eepro100.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932
  1. /*
  2. * (C) Copyright 2002
  3. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <malloc.h>
  9. #include <net.h>
  10. #include <netdev.h>
  11. #include <asm/io.h>
  12. #include <pci.h>
  13. #include <miiphy.h>
  14. #undef DEBUG
  15. /* Ethernet chip registers.
  16. */
  17. #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
  18. #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
  19. #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
  20. #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
  21. #define SCBPointer 4 /* General purpose pointer. */
  22. #define SCBPort 8 /* Misc. commands and operands. */
  23. #define SCBflash 12 /* Flash memory control. */
  24. #define SCBeeprom 14 /* EEPROM memory control. */
  25. #define SCBCtrlMDI 16 /* MDI interface control. */
  26. #define SCBEarlyRx 20 /* Early receive byte count. */
  27. #define SCBGenControl 28 /* 82559 General Control Register */
  28. #define SCBGenStatus 29 /* 82559 General Status register */
  29. /* 82559 SCB status word defnitions
  30. */
  31. #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
  32. #define SCB_STATUS_FR 0x4000 /* frame received */
  33. #define SCB_STATUS_CNA 0x2000 /* CU left active state */
  34. #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
  35. #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
  36. #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
  37. #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
  38. #define SCB_INTACK_MASK 0xFD00 /* all the above */
  39. #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
  40. #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
  41. /* System control block commands
  42. */
  43. /* CU Commands */
  44. #define CU_NOP 0x0000
  45. #define CU_START 0x0010
  46. #define CU_RESUME 0x0020
  47. #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
  48. #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
  49. #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
  50. #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
  51. /* RUC Commands */
  52. #define RUC_NOP 0x0000
  53. #define RUC_START 0x0001
  54. #define RUC_RESUME 0x0002
  55. #define RUC_ABORT 0x0004
  56. #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
  57. #define RUC_RESUMENR 0x0007
  58. #define CU_CMD_MASK 0x00f0
  59. #define RU_CMD_MASK 0x0007
  60. #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
  61. #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
  62. #define CU_STATUS_MASK 0x00C0
  63. #define RU_STATUS_MASK 0x003C
  64. #define RU_STATUS_IDLE (0<<2)
  65. #define RU_STATUS_SUS (1<<2)
  66. #define RU_STATUS_NORES (2<<2)
  67. #define RU_STATUS_READY (4<<2)
  68. #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
  69. #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
  70. #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
  71. /* 82559 Port interface commands.
  72. */
  73. #define I82559_RESET 0x00000000 /* Software reset */
  74. #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
  75. #define I82559_SELECTIVE_RESET 0x00000002
  76. #define I82559_DUMP 0x00000003
  77. #define I82559_DUMP_WAKEUP 0x00000007
  78. /* 82559 Eeprom interface.
  79. */
  80. #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
  81. #define EE_CS 0x02 /* EEPROM chip select. */
  82. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  83. #define EE_WRITE_0 0x01
  84. #define EE_WRITE_1 0x05
  85. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  86. #define EE_ENB (0x4800 | EE_CS)
  87. #define EE_CMD_BITS 3
  88. #define EE_DATA_BITS 16
  89. /* The EEPROM commands include the alway-set leading bit.
  90. */
  91. #define EE_EWENB_CMD (4 << addr_len)
  92. #define EE_WRITE_CMD (5 << addr_len)
  93. #define EE_READ_CMD (6 << addr_len)
  94. #define EE_ERASE_CMD (7 << addr_len)
  95. /* Receive frame descriptors.
  96. */
  97. struct RxFD {
  98. volatile u16 status;
  99. volatile u16 control;
  100. volatile u32 link; /* struct RxFD * */
  101. volatile u32 rx_buf_addr; /* void * */
  102. volatile u32 count;
  103. volatile u8 data[PKTSIZE_ALIGN];
  104. };
  105. #define RFD_STATUS_C 0x8000 /* completion of received frame */
  106. #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
  107. #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
  108. #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
  109. #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
  110. #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
  111. #define RFD_COUNT_MASK 0x3fff
  112. #define RFD_COUNT_F 0x4000
  113. #define RFD_COUNT_EOF 0x8000
  114. #define RFD_RX_CRC 0x0800 /* crc error */
  115. #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
  116. #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
  117. #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
  118. #define RFD_RX_SHORT 0x0080 /* short frame error */
  119. #define RFD_RX_LENGTH 0x0020
  120. #define RFD_RX_ERROR 0x0010 /* receive error */
  121. #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
  122. #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
  123. #define RFD_RX_TCO 0x0001 /* TCO indication */
  124. /* Transmit frame descriptors
  125. */
  126. struct TxFD { /* Transmit frame descriptor set. */
  127. volatile u16 status;
  128. volatile u16 command;
  129. volatile u32 link; /* void * */
  130. volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
  131. volatile s32 count;
  132. volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
  133. volatile s32 tx_buf_size0; /* Length of Tx frame. */
  134. volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
  135. volatile s32 tx_buf_size1; /* Length of Tx frame. */
  136. };
  137. #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
  138. #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
  139. #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
  140. #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
  141. #define TxCB_CMD_S 0x4000 /* suspend on completion */
  142. #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
  143. #define TxCB_COUNT_MASK 0x3fff
  144. #define TxCB_COUNT_EOF 0x8000
  145. /* The Speedo3 Rx and Tx frame/buffer descriptors.
  146. */
  147. struct descriptor { /* A generic descriptor. */
  148. volatile u16 status;
  149. volatile u16 command;
  150. volatile u32 link; /* struct descriptor * */
  151. unsigned char params[0];
  152. };
  153. #define CONFIG_SYS_CMD_EL 0x8000
  154. #define CONFIG_SYS_CMD_SUSPEND 0x4000
  155. #define CONFIG_SYS_CMD_INT 0x2000
  156. #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
  157. #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
  158. #define CONFIG_SYS_STATUS_C 0x8000
  159. #define CONFIG_SYS_STATUS_OK 0x2000
  160. /* Misc.
  161. */
  162. #define NUM_RX_DESC PKTBUFSRX
  163. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  164. #define TOUT_LOOP 1000000
  165. #define ETH_ALEN 6
  166. static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
  167. static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
  168. static int rx_next; /* RX descriptor ring pointer */
  169. static int tx_next; /* TX descriptor ring pointer */
  170. static int tx_threshold;
  171. /*
  172. * The parameters for a CmdConfigure operation.
  173. * There are so many options that it would be difficult to document
  174. * each bit. We mostly use the default or recommended settings.
  175. */
  176. static const char i82557_config_cmd[] = {
  177. 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
  178. 0, 0x2E, 0, 0x60, 0,
  179. 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
  180. 0x3f, 0x05,
  181. };
  182. static const char i82558_config_cmd[] = {
  183. 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
  184. 0, 0x2E, 0, 0x60, 0x08, 0x88,
  185. 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
  186. 0x31, 0x05,
  187. };
  188. static void init_rx_ring (struct eth_device *dev);
  189. static void purge_tx_ring (struct eth_device *dev);
  190. static void read_hw_addr (struct eth_device *dev, bd_t * bis);
  191. static int eepro100_init (struct eth_device *dev, bd_t * bis);
  192. static int eepro100_send(struct eth_device *dev, void *packet, int length);
  193. static int eepro100_recv (struct eth_device *dev);
  194. static void eepro100_halt (struct eth_device *dev);
  195. #if defined(CONFIG_E500)
  196. #define bus_to_phys(a) (a)
  197. #define phys_to_bus(a) (a)
  198. #else
  199. #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
  200. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  201. #endif
  202. static inline int INW (struct eth_device *dev, u_long addr)
  203. {
  204. return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
  205. }
  206. static inline void OUTW (struct eth_device *dev, int command, u_long addr)
  207. {
  208. *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
  209. }
  210. static inline void OUTL (struct eth_device *dev, int command, u_long addr)
  211. {
  212. *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
  213. }
  214. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  215. static inline int INL (struct eth_device *dev, u_long addr)
  216. {
  217. return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
  218. }
  219. static int get_phyreg (struct eth_device *dev, unsigned char addr,
  220. unsigned char reg, unsigned short *value)
  221. {
  222. int cmd;
  223. int timeout = 50;
  224. /* read requested data */
  225. cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  226. OUTL (dev, cmd, SCBCtrlMDI);
  227. do {
  228. udelay(1000);
  229. cmd = INL (dev, SCBCtrlMDI);
  230. } while (!(cmd & (1 << 28)) && (--timeout));
  231. if (timeout == 0)
  232. return -1;
  233. *value = (unsigned short) (cmd & 0xffff);
  234. return 0;
  235. }
  236. static int set_phyreg (struct eth_device *dev, unsigned char addr,
  237. unsigned char reg, unsigned short value)
  238. {
  239. int cmd;
  240. int timeout = 50;
  241. /* write requested data */
  242. cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  243. OUTL (dev, cmd | value, SCBCtrlMDI);
  244. while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
  245. udelay(1000);
  246. if (timeout == 0)
  247. return -1;
  248. return 0;
  249. }
  250. /* Check if given phyaddr is valid, i.e. there is a PHY connected.
  251. * Do this by checking model value field from ID2 register.
  252. */
  253. static struct eth_device* verify_phyaddr (const char *devname,
  254. unsigned char addr)
  255. {
  256. struct eth_device *dev;
  257. unsigned short value;
  258. unsigned char model;
  259. dev = eth_get_dev_by_name(devname);
  260. if (dev == NULL) {
  261. printf("%s: no such device\n", devname);
  262. return NULL;
  263. }
  264. /* read id2 register */
  265. if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
  266. printf("%s: mii read timeout!\n", devname);
  267. return NULL;
  268. }
  269. /* get model */
  270. model = (unsigned char)((value >> 4) & 0x003f);
  271. if (model == 0) {
  272. printf("%s: no PHY at address %d\n", devname, addr);
  273. return NULL;
  274. }
  275. return dev;
  276. }
  277. static int eepro100_miiphy_read(const char *devname, unsigned char addr,
  278. unsigned char reg, unsigned short *value)
  279. {
  280. struct eth_device *dev;
  281. dev = verify_phyaddr(devname, addr);
  282. if (dev == NULL)
  283. return -1;
  284. if (get_phyreg(dev, addr, reg, value) != 0) {
  285. printf("%s: mii read timeout!\n", devname);
  286. return -1;
  287. }
  288. return 0;
  289. }
  290. static int eepro100_miiphy_write(const char *devname, unsigned char addr,
  291. unsigned char reg, unsigned short value)
  292. {
  293. struct eth_device *dev;
  294. dev = verify_phyaddr(devname, addr);
  295. if (dev == NULL)
  296. return -1;
  297. if (set_phyreg(dev, addr, reg, value) != 0) {
  298. printf("%s: mii write timeout!\n", devname);
  299. return -1;
  300. }
  301. return 0;
  302. }
  303. #endif
  304. /* Wait for the chip get the command.
  305. */
  306. static int wait_for_eepro100 (struct eth_device *dev)
  307. {
  308. int i;
  309. for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
  310. if (i >= TOUT_LOOP) {
  311. return 0;
  312. }
  313. }
  314. return 1;
  315. }
  316. static struct pci_device_id supported[] = {
  317. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
  318. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
  319. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
  320. {}
  321. };
  322. int eepro100_initialize (bd_t * bis)
  323. {
  324. pci_dev_t devno;
  325. int card_number = 0;
  326. struct eth_device *dev;
  327. u32 iobase, status;
  328. int idx = 0;
  329. while (1) {
  330. /* Find PCI device
  331. */
  332. if ((devno = pci_find_devices (supported, idx++)) < 0) {
  333. break;
  334. }
  335. pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
  336. iobase &= ~0xf;
  337. #ifdef DEBUG
  338. printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
  339. iobase);
  340. #endif
  341. pci_write_config_dword (devno,
  342. PCI_COMMAND,
  343. PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
  344. /* Check if I/O accesses and Bus Mastering are enabled.
  345. */
  346. pci_read_config_dword (devno, PCI_COMMAND, &status);
  347. if (!(status & PCI_COMMAND_MEMORY)) {
  348. printf ("Error: Can not enable MEM access.\n");
  349. continue;
  350. }
  351. if (!(status & PCI_COMMAND_MASTER)) {
  352. printf ("Error: Can not enable Bus Mastering.\n");
  353. continue;
  354. }
  355. dev = (struct eth_device *) malloc (sizeof *dev);
  356. if (!dev) {
  357. printf("eepro100: Can not allocate memory\n");
  358. break;
  359. }
  360. memset(dev, 0, sizeof(*dev));
  361. sprintf (dev->name, "i82559#%d", card_number);
  362. dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
  363. dev->iobase = bus_to_phys (iobase);
  364. dev->init = eepro100_init;
  365. dev->halt = eepro100_halt;
  366. dev->send = eepro100_send;
  367. dev->recv = eepro100_recv;
  368. eth_register (dev);
  369. #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
  370. /* register mii command access routines */
  371. miiphy_register(dev->name,
  372. eepro100_miiphy_read, eepro100_miiphy_write);
  373. #endif
  374. card_number++;
  375. /* Set the latency timer for value.
  376. */
  377. pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
  378. udelay (10 * 1000);
  379. read_hw_addr (dev, bis);
  380. }
  381. return card_number;
  382. }
  383. static int eepro100_init (struct eth_device *dev, bd_t * bis)
  384. {
  385. int i, status = -1;
  386. int tx_cur;
  387. struct descriptor *ias_cmd, *cfg_cmd;
  388. /* Reset the ethernet controller
  389. */
  390. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  391. udelay (20);
  392. OUTL (dev, I82559_RESET, SCBPort);
  393. udelay (20);
  394. if (!wait_for_eepro100 (dev)) {
  395. printf ("Error: Can not reset ethernet controller.\n");
  396. goto Done;
  397. }
  398. OUTL (dev, 0, SCBPointer);
  399. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  400. if (!wait_for_eepro100 (dev)) {
  401. printf ("Error: Can not reset ethernet controller.\n");
  402. goto Done;
  403. }
  404. OUTL (dev, 0, SCBPointer);
  405. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  406. /* Initialize Rx and Tx rings.
  407. */
  408. init_rx_ring (dev);
  409. purge_tx_ring (dev);
  410. /* Tell the adapter where the RX ring is located.
  411. */
  412. if (!wait_for_eepro100 (dev)) {
  413. printf ("Error: Can not reset ethernet controller.\n");
  414. goto Done;
  415. }
  416. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  417. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  418. /* Send the Configure frame */
  419. tx_cur = tx_next;
  420. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  421. cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
  422. cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
  423. cfg_cmd->status = 0;
  424. cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  425. memcpy (cfg_cmd->params, i82558_config_cmd,
  426. sizeof (i82558_config_cmd));
  427. if (!wait_for_eepro100 (dev)) {
  428. printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
  429. goto Done;
  430. }
  431. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  432. OUTW (dev, SCB_M | CU_START, SCBCmd);
  433. for (i = 0;
  434. !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  435. i++) {
  436. if (i >= TOUT_LOOP) {
  437. printf ("%s: Tx error buffer not ready\n", dev->name);
  438. goto Done;
  439. }
  440. }
  441. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  442. printf ("TX error status = 0x%08X\n",
  443. le16_to_cpu (tx_ring[tx_cur].status));
  444. goto Done;
  445. }
  446. /* Send the Individual Address Setup frame
  447. */
  448. tx_cur = tx_next;
  449. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  450. ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
  451. ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
  452. ias_cmd->status = 0;
  453. ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  454. memcpy (ias_cmd->params, dev->enetaddr, 6);
  455. /* Tell the adapter where the TX ring is located.
  456. */
  457. if (!wait_for_eepro100 (dev)) {
  458. printf ("Error: Can not reset ethernet controller.\n");
  459. goto Done;
  460. }
  461. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  462. OUTW (dev, SCB_M | CU_START, SCBCmd);
  463. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  464. i++) {
  465. if (i >= TOUT_LOOP) {
  466. printf ("%s: Tx error buffer not ready\n",
  467. dev->name);
  468. goto Done;
  469. }
  470. }
  471. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  472. printf ("TX error status = 0x%08X\n",
  473. le16_to_cpu (tx_ring[tx_cur].status));
  474. goto Done;
  475. }
  476. status = 0;
  477. Done:
  478. return status;
  479. }
  480. static int eepro100_send(struct eth_device *dev, void *packet, int length)
  481. {
  482. int i, status = -1;
  483. int tx_cur;
  484. if (length <= 0) {
  485. printf ("%s: bad packet size: %d\n", dev->name, length);
  486. goto Done;
  487. }
  488. tx_cur = tx_next;
  489. tx_next = (tx_next + 1) % NUM_TX_DESC;
  490. tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
  491. TxCB_CMD_SF |
  492. TxCB_CMD_S |
  493. TxCB_CMD_EL );
  494. tx_ring[tx_cur].status = 0;
  495. tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
  496. tx_ring[tx_cur].link =
  497. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  498. tx_ring[tx_cur].tx_desc_addr =
  499. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
  500. tx_ring[tx_cur].tx_buf_addr0 =
  501. cpu_to_le32 (phys_to_bus ((u_long) packet));
  502. tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
  503. if (!wait_for_eepro100 (dev)) {
  504. printf ("%s: Tx error ethernet controller not ready.\n",
  505. dev->name);
  506. goto Done;
  507. }
  508. /* Send the packet.
  509. */
  510. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  511. OUTW (dev, SCB_M | CU_START, SCBCmd);
  512. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  513. i++) {
  514. if (i >= TOUT_LOOP) {
  515. printf ("%s: Tx error buffer not ready\n", dev->name);
  516. goto Done;
  517. }
  518. }
  519. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  520. printf ("TX error status = 0x%08X\n",
  521. le16_to_cpu (tx_ring[tx_cur].status));
  522. goto Done;
  523. }
  524. status = length;
  525. Done:
  526. return status;
  527. }
  528. static int eepro100_recv (struct eth_device *dev)
  529. {
  530. u16 status, stat;
  531. int rx_prev, length = 0;
  532. stat = INW (dev, SCBStatus);
  533. OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
  534. for (;;) {
  535. status = le16_to_cpu (rx_ring[rx_next].status);
  536. if (!(status & RFD_STATUS_C)) {
  537. break;
  538. }
  539. /* Valid frame status.
  540. */
  541. if ((status & RFD_STATUS_OK)) {
  542. /* A valid frame received.
  543. */
  544. length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
  545. /* Pass the packet up to the protocol
  546. * layers.
  547. */
  548. net_process_received_packet((u8 *)rx_ring[rx_next].data,
  549. length);
  550. } else {
  551. /* There was an error.
  552. */
  553. printf ("RX error status = 0x%08X\n", status);
  554. }
  555. rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
  556. rx_ring[rx_next].status = 0;
  557. rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  558. rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
  559. rx_ring[rx_prev].control = 0;
  560. /* Update entry information.
  561. */
  562. rx_next = (rx_next + 1) % NUM_RX_DESC;
  563. }
  564. if (stat & SCB_STATUS_RNR) {
  565. printf ("%s: Receiver is not ready, restart it !\n", dev->name);
  566. /* Reinitialize Rx ring.
  567. */
  568. init_rx_ring (dev);
  569. if (!wait_for_eepro100 (dev)) {
  570. printf ("Error: Can not restart ethernet controller.\n");
  571. goto Done;
  572. }
  573. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  574. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  575. }
  576. Done:
  577. return length;
  578. }
  579. static void eepro100_halt (struct eth_device *dev)
  580. {
  581. /* Reset the ethernet controller
  582. */
  583. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  584. udelay (20);
  585. OUTL (dev, I82559_RESET, SCBPort);
  586. udelay (20);
  587. if (!wait_for_eepro100 (dev)) {
  588. printf ("Error: Can not reset ethernet controller.\n");
  589. goto Done;
  590. }
  591. OUTL (dev, 0, SCBPointer);
  592. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  593. if (!wait_for_eepro100 (dev)) {
  594. printf ("Error: Can not reset ethernet controller.\n");
  595. goto Done;
  596. }
  597. OUTL (dev, 0, SCBPointer);
  598. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  599. Done:
  600. return;
  601. }
  602. /* SROM Read.
  603. */
  604. static int read_eeprom (struct eth_device *dev, int location, int addr_len)
  605. {
  606. unsigned short retval = 0;
  607. int read_cmd = location | EE_READ_CMD;
  608. int i;
  609. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  610. OUTW (dev, EE_ENB, SCBeeprom);
  611. /* Shift the read command bits out. */
  612. for (i = 12; i >= 0; i--) {
  613. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  614. OUTW (dev, EE_ENB | dataval, SCBeeprom);
  615. udelay (1);
  616. OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  617. udelay (1);
  618. }
  619. OUTW (dev, EE_ENB, SCBeeprom);
  620. for (i = 15; i >= 0; i--) {
  621. OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
  622. udelay (1);
  623. retval = (retval << 1) |
  624. ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
  625. OUTW (dev, EE_ENB, SCBeeprom);
  626. udelay (1);
  627. }
  628. /* Terminate the EEPROM access. */
  629. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  630. return retval;
  631. }
  632. #ifdef CONFIG_EEPRO100_SROM_WRITE
  633. int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
  634. {
  635. unsigned short dataval;
  636. int enable_cmd = 0x3f | EE_EWENB_CMD;
  637. int write_cmd = location | EE_WRITE_CMD;
  638. int i;
  639. unsigned long datalong, tmplong;
  640. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  641. udelay(1);
  642. OUTW(dev, EE_ENB, SCBeeprom);
  643. /* Shift the enable command bits out. */
  644. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  645. {
  646. dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  647. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  648. udelay(1);
  649. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  650. udelay(1);
  651. }
  652. OUTW(dev, EE_ENB, SCBeeprom);
  653. udelay(1);
  654. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  655. udelay(1);
  656. OUTW(dev, EE_ENB, SCBeeprom);
  657. /* Shift the write command bits out. */
  658. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  659. {
  660. dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  661. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  662. udelay(1);
  663. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  664. udelay(1);
  665. }
  666. /* Write the data */
  667. datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
  668. for (i = 0; i< EE_DATA_BITS; i++)
  669. {
  670. /* Extract and move data bit to bit DI */
  671. dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
  672. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  673. udelay(1);
  674. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  675. udelay(1);
  676. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  677. udelay(1);
  678. datalong = datalong << 1; /* Adjust significant data bit*/
  679. }
  680. /* Finish up command (toggle CS) */
  681. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  682. udelay(1); /* delay for more than 250 ns */
  683. OUTW(dev, EE_ENB, SCBeeprom);
  684. /* Wait for programming ready (D0 = 1) */
  685. tmplong = 10;
  686. do
  687. {
  688. dataval = INW(dev, SCBeeprom);
  689. if (dataval & EE_DATA_READ)
  690. break;
  691. udelay(10000);
  692. }
  693. while (-- tmplong);
  694. if (tmplong == 0)
  695. {
  696. printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
  697. return -1;
  698. }
  699. /* Terminate the EEPROM access. */
  700. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  701. return 0;
  702. }
  703. #endif
  704. static void init_rx_ring (struct eth_device *dev)
  705. {
  706. int i;
  707. for (i = 0; i < NUM_RX_DESC; i++) {
  708. rx_ring[i].status = 0;
  709. rx_ring[i].control =
  710. (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
  711. rx_ring[i].link =
  712. cpu_to_le32 (phys_to_bus
  713. ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
  714. rx_ring[i].rx_buf_addr = 0xffffffff;
  715. rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  716. }
  717. rx_next = 0;
  718. }
  719. static void purge_tx_ring (struct eth_device *dev)
  720. {
  721. int i;
  722. tx_next = 0;
  723. tx_threshold = 0x01208000;
  724. for (i = 0; i < NUM_TX_DESC; i++) {
  725. tx_ring[i].status = 0;
  726. tx_ring[i].command = 0;
  727. tx_ring[i].link = 0;
  728. tx_ring[i].tx_desc_addr = 0;
  729. tx_ring[i].count = 0;
  730. tx_ring[i].tx_buf_addr0 = 0;
  731. tx_ring[i].tx_buf_size0 = 0;
  732. tx_ring[i].tx_buf_addr1 = 0;
  733. tx_ring[i].tx_buf_size1 = 0;
  734. }
  735. }
  736. static void read_hw_addr (struct eth_device *dev, bd_t * bis)
  737. {
  738. u16 sum = 0;
  739. int i, j;
  740. int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
  741. for (j = 0, i = 0; i < 0x40; i++) {
  742. u16 value = read_eeprom (dev, i, addr_len);
  743. sum += value;
  744. if (i < 3) {
  745. dev->enetaddr[j++] = value;
  746. dev->enetaddr[j++] = value >> 8;
  747. }
  748. }
  749. if (sum != 0xBABA) {
  750. memset (dev->enetaddr, 0, ETH_ALEN);
  751. #ifdef DEBUG
  752. printf ("%s: Invalid EEPROM checksum %#4.4x, "
  753. "check settings before activating this device!\n",
  754. dev->name, sum);
  755. #endif
  756. }
  757. }