"
  760. );